state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
case inr.ih.intro
F : Type u_1
E : Type u_2
inst✝³ : Field F
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite (IntermediateField F E)
K : IntermediateField F E
this : FiniteDimensional F E
h✝ : Infinite F
β α : E
⊢ ∃ α_1, F⟮α_1⟯ = restrictScalars F (↥F⟮α⟯)⟮β⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
|
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
|
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
|
Mathlib.FieldTheory.PrimitiveElement.294_0.R5HND7n71i1v1rZ
|
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K
|
Mathlib_FieldTheory_PrimitiveElement
|
case inr.ih.intro
F : Type u_1
E : Type u_2
inst✝³ : Field F
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite (IntermediateField F E)
K : IntermediateField F E
this : FiniteDimensional F E
h✝ : Infinite F
β α : E
⊢ ∃ α_1, F⟮α, β⟯ = F⟮α_1⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
|
exact primitive_element_inf_aux_of_finite_intermediateField F α β
|
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
|
Mathlib.FieldTheory.PrimitiveElement.294_0.R5HND7n71i1v1rZ
|
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
h : ∃ α, F⟮α⟯ = ⊤
⊢ FiniteDimensional F E
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
|
obtain ⟨α, hprim⟩ := h
|
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
|
Mathlib.FieldTheory.PrimitiveElement.305_0.R5HND7n71i1v1rZ
|
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
α : E
hprim : F⟮α⟯ = ⊤
⊢ FiniteDimensional F E
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
|
have hfin := adjoin.finiteDimensional (halg α).isIntegral
|
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
|
Mathlib.FieldTheory.PrimitiveElement.305_0.R5HND7n71i1v1rZ
|
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
α : E
hprim : F⟮α⟯ = ⊤
hfin : FiniteDimensional F ↥F⟮α⟯
⊢ FiniteDimensional F E
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
|
rw [hprim] at hfin
|
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
|
Mathlib.FieldTheory.PrimitiveElement.305_0.R5HND7n71i1v1rZ
|
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
α : E
hprim : F⟮α⟯ = ⊤
hfin : FiniteDimensional F ↥⊤
⊢ FiniteDimensional F E
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
|
exact topEquiv.toLinearEquiv.finiteDimensional
|
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
|
Mathlib.FieldTheory.PrimitiveElement.305_0.R5HND7n71i1v1rZ
|
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
h : ∃ α, F⟮α⟯ = ⊤
⊢ Finite (IntermediateField F E)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
|
haveI := finiteDimensional_of_exists_primitive_element F E halg h
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
|
Mathlib.FieldTheory.PrimitiveElement.313_0.R5HND7n71i1v1rZ
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
h : ∃ α, F⟮α⟯ = ⊤
this : FiniteDimensional F E
⊢ Finite (IntermediateField F E)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
|
obtain ⟨α, hprim⟩ := h
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
|
Mathlib.FieldTheory.PrimitiveElement.313_0.R5HND7n71i1v1rZ
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
this : FiniteDimensional F E
α : E
hprim : F⟮α⟯ = ⊤
⊢ Finite (IntermediateField F E)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
|
let f : F[X] := minpoly F α
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
|
Mathlib.FieldTheory.PrimitiveElement.313_0.R5HND7n71i1v1rZ
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
this : FiniteDimensional F E
α : E
hprim : F⟮α⟯ = ⊤
f : F[X] := minpoly F α
⊢ Finite (IntermediateField F E)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
|
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
|
Mathlib.FieldTheory.PrimitiveElement.313_0.R5HND7n71i1v1rZ
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
this : FiniteDimensional F E
α : E
hprim : F⟮α⟯ = ⊤
f : F[X] := minpoly F α
G : Type u_2 := { g // Monic g ∧ g ∣ Polynomial.map (algebraMap F E) f }
⊢ Finite (IntermediateField F E)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
|
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
|
Mathlib.FieldTheory.PrimitiveElement.313_0.R5HND7n71i1v1rZ
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
this : FiniteDimensional F E
α : E
hprim : F⟮α⟯ = ⊤
f : F[X] := minpoly F α
G : Type u_2 := { g // Monic g ∧ g ∣ Polynomial.map (algebraMap F E) f }
hfin : Finite G
⊢ Finite (IntermediateField F E)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
|
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
|
Mathlib.FieldTheory.PrimitiveElement.313_0.R5HND7n71i1v1rZ
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
this : FiniteDimensional F E
α : E
hprim : F⟮α⟯ = ⊤
f : F[X] := minpoly F α
G : Type u_2 := { g // Monic g ∧ g ∣ Polynomial.map (algebraMap F E) f }
hfin : Finite G
K : IntermediateField F E
⊢ Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α) ∣ Polynomial.map (algebraMap F E) f
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
|
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
|
Mathlib.FieldTheory.PrimitiveElement.313_0.R5HND7n71i1v1rZ
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
|
Mathlib_FieldTheory_PrimitiveElement
|
case h.e'_4
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
this : FiniteDimensional F E
α : E
hprim : F⟮α⟯ = ⊤
f : F[X] := minpoly F α
G : Type u_2 := { g // Monic g ∧ g ∣ Polynomial.map (algebraMap F E) f }
hfin : Finite G
K : IntermediateField F E
⊢ Polynomial.map (algebraMap F E) f =
Polynomial.map (algebraMap (↥K) E) (Polynomial.map (algebraMap F ↥K) (minpoly F α))
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
|
rw [Polynomial.map_map]
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
|
Mathlib.FieldTheory.PrimitiveElement.313_0.R5HND7n71i1v1rZ
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
|
Mathlib_FieldTheory_PrimitiveElement
|
case h.e'_4
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
this : FiniteDimensional F E
α : E
hprim : F⟮α⟯ = ⊤
f : F[X] := minpoly F α
G : Type u_2 := { g // Monic g ∧ g ∣ Polynomial.map (algebraMap F E) f }
hfin : Finite G
K : IntermediateField F E
⊢ Polynomial.map (algebraMap F E) f = Polynomial.map (RingHom.comp (algebraMap (↥K) E) (algebraMap F ↥K)) (minpoly F α)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map];
|
rfl
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map];
|
Mathlib.FieldTheory.PrimitiveElement.313_0.R5HND7n71i1v1rZ
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
this : FiniteDimensional F E
α : E
hprim : F⟮α⟯ = ⊤
f : F[X] := minpoly F α
G : Type u_2 := { g // Monic g ∧ g ∣ Polynomial.map (algebraMap F E) f }
hfin : Finite G
g : IntermediateField F E → G :=
fun K =>
{ val := Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α),
property :=
(_ :
Monic (Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α)) ∧
Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α) ∣ Polynomial.map (algebraMap F E) f) }
⊢ Finite (IntermediateField F E)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
|
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
|
Mathlib.FieldTheory.PrimitiveElement.313_0.R5HND7n71i1v1rZ
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
this : FiniteDimensional F E
α : E
hprim : F⟮α⟯ = ⊤
f : F[X] := minpoly F α
G : Type u_2 := { g // Monic g ∧ g ∣ Polynomial.map (algebraMap F E) f }
hfin : Finite G
g : IntermediateField F E → G :=
fun K =>
{ val := Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α),
property :=
(_ :
Monic (Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α)) ∧
Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α) ∣ Polynomial.map (algebraMap F E) f) }
K K' : IntermediateField F E
heq : g K = g K'
⊢ K = K'
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
|
rw [Subtype.mk.injEq] at heq
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
|
Mathlib.FieldTheory.PrimitiveElement.313_0.R5HND7n71i1v1rZ
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
this : FiniteDimensional F E
α : E
hprim : F⟮α⟯ = ⊤
f : F[X] := minpoly F α
G : Type u_2 := { g // Monic g ∧ g ∣ Polynomial.map (algebraMap F E) f }
hfin : Finite G
g : IntermediateField F E → G :=
fun K =>
{ val := Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α),
property :=
(_ :
Monic (Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α)) ∧
Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α) ∣ Polynomial.map (algebraMap F E) f) }
K K' : IntermediateField F E
heq : Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α) = Polynomial.map (algebraMap (↥K') E) (minpoly (↥K') α)
⊢ K = K'
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
|
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
|
Mathlib.FieldTheory.PrimitiveElement.313_0.R5HND7n71i1v1rZ
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
this : FiniteDimensional F E
α : E
hprim : F⟮α⟯ = ⊤
f : F[X] := minpoly F α
G : Type u_2 := { g // Monic g ∧ g ∣ Polynomial.map (algebraMap F E) f }
hfin : Finite G
g : IntermediateField F E → G :=
fun K =>
{ val := Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α),
property :=
(_ :
Monic (Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α)) ∧
Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α) ∣ Polynomial.map (algebraMap F E) f) }
K K' : IntermediateField F E
heq :
adjoin F ↑(frange (Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α))) =
adjoin F ↑(frange (Polynomial.map (algebraMap (↥K') E) (minpoly (↥K') α)))
⊢ K = K'
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
|
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
|
Mathlib.FieldTheory.PrimitiveElement.313_0.R5HND7n71i1v1rZ
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
E : Type u_2
inst✝² : Field F
inst✝¹ : Field E
inst✝ : Algebra F E
halg : Algebra.IsAlgebraic F E
this : FiniteDimensional F E
α : E
hprim : F⟮α⟯ = ⊤
f : F[X] := minpoly F α
G : Type u_2 := { g // Monic g ∧ g ∣ Polynomial.map (algebraMap F E) f }
hfin : Finite G
g : IntermediateField F E → G :=
fun K =>
{ val := Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α),
property :=
(_ :
Monic (Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α)) ∧
Polynomial.map (algebraMap (↥K) E) (minpoly (↥K) α) ∣ Polynomial.map (algebraMap F E) f) }
hinj : Function.Injective g
⊢ Finite (IntermediateField F E)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
|
exact Finite.of_injective g hinj
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
|
Mathlib.FieldTheory.PrimitiveElement.313_0.R5HND7n71i1v1rZ
|
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E)
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
E : Type u_2
inst✝⁷ : Field F
inst✝⁶ : Field E
inst✝⁵ : Algebra F E
inst✝⁴ : FiniteDimensional F E
inst✝³ : IsSeparable F E
K : Type u_3
inst✝² : Field K
inst✝¹ : IsAlgClosed K
inst✝ : Algebra F K
⊢ Fintype.card (E →ₐ[F] K) = finrank F E
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
|
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
|
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
|
Mathlib.FieldTheory.PrimitiveElement.352_0.R5HND7n71i1v1rZ
|
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
E : Type u_2
inst✝⁶ : Field F
inst✝⁵ : Field E
inst✝⁴ : Algebra F E
inst✝³ : FiniteDimensional F E
inst✝² : IsSeparable F E
L : Type u_3
inst✝¹ : Field L
inst✝ : Algebra F L
hL : ∀ (x : E), Splits (algebraMap F L) (minpoly F x)
⊢ Fintype.card (E →ₐ[F] L) = finrank F E
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
|
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
|
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
|
Mathlib.FieldTheory.PrimitiveElement.359_0.R5HND7n71i1v1rZ
|
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
E : Type u_2
inst✝⁶ : Field F
inst✝⁵ : Field E
inst✝⁴ : Algebra F E
inst✝³ : FiniteDimensional F E
inst✝² : IsSeparable F E
L : Type u_3
inst✝¹ : Field L
inst✝ : Algebra F L
hL : ∀ (x : E), Splits (algebraMap F L) (minpoly F x)
⊢ Fintype.card (E →ₐ[F] AlgebraicClosure L) = finrank F E
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
|
convert AlgHom.card F E (AlgebraicClosure L)
|
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
|
Mathlib.FieldTheory.PrimitiveElement.359_0.R5HND7n71i1v1rZ
|
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E
|
Mathlib_FieldTheory_PrimitiveElement
|
F✝ : Type u_1
E✝ : Type u_2
inst✝⁸ : Field F✝
inst✝⁷ : Field E✝
inst✝⁶ : Algebra F✝ E✝
inst✝⁵ : FiniteDimensional F✝ E✝
inst✝⁴ : IsSeparable F✝ E✝
F : Type u_3
E : Type u_4
inst✝³ : Field F
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
α : E
⊢ F⟮α⟯ = ⊤ ↔ natDegree (minpoly F α) = finrank F E
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
convert AlgHom.card F E (AlgebraicClosure L)
section iff
namespace Field
open FiniteDimensional IntermediateField Polynomial Algebra Set
variable (F : Type*) {E : Type*} [Field F] [Field E] [Algebra F E] [FiniteDimensional F E]
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
|
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
|
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
|
Mathlib.FieldTheory.PrimitiveElement.375_0.R5HND7n71i1v1rZ
|
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E
|
Mathlib_FieldTheory_PrimitiveElement
|
F✝ : Type u_1
E✝ : Type u_2
inst✝⁸ : Field F✝
inst✝⁷ : Field E✝
inst✝⁶ : Algebra F✝ E✝
inst✝⁵ : FiniteDimensional F✝ E✝
inst✝⁴ : IsSeparable F✝ E✝
F : Type u_3
E : Type u_4
inst✝³ : Field F
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
α : E
⊢ F⟮α⟯ = ⊤ ↔ finrank F ↥F⟮α⟯ = finrank F ↥⊤
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
convert AlgHom.card F E (AlgebraicClosure L)
section iff
namespace Field
open FiniteDimensional IntermediateField Polynomial Algebra Set
variable (F : Type*) {E : Type*} [Field F] [Field E] [Algebra F E] [FiniteDimensional F E]
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
|
refine ⟨fun h => ?_, fun h => eq_of_le_of_finrank_eq le_top h⟩
|
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
|
Mathlib.FieldTheory.PrimitiveElement.375_0.R5HND7n71i1v1rZ
|
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E
|
Mathlib_FieldTheory_PrimitiveElement
|
F✝ : Type u_1
E✝ : Type u_2
inst✝⁸ : Field F✝
inst✝⁷ : Field E✝
inst✝⁶ : Algebra F✝ E✝
inst✝⁵ : FiniteDimensional F✝ E✝
inst✝⁴ : IsSeparable F✝ E✝
F : Type u_3
E : Type u_4
inst✝³ : Field F
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
α : E
h : F⟮α⟯ = ⊤
⊢ finrank F ↥F⟮α⟯ = finrank F ↥⊤
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
convert AlgHom.card F E (AlgebraicClosure L)
section iff
namespace Field
open FiniteDimensional IntermediateField Polynomial Algebra Set
variable (F : Type*) {E : Type*} [Field F] [Field E] [Algebra F E] [FiniteDimensional F E]
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
refine ⟨fun h => ?_, fun h => eq_of_le_of_finrank_eq le_top h⟩
|
exact congr_arg (fun K : IntermediateField F E => finrank F K) h
|
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
refine ⟨fun h => ?_, fun h => eq_of_le_of_finrank_eq le_top h⟩
|
Mathlib.FieldTheory.PrimitiveElement.375_0.R5HND7n71i1v1rZ
|
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E
|
Mathlib_FieldTheory_PrimitiveElement
|
F✝ : Type u_1
E✝ : Type u_2
inst✝⁸ : Field F✝
inst✝⁷ : Field E✝
inst✝⁶ : Algebra F✝ E✝
inst✝⁵ : FiniteDimensional F✝ E✝
inst✝⁴ : IsSeparable F✝ E✝
F : Type u_3
E : Type u_4
inst✝³ : Field F
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
α : E
⊢ F⟮α⟯ = ⊤ ↔ degree (minpoly F α) = ↑(finrank F E)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
convert AlgHom.card F E (AlgebraicClosure L)
section iff
namespace Field
open FiniteDimensional IntermediateField Polynomial Algebra Set
variable (F : Type*) {E : Type*} [Field F] [Field E] [Algebra F E] [FiniteDimensional F E]
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
refine ⟨fun h => ?_, fun h => eq_of_le_of_finrank_eq le_top h⟩
exact congr_arg (fun K : IntermediateField F E => finrank F K) h
theorem primitive_element_iff_minpoly_degree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).degree = finrank F E := by
|
rw [degree_eq_iff_natDegree_eq, primitive_element_iff_minpoly_natDegree_eq]
|
theorem primitive_element_iff_minpoly_degree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).degree = finrank F E := by
|
Mathlib.FieldTheory.PrimitiveElement.381_0.R5HND7n71i1v1rZ
|
theorem primitive_element_iff_minpoly_degree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).degree = finrank F E
|
Mathlib_FieldTheory_PrimitiveElement
|
F✝ : Type u_1
E✝ : Type u_2
inst✝⁸ : Field F✝
inst✝⁷ : Field E✝
inst✝⁶ : Algebra F✝ E✝
inst✝⁵ : FiniteDimensional F✝ E✝
inst✝⁴ : IsSeparable F✝ E✝
F : Type u_3
E : Type u_4
inst✝³ : Field F
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
α : E
⊢ minpoly F α ≠ 0
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
convert AlgHom.card F E (AlgebraicClosure L)
section iff
namespace Field
open FiniteDimensional IntermediateField Polynomial Algebra Set
variable (F : Type*) {E : Type*} [Field F] [Field E] [Algebra F E] [FiniteDimensional F E]
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
refine ⟨fun h => ?_, fun h => eq_of_le_of_finrank_eq le_top h⟩
exact congr_arg (fun K : IntermediateField F E => finrank F K) h
theorem primitive_element_iff_minpoly_degree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).degree = finrank F E := by
rw [degree_eq_iff_natDegree_eq, primitive_element_iff_minpoly_natDegree_eq]
|
exact minpoly.ne_zero_of_finite F α
|
theorem primitive_element_iff_minpoly_degree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).degree = finrank F E := by
rw [degree_eq_iff_natDegree_eq, primitive_element_iff_minpoly_natDegree_eq]
|
Mathlib.FieldTheory.PrimitiveElement.381_0.R5HND7n71i1v1rZ
|
theorem primitive_element_iff_minpoly_degree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).degree = finrank F E
|
Mathlib_FieldTheory_PrimitiveElement
|
F✝ : Type u_1
E✝ : Type u_2
inst✝¹¹ : Field F✝
inst✝¹⁰ : Field E✝
inst✝⁹ : Algebra F✝ E✝
inst✝⁸ : FiniteDimensional F✝ E✝
inst✝⁷ : IsSeparable F✝ E✝
F : Type u_3
E : Type u_4
inst✝⁶ : Field F
inst✝⁵ : Field E
inst✝⁴ : Algebra F E
inst✝³ : FiniteDimensional F E
inst✝² : IsSeparable F E
A : Type u_5
inst✝¹ : Field A
inst✝ : Algebra F A
hA : ∀ (x : E), Splits (algebraMap F A) (minpoly F x)
α : E
⊢ F⟮α⟯ = ⊤ ↔ Function.Injective fun φ => φ α
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
convert AlgHom.card F E (AlgebraicClosure L)
section iff
namespace Field
open FiniteDimensional IntermediateField Polynomial Algebra Set
variable (F : Type*) {E : Type*} [Field F] [Field E] [Algebra F E] [FiniteDimensional F E]
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
refine ⟨fun h => ?_, fun h => eq_of_le_of_finrank_eq le_top h⟩
exact congr_arg (fun K : IntermediateField F E => finrank F K) h
theorem primitive_element_iff_minpoly_degree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).degree = finrank F E := by
rw [degree_eq_iff_natDegree_eq, primitive_element_iff_minpoly_natDegree_eq]
exact minpoly.ne_zero_of_finite F α
variable [IsSeparable F E] (A : Type*) [Field A] [Algebra F A]
(hA : ∀ x : E, (minpoly F x).Splits (algebraMap F A))
theorem primitive_element_iff_algHom_eq_of_eval' (α : E) :
F⟮α⟯ = ⊤ ↔ Function.Injective fun φ : E →ₐ[F] A ↦ φ α := by
|
classical
simp_rw [primitive_element_iff_minpoly_natDegree_eq, ← card_rootSet_eq_natDegree (K := A)
(IsSeparable.separable F α) (hA _), ← toFinset_card,
← (Algebra.IsAlgebraic.of_finite F E).range_eval_eq_rootSet_minpoly_of_splits _ hA α,
← AlgHom.card_of_splits F E A hA, Fintype.card, toFinset_range, Finset.card_image_iff,
Finset.coe_univ, ← injective_iff_injOn_univ]
|
theorem primitive_element_iff_algHom_eq_of_eval' (α : E) :
F⟮α⟯ = ⊤ ↔ Function.Injective fun φ : E →ₐ[F] A ↦ φ α := by
|
Mathlib.FieldTheory.PrimitiveElement.389_0.R5HND7n71i1v1rZ
|
theorem primitive_element_iff_algHom_eq_of_eval' (α : E) :
F⟮α⟯ = ⊤ ↔ Function.Injective fun φ : E →ₐ[F] A ↦ φ α
|
Mathlib_FieldTheory_PrimitiveElement
|
F✝ : Type u_1
E✝ : Type u_2
inst✝¹¹ : Field F✝
inst✝¹⁰ : Field E✝
inst✝⁹ : Algebra F✝ E✝
inst✝⁸ : FiniteDimensional F✝ E✝
inst✝⁷ : IsSeparable F✝ E✝
F : Type u_3
E : Type u_4
inst✝⁶ : Field F
inst✝⁵ : Field E
inst✝⁴ : Algebra F E
inst✝³ : FiniteDimensional F E
inst✝² : IsSeparable F E
A : Type u_5
inst✝¹ : Field A
inst✝ : Algebra F A
hA : ∀ (x : E), Splits (algebraMap F A) (minpoly F x)
α : E
⊢ F⟮α⟯ = ⊤ ↔ Function.Injective fun φ => φ α
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
convert AlgHom.card F E (AlgebraicClosure L)
section iff
namespace Field
open FiniteDimensional IntermediateField Polynomial Algebra Set
variable (F : Type*) {E : Type*} [Field F] [Field E] [Algebra F E] [FiniteDimensional F E]
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
refine ⟨fun h => ?_, fun h => eq_of_le_of_finrank_eq le_top h⟩
exact congr_arg (fun K : IntermediateField F E => finrank F K) h
theorem primitive_element_iff_minpoly_degree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).degree = finrank F E := by
rw [degree_eq_iff_natDegree_eq, primitive_element_iff_minpoly_natDegree_eq]
exact minpoly.ne_zero_of_finite F α
variable [IsSeparable F E] (A : Type*) [Field A] [Algebra F A]
(hA : ∀ x : E, (minpoly F x).Splits (algebraMap F A))
theorem primitive_element_iff_algHom_eq_of_eval' (α : E) :
F⟮α⟯ = ⊤ ↔ Function.Injective fun φ : E →ₐ[F] A ↦ φ α := by
classical
|
simp_rw [primitive_element_iff_minpoly_natDegree_eq, ← card_rootSet_eq_natDegree (K := A)
(IsSeparable.separable F α) (hA _), ← toFinset_card,
← (Algebra.IsAlgebraic.of_finite F E).range_eval_eq_rootSet_minpoly_of_splits _ hA α,
← AlgHom.card_of_splits F E A hA, Fintype.card, toFinset_range, Finset.card_image_iff,
Finset.coe_univ, ← injective_iff_injOn_univ]
|
theorem primitive_element_iff_algHom_eq_of_eval' (α : E) :
F⟮α⟯ = ⊤ ↔ Function.Injective fun φ : E →ₐ[F] A ↦ φ α := by
classical
|
Mathlib.FieldTheory.PrimitiveElement.389_0.R5HND7n71i1v1rZ
|
theorem primitive_element_iff_algHom_eq_of_eval' (α : E) :
F⟮α⟯ = ⊤ ↔ Function.Injective fun φ : E →ₐ[F] A ↦ φ α
|
Mathlib_FieldTheory_PrimitiveElement
|
F✝ : Type u_1
E✝ : Type u_2
inst✝¹¹ : Field F✝
inst✝¹⁰ : Field E✝
inst✝⁹ : Algebra F✝ E✝
inst✝⁸ : FiniteDimensional F✝ E✝
inst✝⁷ : IsSeparable F✝ E✝
F : Type u_3
E : Type u_4
inst✝⁶ : Field F
inst✝⁵ : Field E
inst✝⁴ : Algebra F E
inst✝³ : FiniteDimensional F E
inst✝² : IsSeparable F E
A : Type u_5
inst✝¹ : Field A
inst✝ : Algebra F A
hA : ∀ (x : E), Splits (algebraMap F A) (minpoly F x)
α : E
φ : E →ₐ[F] A
⊢ F⟮α⟯ = ⊤ ↔ ∀ (ψ : E →ₐ[F] A), φ α = ψ α → φ = ψ
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
convert AlgHom.card F E (AlgebraicClosure L)
section iff
namespace Field
open FiniteDimensional IntermediateField Polynomial Algebra Set
variable (F : Type*) {E : Type*} [Field F] [Field E] [Algebra F E] [FiniteDimensional F E]
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
refine ⟨fun h => ?_, fun h => eq_of_le_of_finrank_eq le_top h⟩
exact congr_arg (fun K : IntermediateField F E => finrank F K) h
theorem primitive_element_iff_minpoly_degree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).degree = finrank F E := by
rw [degree_eq_iff_natDegree_eq, primitive_element_iff_minpoly_natDegree_eq]
exact minpoly.ne_zero_of_finite F α
variable [IsSeparable F E] (A : Type*) [Field A] [Algebra F A]
(hA : ∀ x : E, (minpoly F x).Splits (algebraMap F A))
theorem primitive_element_iff_algHom_eq_of_eval' (α : E) :
F⟮α⟯ = ⊤ ↔ Function.Injective fun φ : E →ₐ[F] A ↦ φ α := by
classical
simp_rw [primitive_element_iff_minpoly_natDegree_eq, ← card_rootSet_eq_natDegree (K := A)
(IsSeparable.separable F α) (hA _), ← toFinset_card,
← (Algebra.IsAlgebraic.of_finite F E).range_eval_eq_rootSet_minpoly_of_splits _ hA α,
← AlgHom.card_of_splits F E A hA, Fintype.card, toFinset_range, Finset.card_image_iff,
Finset.coe_univ, ← injective_iff_injOn_univ]
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ := by
|
refine ⟨fun h ψ hψ ↦ (Field.primitive_element_iff_algHom_eq_of_eval' F A hA α).mp h hψ,
fun h ↦ eq_of_le_of_finrank_eq' le_top ?_⟩
|
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ := by
|
Mathlib.FieldTheory.PrimitiveElement.398_0.R5HND7n71i1v1rZ
|
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ
|
Mathlib_FieldTheory_PrimitiveElement
|
F✝ : Type u_1
E✝ : Type u_2
inst✝¹¹ : Field F✝
inst✝¹⁰ : Field E✝
inst✝⁹ : Algebra F✝ E✝
inst✝⁸ : FiniteDimensional F✝ E✝
inst✝⁷ : IsSeparable F✝ E✝
F : Type u_3
E : Type u_4
inst✝⁶ : Field F
inst✝⁵ : Field E
inst✝⁴ : Algebra F E
inst✝³ : FiniteDimensional F E
inst✝² : IsSeparable F E
A : Type u_5
inst✝¹ : Field A
inst✝ : Algebra F A
hA : ∀ (x : E), Splits (algebraMap F A) (minpoly F x)
α : E
φ : E →ₐ[F] A
h : ∀ (ψ : E →ₐ[F] A), φ α = ψ α → φ = ψ
⊢ finrank (↥F⟮α⟯) E = finrank (↥⊤) E
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
convert AlgHom.card F E (AlgebraicClosure L)
section iff
namespace Field
open FiniteDimensional IntermediateField Polynomial Algebra Set
variable (F : Type*) {E : Type*} [Field F] [Field E] [Algebra F E] [FiniteDimensional F E]
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
refine ⟨fun h => ?_, fun h => eq_of_le_of_finrank_eq le_top h⟩
exact congr_arg (fun K : IntermediateField F E => finrank F K) h
theorem primitive_element_iff_minpoly_degree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).degree = finrank F E := by
rw [degree_eq_iff_natDegree_eq, primitive_element_iff_minpoly_natDegree_eq]
exact minpoly.ne_zero_of_finite F α
variable [IsSeparable F E] (A : Type*) [Field A] [Algebra F A]
(hA : ∀ x : E, (minpoly F x).Splits (algebraMap F A))
theorem primitive_element_iff_algHom_eq_of_eval' (α : E) :
F⟮α⟯ = ⊤ ↔ Function.Injective fun φ : E →ₐ[F] A ↦ φ α := by
classical
simp_rw [primitive_element_iff_minpoly_natDegree_eq, ← card_rootSet_eq_natDegree (K := A)
(IsSeparable.separable F α) (hA _), ← toFinset_card,
← (Algebra.IsAlgebraic.of_finite F E).range_eval_eq_rootSet_minpoly_of_splits _ hA α,
← AlgHom.card_of_splits F E A hA, Fintype.card, toFinset_range, Finset.card_image_iff,
Finset.coe_univ, ← injective_iff_injOn_univ]
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ := by
refine ⟨fun h ψ hψ ↦ (Field.primitive_element_iff_algHom_eq_of_eval' F A hA α).mp h hψ,
fun h ↦ eq_of_le_of_finrank_eq' le_top ?_⟩
|
letI : Algebra F⟮α⟯ A := (φ.comp F⟮α⟯.val).toAlgebra
|
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ := by
refine ⟨fun h ψ hψ ↦ (Field.primitive_element_iff_algHom_eq_of_eval' F A hA α).mp h hψ,
fun h ↦ eq_of_le_of_finrank_eq' le_top ?_⟩
|
Mathlib.FieldTheory.PrimitiveElement.398_0.R5HND7n71i1v1rZ
|
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ
|
Mathlib_FieldTheory_PrimitiveElement
|
F✝ : Type u_1
E✝ : Type u_2
inst✝¹¹ : Field F✝
inst✝¹⁰ : Field E✝
inst✝⁹ : Algebra F✝ E✝
inst✝⁸ : FiniteDimensional F✝ E✝
inst✝⁷ : IsSeparable F✝ E✝
F : Type u_3
E : Type u_4
inst✝⁶ : Field F
inst✝⁵ : Field E
inst✝⁴ : Algebra F E
inst✝³ : FiniteDimensional F E
inst✝² : IsSeparable F E
A : Type u_5
inst✝¹ : Field A
inst✝ : Algebra F A
hA : ∀ (x : E), Splits (algebraMap F A) (minpoly F x)
α : E
φ : E →ₐ[F] A
h : ∀ (ψ : E →ₐ[F] A), φ α = ψ α → φ = ψ
this : Algebra (↥F⟮α⟯) A := RingHom.toAlgebra ↑(AlgHom.comp φ (val F⟮α⟯))
⊢ finrank (↥F⟮α⟯) E = finrank (↥⊤) E
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
convert AlgHom.card F E (AlgebraicClosure L)
section iff
namespace Field
open FiniteDimensional IntermediateField Polynomial Algebra Set
variable (F : Type*) {E : Type*} [Field F] [Field E] [Algebra F E] [FiniteDimensional F E]
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
refine ⟨fun h => ?_, fun h => eq_of_le_of_finrank_eq le_top h⟩
exact congr_arg (fun K : IntermediateField F E => finrank F K) h
theorem primitive_element_iff_minpoly_degree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).degree = finrank F E := by
rw [degree_eq_iff_natDegree_eq, primitive_element_iff_minpoly_natDegree_eq]
exact minpoly.ne_zero_of_finite F α
variable [IsSeparable F E] (A : Type*) [Field A] [Algebra F A]
(hA : ∀ x : E, (minpoly F x).Splits (algebraMap F A))
theorem primitive_element_iff_algHom_eq_of_eval' (α : E) :
F⟮α⟯ = ⊤ ↔ Function.Injective fun φ : E →ₐ[F] A ↦ φ α := by
classical
simp_rw [primitive_element_iff_minpoly_natDegree_eq, ← card_rootSet_eq_natDegree (K := A)
(IsSeparable.separable F α) (hA _), ← toFinset_card,
← (Algebra.IsAlgebraic.of_finite F E).range_eval_eq_rootSet_minpoly_of_splits _ hA α,
← AlgHom.card_of_splits F E A hA, Fintype.card, toFinset_range, Finset.card_image_iff,
Finset.coe_univ, ← injective_iff_injOn_univ]
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ := by
refine ⟨fun h ψ hψ ↦ (Field.primitive_element_iff_algHom_eq_of_eval' F A hA α).mp h hψ,
fun h ↦ eq_of_le_of_finrank_eq' le_top ?_⟩
letI : Algebra F⟮α⟯ A := (φ.comp F⟮α⟯.val).toAlgebra
|
haveI := isSeparable_tower_top_of_isSeparable F F⟮α⟯ E
|
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ := by
refine ⟨fun h ψ hψ ↦ (Field.primitive_element_iff_algHom_eq_of_eval' F A hA α).mp h hψ,
fun h ↦ eq_of_le_of_finrank_eq' le_top ?_⟩
letI : Algebra F⟮α⟯ A := (φ.comp F⟮α⟯.val).toAlgebra
|
Mathlib.FieldTheory.PrimitiveElement.398_0.R5HND7n71i1v1rZ
|
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ
|
Mathlib_FieldTheory_PrimitiveElement
|
F✝ : Type u_1
E✝ : Type u_2
inst✝¹¹ : Field F✝
inst✝¹⁰ : Field E✝
inst✝⁹ : Algebra F✝ E✝
inst✝⁸ : FiniteDimensional F✝ E✝
inst✝⁷ : IsSeparable F✝ E✝
F : Type u_3
E : Type u_4
inst✝⁶ : Field F
inst✝⁵ : Field E
inst✝⁴ : Algebra F E
inst✝³ : FiniteDimensional F E
inst✝² : IsSeparable F E
A : Type u_5
inst✝¹ : Field A
inst✝ : Algebra F A
hA : ∀ (x : E), Splits (algebraMap F A) (minpoly F x)
α : E
φ : E →ₐ[F] A
h : ∀ (ψ : E →ₐ[F] A), φ α = ψ α → φ = ψ
this✝ : Algebra (↥F⟮α⟯) A := RingHom.toAlgebra ↑(AlgHom.comp φ (val F⟮α⟯))
this : IsSeparable (↥F⟮α⟯) E
⊢ finrank (↥F⟮α⟯) E = finrank (↥⊤) E
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
convert AlgHom.card F E (AlgebraicClosure L)
section iff
namespace Field
open FiniteDimensional IntermediateField Polynomial Algebra Set
variable (F : Type*) {E : Type*} [Field F] [Field E] [Algebra F E] [FiniteDimensional F E]
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
refine ⟨fun h => ?_, fun h => eq_of_le_of_finrank_eq le_top h⟩
exact congr_arg (fun K : IntermediateField F E => finrank F K) h
theorem primitive_element_iff_minpoly_degree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).degree = finrank F E := by
rw [degree_eq_iff_natDegree_eq, primitive_element_iff_minpoly_natDegree_eq]
exact minpoly.ne_zero_of_finite F α
variable [IsSeparable F E] (A : Type*) [Field A] [Algebra F A]
(hA : ∀ x : E, (minpoly F x).Splits (algebraMap F A))
theorem primitive_element_iff_algHom_eq_of_eval' (α : E) :
F⟮α⟯ = ⊤ ↔ Function.Injective fun φ : E →ₐ[F] A ↦ φ α := by
classical
simp_rw [primitive_element_iff_minpoly_natDegree_eq, ← card_rootSet_eq_natDegree (K := A)
(IsSeparable.separable F α) (hA _), ← toFinset_card,
← (Algebra.IsAlgebraic.of_finite F E).range_eval_eq_rootSet_minpoly_of_splits _ hA α,
← AlgHom.card_of_splits F E A hA, Fintype.card, toFinset_range, Finset.card_image_iff,
Finset.coe_univ, ← injective_iff_injOn_univ]
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ := by
refine ⟨fun h ψ hψ ↦ (Field.primitive_element_iff_algHom_eq_of_eval' F A hA α).mp h hψ,
fun h ↦ eq_of_le_of_finrank_eq' le_top ?_⟩
letI : Algebra F⟮α⟯ A := (φ.comp F⟮α⟯.val).toAlgebra
haveI := isSeparable_tower_top_of_isSeparable F F⟮α⟯ E
|
rw [IntermediateField.finrank_top, ← AlgHom.card_of_splits _ _ A, Fintype.card_eq_one_iff]
|
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ := by
refine ⟨fun h ψ hψ ↦ (Field.primitive_element_iff_algHom_eq_of_eval' F A hA α).mp h hψ,
fun h ↦ eq_of_le_of_finrank_eq' le_top ?_⟩
letI : Algebra F⟮α⟯ A := (φ.comp F⟮α⟯.val).toAlgebra
haveI := isSeparable_tower_top_of_isSeparable F F⟮α⟯ E
|
Mathlib.FieldTheory.PrimitiveElement.398_0.R5HND7n71i1v1rZ
|
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ
|
Mathlib_FieldTheory_PrimitiveElement
|
F✝ : Type u_1
E✝ : Type u_2
inst✝¹¹ : Field F✝
inst✝¹⁰ : Field E✝
inst✝⁹ : Algebra F✝ E✝
inst✝⁸ : FiniteDimensional F✝ E✝
inst✝⁷ : IsSeparable F✝ E✝
F : Type u_3
E : Type u_4
inst✝⁶ : Field F
inst✝⁵ : Field E
inst✝⁴ : Algebra F E
inst✝³ : FiniteDimensional F E
inst✝² : IsSeparable F E
A : Type u_5
inst✝¹ : Field A
inst✝ : Algebra F A
hA : ∀ (x : E), Splits (algebraMap F A) (minpoly F x)
α : E
φ : E →ₐ[F] A
h : ∀ (ψ : E →ₐ[F] A), φ α = ψ α → φ = ψ
this✝ : Algebra (↥F⟮α⟯) A := RingHom.toAlgebra ↑(AlgHom.comp φ (val F⟮α⟯))
this : IsSeparable (↥F⟮α⟯) E
⊢ ∃ x, ∀ (y : E →ₐ[↥F⟮α⟯] A), y = x
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
convert AlgHom.card F E (AlgebraicClosure L)
section iff
namespace Field
open FiniteDimensional IntermediateField Polynomial Algebra Set
variable (F : Type*) {E : Type*} [Field F] [Field E] [Algebra F E] [FiniteDimensional F E]
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
refine ⟨fun h => ?_, fun h => eq_of_le_of_finrank_eq le_top h⟩
exact congr_arg (fun K : IntermediateField F E => finrank F K) h
theorem primitive_element_iff_minpoly_degree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).degree = finrank F E := by
rw [degree_eq_iff_natDegree_eq, primitive_element_iff_minpoly_natDegree_eq]
exact minpoly.ne_zero_of_finite F α
variable [IsSeparable F E] (A : Type*) [Field A] [Algebra F A]
(hA : ∀ x : E, (minpoly F x).Splits (algebraMap F A))
theorem primitive_element_iff_algHom_eq_of_eval' (α : E) :
F⟮α⟯ = ⊤ ↔ Function.Injective fun φ : E →ₐ[F] A ↦ φ α := by
classical
simp_rw [primitive_element_iff_minpoly_natDegree_eq, ← card_rootSet_eq_natDegree (K := A)
(IsSeparable.separable F α) (hA _), ← toFinset_card,
← (Algebra.IsAlgebraic.of_finite F E).range_eval_eq_rootSet_minpoly_of_splits _ hA α,
← AlgHom.card_of_splits F E A hA, Fintype.card, toFinset_range, Finset.card_image_iff,
Finset.coe_univ, ← injective_iff_injOn_univ]
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ := by
refine ⟨fun h ψ hψ ↦ (Field.primitive_element_iff_algHom_eq_of_eval' F A hA α).mp h hψ,
fun h ↦ eq_of_le_of_finrank_eq' le_top ?_⟩
letI : Algebra F⟮α⟯ A := (φ.comp F⟮α⟯.val).toAlgebra
haveI := isSeparable_tower_top_of_isSeparable F F⟮α⟯ E
rw [IntermediateField.finrank_top, ← AlgHom.card_of_splits _ _ A, Fintype.card_eq_one_iff]
·
|
exact ⟨{ __ := φ, commutes' := fun _ ↦ rfl }, fun ψ ↦ AlgHom.restrictScalars_injective F <|
Eq.symm <| h _ (ψ.commutes <| AdjoinSimple.gen F α).symm⟩
|
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ := by
refine ⟨fun h ψ hψ ↦ (Field.primitive_element_iff_algHom_eq_of_eval' F A hA α).mp h hψ,
fun h ↦ eq_of_le_of_finrank_eq' le_top ?_⟩
letI : Algebra F⟮α⟯ A := (φ.comp F⟮α⟯.val).toAlgebra
haveI := isSeparable_tower_top_of_isSeparable F F⟮α⟯ E
rw [IntermediateField.finrank_top, ← AlgHom.card_of_splits _ _ A, Fintype.card_eq_one_iff]
·
|
Mathlib.FieldTheory.PrimitiveElement.398_0.R5HND7n71i1v1rZ
|
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ
|
Mathlib_FieldTheory_PrimitiveElement
|
F✝ : Type u_1
E✝ : Type u_2
inst✝¹¹ : Field F✝
inst✝¹⁰ : Field E✝
inst✝⁹ : Algebra F✝ E✝
inst✝⁸ : FiniteDimensional F✝ E✝
inst✝⁷ : IsSeparable F✝ E✝
F : Type u_3
E : Type u_4
inst✝⁶ : Field F
inst✝⁵ : Field E
inst✝⁴ : Algebra F E
inst✝³ : FiniteDimensional F E
inst✝² : IsSeparable F E
A : Type u_5
inst✝¹ : Field A
inst✝ : Algebra F A
hA : ∀ (x : E), Splits (algebraMap F A) (minpoly F x)
α : E
φ : E →ₐ[F] A
h : ∀ (ψ : E →ₐ[F] A), φ α = ψ α → φ = ψ
this✝ : Algebra (↥F⟮α⟯) A := RingHom.toAlgebra ↑(AlgHom.comp φ (val F⟮α⟯))
this : IsSeparable (↥F⟮α⟯) E
⊢ ∀ (x : E), Splits (algebraMap (↥F⟮α⟯) A) (minpoly (↥F⟮α⟯) x)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
· dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
· simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub,
map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
#align field.primitive_element_inf_aux Field.primitive_element_inf_aux
-- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any
-- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element.
-- Marked as private since it's a special case of
-- `exists_primitive_element_of_finite_intermediateField`.
private theorem primitive_element_inf_aux_of_finite_intermediateField
[Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
apply le_antisymm
· rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
end PrimitiveElementInf
variable (F E : Type*) [Field F] [Field E]
variable [Algebra F E]
section SeparableAssumption
variable [FiniteDimensional F E] [IsSeparable F E]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a
primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/
theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
· let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
· exact exists_primitive_element_of_finite_bot F E
#align field.exists_primitive_element Field.exists_primitive_element
/-- Alternative phrasing of primitive element theorem:
a finite separable field extension has a basis `1, α, α^2, ..., α^n`.
See also `exists_primitive_element`. -/
noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E :=
let α := (exists_primitive_element F E).choose
let pb := adjoin.powerBasis (IsSeparable.isIntegral F α)
have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec
pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv)
#align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable
end SeparableAssumption
section FiniteIntermediateField
-- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental.
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n)
(heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
· exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
· rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
· simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
· rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
· have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree,
coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
· simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_finite_intermediateField
[Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦
have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯
isAlgebraic_of_adjoin_eq_adjoin F E hneq heq
theorem finiteDimensional_of_finite_intermediateField
[Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional
(isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦
le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem exists_primitive_element_of_finite_intermediateField
[Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
· obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
· apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
simp_rw [adjoin_simple_adjoin_simple, eq_comm]
exact primitive_element_inf_aux_of_finite_intermediateField F α β
theorem finiteDimensional_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : FiniteDimensional F E := by
obtain ⟨α, hprim⟩ := h
have hfin := adjoin.finiteDimensional (halg α).isIntegral
rw [hprim] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
-- A finite simple extension has only finitely many intermediate fields
theorem finite_intermediateField_of_exists_primitive_element (halg : Algebra.IsAlgebraic F E)
(h : ∃ α : E, F⟮α⟯ = ⊤) : Finite (IntermediateField F E) := by
haveI := finiteDimensional_of_exists_primitive_element F E halg h
obtain ⟨α, hprim⟩ := h
-- Let `f` be the minimal polynomial of `α ∈ E` over `F`
let f : F[X] := minpoly F α
let G := { g : E[X] // g.Monic ∧ g ∣ f.map (algebraMap F E) }
-- Then `f` has only finitely many monic factors
have hfin : Finite G := @Finite.of_fintype _ <| fintypeSubtypeMonicDvd
(f.map (algebraMap F E)) <| map_ne_zero (minpoly.ne_zero_of_finite F α)
-- If `K` is an intermediate field of `E/F`, let `g` be the minimal polynomial of `α` over `K`
-- which is a monic factor of `f`
let g : IntermediateField F E → G := fun K ↦
⟨(minpoly K α).map (algebraMap K E), (minpoly.monic <| .of_finite K α).map _, by
convert Polynomial.map_dvd (algebraMap K E) (minpoly.dvd_map_of_isScalarTower F K α)
rw [Polynomial.map_map]; rfl⟩
-- The map `K ↦ g` is injective
have hinj : Function.Injective g := fun K K' heq ↦ by
rw [Subtype.mk.injEq] at heq
apply_fun fun f : E[X] ↦ adjoin F (f.frange : Set E) at heq
simpa only [adjoin_minpoly_coeff_of_exists_primitive_element F hprim] using heq
-- Therefore there are only finitely many intermediate fields
exact Finite.of_injective g hinj
/-- **Steinitz theorem**: an algebraic extension `E` of `F` has a
primitive element (i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`)
if and only if there exist only finitely many intermediate fields between `E` and `F`. -/
theorem exists_primitive_element_iff_finite_intermediateField :
(Algebra.IsAlgebraic F E ∧ ∃ α : E, F⟮α⟯ = ⊤) ↔ Finite (IntermediateField F E) :=
⟨fun ⟨halg, h⟩ ↦ finite_intermediateField_of_exists_primitive_element F E halg h,
fun _ ↦ ⟨isAlgebraic_of_finite_intermediateField F E,
exists_primitive_element_of_finite_intermediateField F E _⟩⟩
end FiniteIntermediateField
end Field
variable (F E : Type*) [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsSeparable F E]
@[simp]
theorem AlgHom.card (K : Type*) [Field K] [IsAlgClosed K] [Algebra F K] :
Fintype.card (E →ₐ[F] K) = finrank F E := by
convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E)
(IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
#align alg_hom.card AlgHom.card
@[simp]
theorem AlgHom.card_of_splits (L : Type*) [Field L] [Algebra F L]
(hL : ∀ x : E, (minpoly F x).Splits (algebraMap F L)) :
Fintype.card (E →ₐ[F] L) = finrank F E := by
rw [← Fintype.ofEquiv_card <| Algebra.IsAlgebraic.algHomEquivAlgHomOfSplits
(AlgebraicClosure L) (Algebra.IsAlgebraic.of_finite F E) _ hL]
convert AlgHom.card F E (AlgebraicClosure L)
section iff
namespace Field
open FiniteDimensional IntermediateField Polynomial Algebra Set
variable (F : Type*) {E : Type*} [Field F] [Field E] [Algebra F E] [FiniteDimensional F E]
theorem primitive_element_iff_minpoly_natDegree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).natDegree = finrank F E := by
rw [← adjoin.finrank (IsIntegral.of_finite F α), ← finrank_top F E]
refine ⟨fun h => ?_, fun h => eq_of_le_of_finrank_eq le_top h⟩
exact congr_arg (fun K : IntermediateField F E => finrank F K) h
theorem primitive_element_iff_minpoly_degree_eq (α : E) :
F⟮α⟯ = ⊤ ↔ (minpoly F α).degree = finrank F E := by
rw [degree_eq_iff_natDegree_eq, primitive_element_iff_minpoly_natDegree_eq]
exact minpoly.ne_zero_of_finite F α
variable [IsSeparable F E] (A : Type*) [Field A] [Algebra F A]
(hA : ∀ x : E, (minpoly F x).Splits (algebraMap F A))
theorem primitive_element_iff_algHom_eq_of_eval' (α : E) :
F⟮α⟯ = ⊤ ↔ Function.Injective fun φ : E →ₐ[F] A ↦ φ α := by
classical
simp_rw [primitive_element_iff_minpoly_natDegree_eq, ← card_rootSet_eq_natDegree (K := A)
(IsSeparable.separable F α) (hA _), ← toFinset_card,
← (Algebra.IsAlgebraic.of_finite F E).range_eval_eq_rootSet_minpoly_of_splits _ hA α,
← AlgHom.card_of_splits F E A hA, Fintype.card, toFinset_range, Finset.card_image_iff,
Finset.coe_univ, ← injective_iff_injOn_univ]
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ := by
refine ⟨fun h ψ hψ ↦ (Field.primitive_element_iff_algHom_eq_of_eval' F A hA α).mp h hψ,
fun h ↦ eq_of_le_of_finrank_eq' le_top ?_⟩
letI : Algebra F⟮α⟯ A := (φ.comp F⟮α⟯.val).toAlgebra
haveI := isSeparable_tower_top_of_isSeparable F F⟮α⟯ E
rw [IntermediateField.finrank_top, ← AlgHom.card_of_splits _ _ A, Fintype.card_eq_one_iff]
· exact ⟨{ __ := φ, commutes' := fun _ ↦ rfl }, fun ψ ↦ AlgHom.restrictScalars_injective F <|
Eq.symm <| h _ (ψ.commutes <| AdjoinSimple.gen F α).symm⟩
·
|
exact fun x ↦ (IsIntegral.of_finite F x).minpoly_splits_tower_top (hA x)
|
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ := by
refine ⟨fun h ψ hψ ↦ (Field.primitive_element_iff_algHom_eq_of_eval' F A hA α).mp h hψ,
fun h ↦ eq_of_le_of_finrank_eq' le_top ?_⟩
letI : Algebra F⟮α⟯ A := (φ.comp F⟮α⟯.val).toAlgebra
haveI := isSeparable_tower_top_of_isSeparable F F⟮α⟯ E
rw [IntermediateField.finrank_top, ← AlgHom.card_of_splits _ _ A, Fintype.card_eq_one_iff]
· exact ⟨{ __ := φ, commutes' := fun _ ↦ rfl }, fun ψ ↦ AlgHom.restrictScalars_injective F <|
Eq.symm <| h _ (ψ.commutes <| AdjoinSimple.gen F α).symm⟩
·
|
Mathlib.FieldTheory.PrimitiveElement.398_0.R5HND7n71i1v1rZ
|
theorem primitive_element_iff_algHom_eq_of_eval (α : E)
(φ : E →ₐ[F] A) : F⟮α⟯ = ⊤ ↔ ∀ ψ : E →ₐ[F] A, φ α = ψ α → φ = ψ
|
Mathlib_FieldTheory_PrimitiveElement
|
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
X Y : J
f : X ⟶ Y
⊢ ((Functor.const J).obj (of ↑{u | ∀ {i j : J} (f : i ⟶ j), (F.map f) (u i) = u j})).map f ≫
(fun j => ContinuousMap.mk fun u => ↑u j) Y =
(fun j => ContinuousMap.mk fun u => ↑u j) X ≫ F.map f
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
|
dsimp
|
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
|
Mathlib.Topology.Category.TopCat.Limits.Basic.46_0.lEtiPsL1dQihFhl
|
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
X Y : J
f : X ⟶ Y
⊢ (𝟙 (of { x // ∀ {i j : J} (f : i ⟶ j), (F.map f) (x i) = x j }) ≫ ContinuousMap.mk fun u => ↑u Y) =
(ContinuousMap.mk fun u => ↑u X) ≫ F.map f
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
|
rw [Category.id_comp]
|
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
|
Mathlib.Topology.Category.TopCat.Limits.Basic.46_0.lEtiPsL1dQihFhl
|
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
X Y : J
f : X ⟶ Y
⊢ (ContinuousMap.mk fun u => ↑u Y) = (ContinuousMap.mk fun u => ↑u X) ≫ F.map f
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
|
apply ContinuousMap.ext
|
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
|
Mathlib.Topology.Category.TopCat.Limits.Basic.46_0.lEtiPsL1dQihFhl
|
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
X Y : J
f : X ⟶ Y
⊢ ∀ (a : { x // ∀ {i j : J} (f : i ⟶ j), (F.map f) (x i) = x j }),
(ContinuousMap.mk fun u => ↑u Y) a = ((ContinuousMap.mk fun u => ↑u X) ≫ F.map f) a
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
|
intro a
|
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
|
Mathlib.Topology.Category.TopCat.Limits.Basic.46_0.lEtiPsL1dQihFhl
|
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
X Y : J
f : X ⟶ Y
a : { x // ∀ {i j : J} (f : i ⟶ j), (F.map f) (x i) = x j }
⊢ (ContinuousMap.mk fun u => ↑u Y) a = ((ContinuousMap.mk fun u => ↑u X) ≫ F.map f) a
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
|
exact (a.2 f).symm
|
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
|
Mathlib.Topology.Category.TopCat.Limits.Basic.46_0.lEtiPsL1dQihFhl
|
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
S : Cone F
x : ↑S.pt
i✝ j✝ : J
f : i✝ ⟶ j✝
⊢ (F.map f) ((fun j => (S.π.app j) x) i✝) = (fun j => (S.π.app j) x) j✝
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
|
dsimp
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
|
Mathlib.Topology.Category.TopCat.Limits.Basic.82_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
S : Cone F
x : ↑S.pt
i✝ j✝ : J
f : i✝ ⟶ j✝
⊢ (F.map f) ((S.π.app i✝) x) = (S.π.app j✝) x
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
|
erw [← S.w f]
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
|
Mathlib.Topology.Category.TopCat.Limits.Basic.82_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
S : Cone F
x : ↑S.pt
i✝ j✝ : J
f : i✝ ⟶ j✝
⊢ (F.map f) ((S.π.app i✝) x) = (S.π.app i✝ ≫ F.map f) x
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
|
rfl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
|
Mathlib.Topology.Category.TopCat.Limits.Basic.82_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
S : Cone F
x : ↑S.pt
i j : J
f : i ⟶ j
⊢ (F.map f) ((fun j => (S.π.app j) x) i) = (fun j => (S.π.app j) x) j
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
|
dsimp
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
|
Mathlib.Topology.Category.TopCat.Limits.Basic.82_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
S : Cone F
x : ↑S.pt
i j : J
f : i ⟶ j
⊢ (F.map f) ((S.π.app i) x) = (S.π.app j) x
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
|
rw [← S.w f]
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
|
Mathlib.Topology.Category.TopCat.Limits.Basic.82_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
S : Cone F
x : ↑S.pt
i j : J
f : i ⟶ j
⊢ (F.map f) ((S.π.app i) x) = (S.π.app i ≫ F.map f) x
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
|
rfl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
|
Mathlib.Topology.Category.TopCat.Limits.Basic.82_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
S : Cone F
m : S.pt ⟶ (limitCone F).pt
h : ∀ (j : J), m ≫ (limitCone F).π.app j = S.π.app j
⊢ m =
(fun S =>
ContinuousMap.mk fun x =>
{ val := fun j => (S.π.app j) x,
property :=
(_ : ∀ {i j : J} (f : i ⟶ j), (F.map f) ((fun j => (S.π.app j) x) i) = (fun j => (S.π.app j) x) j) })
S
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
|
apply ContinuousMap.ext
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
|
Mathlib.Topology.Category.TopCat.Limits.Basic.82_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
S : Cone F
m : S.pt ⟶ (limitCone F).pt
h : ∀ (j : J), m ≫ (limitCone F).π.app j = S.π.app j
⊢ ∀ (a : ↑S.pt),
m a =
((fun S =>
ContinuousMap.mk fun x =>
{ val := fun j => (S.π.app j) x,
property :=
(_ : ∀ {i j : J} (f : i ⟶ j), (F.map f) ((fun j => (S.π.app j) x) i) = (fun j => (S.π.app j) x) j) })
S)
a
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext;
|
intros a
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext;
|
Mathlib.Topology.Category.TopCat.Limits.Basic.82_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
S : Cone F
m : S.pt ⟶ (limitCone F).pt
h : ∀ (j : J), m ≫ (limitCone F).π.app j = S.π.app j
a : ↑S.pt
⊢ m a =
((fun S =>
ContinuousMap.mk fun x =>
{ val := fun j => (S.π.app j) x,
property :=
(_ : ∀ {i j : J} (f : i ⟶ j), (F.map f) ((fun j => (S.π.app j) x) i) = (fun j => (S.π.app j) x) j) })
S)
a
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a;
|
apply Subtype.ext
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a;
|
Mathlib.Topology.Category.TopCat.Limits.Basic.82_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case h.a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
S : Cone F
m : S.pt ⟶ (limitCone F).pt
h : ∀ (j : J), m ≫ (limitCone F).π.app j = S.π.app j
a : ↑S.pt
⊢ ↑(m a) =
↑(((fun S =>
ContinuousMap.mk fun x =>
{ val := fun j => (S.π.app j) x,
property :=
(_ : ∀ {i j : J} (f : i ⟶ j), (F.map f) ((fun j => (S.π.app j) x) i) = (fun j => (S.π.app j) x) j) })
S)
a)
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext;
|
funext j
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext;
|
Mathlib.Topology.Category.TopCat.Limits.Basic.82_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case h.a.h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
S : Cone F
m : S.pt ⟶ (limitCone F).pt
h : ∀ (j : J), m ≫ (limitCone F).π.app j = S.π.app j
a : ↑S.pt
j : J
⊢ ↑(m a) j =
↑(((fun S =>
ContinuousMap.mk fun x =>
{ val := fun j => (S.π.app j) x,
property :=
(_ :
∀ {i j : J} (f : i ⟶ j), (F.map f) ((fun j => (S.π.app j) x) i) = (fun j => (S.π.app j) x) j) })
S)
a)
j
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
|
dsimp
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
|
Mathlib.Topology.Category.TopCat.Limits.Basic.82_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case h.a.h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
S : Cone F
m : S.pt ⟶ (limitCone F).pt
h : ∀ (j : J), m ≫ (limitCone F).π.app j = S.π.app j
a : ↑S.pt
j : J
⊢ ↑(m a) j = (S.π.app j) a
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
|
rw [← h]
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
|
Mathlib.Topology.Category.TopCat.Limits.Basic.82_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case h.a.h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
S : Cone F
m : S.pt ⟶ (limitCone F).pt
h : ∀ (j : J), m ≫ (limitCone F).π.app j = S.π.app j
a : ↑S.pt
j : J
⊢ ↑(m a) j = (m ≫ (limitCone F).π.app j) a
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
|
rfl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
|
Mathlib.Topology.Category.TopCat.Limits.Basic.82_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
⊢ IsLimit (limitConeInfi F)
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
|
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
|
Mathlib.Topology.Category.TopCat.Limits.Basic.105_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case refine_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
s : Cone F
v : ↑s.pt
⊢ (fun j => (forget.mapCone s).π.app j v) ∈ Functor.sections (F ⋙ forget)
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
·
|
dsimp [Functor.sections]
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
·
|
Mathlib.Topology.Category.TopCat.Limits.Basic.105_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case refine_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
s : Cone F
v : ↑s.pt
⊢ ∀ {j j' : J} (f : j ⟶ j'), forget.map (F.map f) (forget.map (s.π.app j) v) = forget.map (s.π.app j') v
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
|
intro _ _ _
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
|
Mathlib.Topology.Category.TopCat.Limits.Basic.105_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case refine_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
s : Cone F
v : ↑s.pt
j✝ j'✝ : J
f✝ : j✝ ⟶ j'✝
⊢ forget.map (F.map f✝) (forget.map (s.π.app j✝) v) = forget.map (s.π.app j'✝) v
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
|
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
|
Mathlib.Topology.Category.TopCat.Limits.Basic.105_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case refine_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
s : Cone F
v : ↑s.pt
j✝ j'✝ : J
f✝ : j✝ ⟶ j'✝
⊢ (((Functor.const J).obj s.pt).map f✝ ≫ s.π.app j'✝) v = (s.π.app j'✝) v
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
|
dsimp
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
|
Mathlib.Topology.Category.TopCat.Limits.Basic.105_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case refine_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
s : Cone F
v : ↑s.pt
j✝ j'✝ : J
f✝ : j✝ ⟶ j'✝
⊢ (𝟙 s.pt ≫ s.π.app j'✝) v = (s.π.app j'✝) v
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
|
rw [Category.id_comp]
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
|
Mathlib.Topology.Category.TopCat.Limits.Basic.105_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case refine_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
s : Cone F
⊢ Continuous fun v =>
{ val := fun j => (forget.mapCone s).π.app j v,
property := (_ : (fun j => (forget.mapCone s).π.app j v) ∈ Functor.sections (F ⋙ forget)) }
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
·
|
exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
·
|
Mathlib.Topology.Category.TopCat.Limits.Basic.105_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case refine_3
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
s : Cone F
⊢ forget.map
((fun s =>
ContinuousMap.mk fun v =>
{ val := fun j => (forget.mapCone s).π.app j v,
property := (_ : (fun j => (forget.mapCone s).π.app j v) ∈ Functor.sections (F ⋙ forget)) })
s) =
IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget)) (forget.mapCone s)
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
·
|
rfl
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
·
|
Mathlib.Topology.Category.TopCat.Limits.Basic.105_0.lEtiPsL1dQihFhl
|
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
⊢ IsColimit (colimitCocone F)
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
· rfl
#align Top.limit_cone_infi_is_limit TopCat.limitConeInfiIsLimit
instance topCat_hasLimitsOfSize : HasLimitsOfSize.{v} TopCatMax.{v, u} where
has_limits_of_shape _ :=
{ has_limit := fun F =>
HasLimit.mk
{ cone := limitCone.{v,u} F
isLimit := limitConeIsLimit F } }
#align Top.Top_has_limits_of_size TopCat.topCat_hasLimitsOfSize
instance topCat_hasLimits : HasLimits TopCat.{u} :=
TopCat.topCat_hasLimitsOfSize.{u, u}
#align Top.Top_has_limits TopCat.topCat_hasLimits
instance forgetPreservesLimitsOfSize : PreservesLimitsOfSize forget where
preservesLimitsOfShape {_} :=
{ preservesLimit := fun {F} =>
preservesLimitOfPreservesLimitCone (limitConeIsLimit.{v,u} F)
(Types.limitConeIsLimit.{v,u} (F ⋙ forget)) }
#align Top.forget_preserves_limits_of_size TopCat.forgetPreservesLimitsOfSize
instance forgetPreservesLimits : PreservesLimits forget :=
TopCat.forgetPreservesLimitsOfSize.{u,u}
#align Top.forget_preserves_limits TopCat.forgetPreservesLimits
/-- A choice of colimit cocone for a functor `F : J ⥤ TopCat`.
Generally you should just use `colimit.cocone F`, unless you need the actual definition
(which is in terms of `Types.colimitCocone`).
-/
def colimitCocone (F : J ⥤ TopCatMax.{v, u}) : Cocone F where
pt :=
⟨(Types.colimitCocone.{v,u} (F ⋙ forget)).pt,
⨆ j, (F.obj j).str.coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j)⟩
ι :=
{ app := fun j =>
⟨(Types.colimitCocone (F ⋙ forget)).ι.app j, continuous_iff_coinduced_le.mpr <|
-- Porting note: didn't need function before
le_iSup (fun j => coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j) (F.obj j).str) j⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.colimitCocone (F ⋙ forget)).ι.naturality f) }
#align Top.colimit_cocone TopCat.colimitCocone
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
|
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
|
Mathlib.Topology.Category.TopCat.Limits.Basic.166_0.lEtiPsL1dQihFhl
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case refine_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
s : Cocone F
⊢ ∀ (a b : (j : J) × (F ⋙ forget).obj j),
Types.Quot.Rel (F ⋙ forget) a b →
(fun p => (forget.mapCocone s).ι.app p.fst p.snd) a = (fun p => (forget.mapCocone s).ι.app p.fst p.snd) b
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
· rfl
#align Top.limit_cone_infi_is_limit TopCat.limitConeInfiIsLimit
instance topCat_hasLimitsOfSize : HasLimitsOfSize.{v} TopCatMax.{v, u} where
has_limits_of_shape _ :=
{ has_limit := fun F =>
HasLimit.mk
{ cone := limitCone.{v,u} F
isLimit := limitConeIsLimit F } }
#align Top.Top_has_limits_of_size TopCat.topCat_hasLimitsOfSize
instance topCat_hasLimits : HasLimits TopCat.{u} :=
TopCat.topCat_hasLimitsOfSize.{u, u}
#align Top.Top_has_limits TopCat.topCat_hasLimits
instance forgetPreservesLimitsOfSize : PreservesLimitsOfSize forget where
preservesLimitsOfShape {_} :=
{ preservesLimit := fun {F} =>
preservesLimitOfPreservesLimitCone (limitConeIsLimit.{v,u} F)
(Types.limitConeIsLimit.{v,u} (F ⋙ forget)) }
#align Top.forget_preserves_limits_of_size TopCat.forgetPreservesLimitsOfSize
instance forgetPreservesLimits : PreservesLimits forget :=
TopCat.forgetPreservesLimitsOfSize.{u,u}
#align Top.forget_preserves_limits TopCat.forgetPreservesLimits
/-- A choice of colimit cocone for a functor `F : J ⥤ TopCat`.
Generally you should just use `colimit.cocone F`, unless you need the actual definition
(which is in terms of `Types.colimitCocone`).
-/
def colimitCocone (F : J ⥤ TopCatMax.{v, u}) : Cocone F where
pt :=
⟨(Types.colimitCocone.{v,u} (F ⋙ forget)).pt,
⨆ j, (F.obj j).str.coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j)⟩
ι :=
{ app := fun j =>
⟨(Types.colimitCocone (F ⋙ forget)).ι.app j, continuous_iff_coinduced_le.mpr <|
-- Porting note: didn't need function before
le_iSup (fun j => coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j) (F.obj j).str) j⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.colimitCocone (F ⋙ forget)).ι.naturality f) }
#align Top.colimit_cocone TopCat.colimitCocone
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
·
|
intro _ _ ⟨_, h⟩
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
·
|
Mathlib.Topology.Category.TopCat.Limits.Basic.166_0.lEtiPsL1dQihFhl
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case refine_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
s : Cocone F
a✝ b✝ : (j : J) × (F ⋙ forget).obj j
w✝ : a✝.fst ⟶ b✝.fst
h : b✝.snd = (F ⋙ forget).map w✝ a✝.snd
⊢ (fun p => (forget.mapCocone s).ι.app p.fst p.snd) a✝ = (fun p => (forget.mapCocone s).ι.app p.fst p.snd) b✝
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
· rfl
#align Top.limit_cone_infi_is_limit TopCat.limitConeInfiIsLimit
instance topCat_hasLimitsOfSize : HasLimitsOfSize.{v} TopCatMax.{v, u} where
has_limits_of_shape _ :=
{ has_limit := fun F =>
HasLimit.mk
{ cone := limitCone.{v,u} F
isLimit := limitConeIsLimit F } }
#align Top.Top_has_limits_of_size TopCat.topCat_hasLimitsOfSize
instance topCat_hasLimits : HasLimits TopCat.{u} :=
TopCat.topCat_hasLimitsOfSize.{u, u}
#align Top.Top_has_limits TopCat.topCat_hasLimits
instance forgetPreservesLimitsOfSize : PreservesLimitsOfSize forget where
preservesLimitsOfShape {_} :=
{ preservesLimit := fun {F} =>
preservesLimitOfPreservesLimitCone (limitConeIsLimit.{v,u} F)
(Types.limitConeIsLimit.{v,u} (F ⋙ forget)) }
#align Top.forget_preserves_limits_of_size TopCat.forgetPreservesLimitsOfSize
instance forgetPreservesLimits : PreservesLimits forget :=
TopCat.forgetPreservesLimitsOfSize.{u,u}
#align Top.forget_preserves_limits TopCat.forgetPreservesLimits
/-- A choice of colimit cocone for a functor `F : J ⥤ TopCat`.
Generally you should just use `colimit.cocone F`, unless you need the actual definition
(which is in terms of `Types.colimitCocone`).
-/
def colimitCocone (F : J ⥤ TopCatMax.{v, u}) : Cocone F where
pt :=
⟨(Types.colimitCocone.{v,u} (F ⋙ forget)).pt,
⨆ j, (F.obj j).str.coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j)⟩
ι :=
{ app := fun j =>
⟨(Types.colimitCocone (F ⋙ forget)).ι.app j, continuous_iff_coinduced_le.mpr <|
-- Porting note: didn't need function before
le_iSup (fun j => coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j) (F.obj j).str) j⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.colimitCocone (F ⋙ forget)).ι.naturality f) }
#align Top.colimit_cocone TopCat.colimitCocone
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
|
dsimp
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
|
Mathlib.Topology.Category.TopCat.Limits.Basic.166_0.lEtiPsL1dQihFhl
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case refine_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
s : Cocone F
a✝ b✝ : (j : J) × (F ⋙ forget).obj j
w✝ : a✝.fst ⟶ b✝.fst
h : b✝.snd = (F ⋙ forget).map w✝ a✝.snd
⊢ forget.map (s.ι.app a✝.fst) a✝.snd = forget.map (s.ι.app b✝.fst) b✝.snd
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
· rfl
#align Top.limit_cone_infi_is_limit TopCat.limitConeInfiIsLimit
instance topCat_hasLimitsOfSize : HasLimitsOfSize.{v} TopCatMax.{v, u} where
has_limits_of_shape _ :=
{ has_limit := fun F =>
HasLimit.mk
{ cone := limitCone.{v,u} F
isLimit := limitConeIsLimit F } }
#align Top.Top_has_limits_of_size TopCat.topCat_hasLimitsOfSize
instance topCat_hasLimits : HasLimits TopCat.{u} :=
TopCat.topCat_hasLimitsOfSize.{u, u}
#align Top.Top_has_limits TopCat.topCat_hasLimits
instance forgetPreservesLimitsOfSize : PreservesLimitsOfSize forget where
preservesLimitsOfShape {_} :=
{ preservesLimit := fun {F} =>
preservesLimitOfPreservesLimitCone (limitConeIsLimit.{v,u} F)
(Types.limitConeIsLimit.{v,u} (F ⋙ forget)) }
#align Top.forget_preserves_limits_of_size TopCat.forgetPreservesLimitsOfSize
instance forgetPreservesLimits : PreservesLimits forget :=
TopCat.forgetPreservesLimitsOfSize.{u,u}
#align Top.forget_preserves_limits TopCat.forgetPreservesLimits
/-- A choice of colimit cocone for a functor `F : J ⥤ TopCat`.
Generally you should just use `colimit.cocone F`, unless you need the actual definition
(which is in terms of `Types.colimitCocone`).
-/
def colimitCocone (F : J ⥤ TopCatMax.{v, u}) : Cocone F where
pt :=
⟨(Types.colimitCocone.{v,u} (F ⋙ forget)).pt,
⨆ j, (F.obj j).str.coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j)⟩
ι :=
{ app := fun j =>
⟨(Types.colimitCocone (F ⋙ forget)).ι.app j, continuous_iff_coinduced_le.mpr <|
-- Porting note: didn't need function before
le_iSup (fun j => coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j) (F.obj j).str) j⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.colimitCocone (F ⋙ forget)).ι.naturality f) }
#align Top.colimit_cocone TopCat.colimitCocone
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
|
rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality]
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
|
Mathlib.Topology.Category.TopCat.Limits.Basic.166_0.lEtiPsL1dQihFhl
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case refine_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
s : Cocone F
a✝ b✝ : (j : J) × (F ⋙ forget).obj j
w✝ : a✝.fst ⟶ b✝.fst
h : b✝.snd = (F ⋙ forget).map w✝ a✝.snd
⊢ forget.map (s.ι.app a✝.fst) a✝.snd = forget.map (s.ι.app a✝.fst ≫ ((Functor.const J).obj s.pt).map w✝) a✝.snd
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
· rfl
#align Top.limit_cone_infi_is_limit TopCat.limitConeInfiIsLimit
instance topCat_hasLimitsOfSize : HasLimitsOfSize.{v} TopCatMax.{v, u} where
has_limits_of_shape _ :=
{ has_limit := fun F =>
HasLimit.mk
{ cone := limitCone.{v,u} F
isLimit := limitConeIsLimit F } }
#align Top.Top_has_limits_of_size TopCat.topCat_hasLimitsOfSize
instance topCat_hasLimits : HasLimits TopCat.{u} :=
TopCat.topCat_hasLimitsOfSize.{u, u}
#align Top.Top_has_limits TopCat.topCat_hasLimits
instance forgetPreservesLimitsOfSize : PreservesLimitsOfSize forget where
preservesLimitsOfShape {_} :=
{ preservesLimit := fun {F} =>
preservesLimitOfPreservesLimitCone (limitConeIsLimit.{v,u} F)
(Types.limitConeIsLimit.{v,u} (F ⋙ forget)) }
#align Top.forget_preserves_limits_of_size TopCat.forgetPreservesLimitsOfSize
instance forgetPreservesLimits : PreservesLimits forget :=
TopCat.forgetPreservesLimitsOfSize.{u,u}
#align Top.forget_preserves_limits TopCat.forgetPreservesLimits
/-- A choice of colimit cocone for a functor `F : J ⥤ TopCat`.
Generally you should just use `colimit.cocone F`, unless you need the actual definition
(which is in terms of `Types.colimitCocone`).
-/
def colimitCocone (F : J ⥤ TopCatMax.{v, u}) : Cocone F where
pt :=
⟨(Types.colimitCocone.{v,u} (F ⋙ forget)).pt,
⨆ j, (F.obj j).str.coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j)⟩
ι :=
{ app := fun j =>
⟨(Types.colimitCocone (F ⋙ forget)).ι.app j, continuous_iff_coinduced_le.mpr <|
-- Porting note: didn't need function before
le_iSup (fun j => coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j) (F.obj j).str) j⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.colimitCocone (F ⋙ forget)).ι.naturality f) }
#align Top.colimit_cocone TopCat.colimitCocone
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality]
|
dsimp
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality]
|
Mathlib.Topology.Category.TopCat.Limits.Basic.166_0.lEtiPsL1dQihFhl
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case refine_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
s : Cocone F
a✝ b✝ : (j : J) × (F ⋙ forget).obj j
w✝ : a✝.fst ⟶ b✝.fst
h : b✝.snd = (F ⋙ forget).map w✝ a✝.snd
⊢ forget.map (s.ι.app a✝.fst) a✝.snd = forget.map (s.ι.app a✝.fst ≫ 𝟙 s.pt) a✝.snd
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
· rfl
#align Top.limit_cone_infi_is_limit TopCat.limitConeInfiIsLimit
instance topCat_hasLimitsOfSize : HasLimitsOfSize.{v} TopCatMax.{v, u} where
has_limits_of_shape _ :=
{ has_limit := fun F =>
HasLimit.mk
{ cone := limitCone.{v,u} F
isLimit := limitConeIsLimit F } }
#align Top.Top_has_limits_of_size TopCat.topCat_hasLimitsOfSize
instance topCat_hasLimits : HasLimits TopCat.{u} :=
TopCat.topCat_hasLimitsOfSize.{u, u}
#align Top.Top_has_limits TopCat.topCat_hasLimits
instance forgetPreservesLimitsOfSize : PreservesLimitsOfSize forget where
preservesLimitsOfShape {_} :=
{ preservesLimit := fun {F} =>
preservesLimitOfPreservesLimitCone (limitConeIsLimit.{v,u} F)
(Types.limitConeIsLimit.{v,u} (F ⋙ forget)) }
#align Top.forget_preserves_limits_of_size TopCat.forgetPreservesLimitsOfSize
instance forgetPreservesLimits : PreservesLimits forget :=
TopCat.forgetPreservesLimitsOfSize.{u,u}
#align Top.forget_preserves_limits TopCat.forgetPreservesLimits
/-- A choice of colimit cocone for a functor `F : J ⥤ TopCat`.
Generally you should just use `colimit.cocone F`, unless you need the actual definition
(which is in terms of `Types.colimitCocone`).
-/
def colimitCocone (F : J ⥤ TopCatMax.{v, u}) : Cocone F where
pt :=
⟨(Types.colimitCocone.{v,u} (F ⋙ forget)).pt,
⨆ j, (F.obj j).str.coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j)⟩
ι :=
{ app := fun j =>
⟨(Types.colimitCocone (F ⋙ forget)).ι.app j, continuous_iff_coinduced_le.mpr <|
-- Porting note: didn't need function before
le_iSup (fun j => coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j) (F.obj j).str) j⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.colimitCocone (F ⋙ forget)).ι.naturality f) }
#align Top.colimit_cocone TopCat.colimitCocone
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality]
dsimp
|
rw [Category.comp_id]
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality]
dsimp
|
Mathlib.Topology.Category.TopCat.Limits.Basic.166_0.lEtiPsL1dQihFhl
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case refine_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
s : Cocone F
⊢ Continuous
(Quot.lift (fun p => (forget.mapCocone s).ι.app p.fst p.snd)
(_ :
∀ (a b : (j : J) × (F ⋙ forget).obj j),
Types.Quot.Rel (F ⋙ forget) a b →
(fun p => (forget.mapCocone s).ι.app p.fst p.snd) a = (fun p => (forget.mapCocone s).ι.app p.fst p.snd) b))
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
· rfl
#align Top.limit_cone_infi_is_limit TopCat.limitConeInfiIsLimit
instance topCat_hasLimitsOfSize : HasLimitsOfSize.{v} TopCatMax.{v, u} where
has_limits_of_shape _ :=
{ has_limit := fun F =>
HasLimit.mk
{ cone := limitCone.{v,u} F
isLimit := limitConeIsLimit F } }
#align Top.Top_has_limits_of_size TopCat.topCat_hasLimitsOfSize
instance topCat_hasLimits : HasLimits TopCat.{u} :=
TopCat.topCat_hasLimitsOfSize.{u, u}
#align Top.Top_has_limits TopCat.topCat_hasLimits
instance forgetPreservesLimitsOfSize : PreservesLimitsOfSize forget where
preservesLimitsOfShape {_} :=
{ preservesLimit := fun {F} =>
preservesLimitOfPreservesLimitCone (limitConeIsLimit.{v,u} F)
(Types.limitConeIsLimit.{v,u} (F ⋙ forget)) }
#align Top.forget_preserves_limits_of_size TopCat.forgetPreservesLimitsOfSize
instance forgetPreservesLimits : PreservesLimits forget :=
TopCat.forgetPreservesLimitsOfSize.{u,u}
#align Top.forget_preserves_limits TopCat.forgetPreservesLimits
/-- A choice of colimit cocone for a functor `F : J ⥤ TopCat`.
Generally you should just use `colimit.cocone F`, unless you need the actual definition
(which is in terms of `Types.colimitCocone`).
-/
def colimitCocone (F : J ⥤ TopCatMax.{v, u}) : Cocone F where
pt :=
⟨(Types.colimitCocone.{v,u} (F ⋙ forget)).pt,
⨆ j, (F.obj j).str.coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j)⟩
ι :=
{ app := fun j =>
⟨(Types.colimitCocone (F ⋙ forget)).ι.app j, continuous_iff_coinduced_le.mpr <|
-- Porting note: didn't need function before
le_iSup (fun j => coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j) (F.obj j).str) j⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.colimitCocone (F ⋙ forget)).ι.naturality f) }
#align Top.colimit_cocone TopCat.colimitCocone
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality]
dsimp
rw [Category.comp_id]
·
|
exact
continuous_iff_le_induced.mpr
(iSup_le fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.ι.app j).continuous : _))
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality]
dsimp
rw [Category.comp_id]
·
|
Mathlib.Topology.Category.TopCat.Limits.Basic.166_0.lEtiPsL1dQihFhl
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case refine_3
J : Type v
inst✝ : SmallCategory J
F : J ⥤ TopCatMax
s : Cocone F
⊢ forget.map
((fun s =>
ContinuousMap.mk
(Quot.lift (fun p => (forget.mapCocone s).ι.app p.fst p.snd)
(_ :
∀ (a b : (j : J) × (F ⋙ forget).obj j),
Types.Quot.Rel (F ⋙ forget) a b →
(fun p => (forget.mapCocone s).ι.app p.fst p.snd) a =
(fun p => (forget.mapCocone s).ι.app p.fst p.snd) b)))
s) =
IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget)) (forget.mapCocone s)
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
· rfl
#align Top.limit_cone_infi_is_limit TopCat.limitConeInfiIsLimit
instance topCat_hasLimitsOfSize : HasLimitsOfSize.{v} TopCatMax.{v, u} where
has_limits_of_shape _ :=
{ has_limit := fun F =>
HasLimit.mk
{ cone := limitCone.{v,u} F
isLimit := limitConeIsLimit F } }
#align Top.Top_has_limits_of_size TopCat.topCat_hasLimitsOfSize
instance topCat_hasLimits : HasLimits TopCat.{u} :=
TopCat.topCat_hasLimitsOfSize.{u, u}
#align Top.Top_has_limits TopCat.topCat_hasLimits
instance forgetPreservesLimitsOfSize : PreservesLimitsOfSize forget where
preservesLimitsOfShape {_} :=
{ preservesLimit := fun {F} =>
preservesLimitOfPreservesLimitCone (limitConeIsLimit.{v,u} F)
(Types.limitConeIsLimit.{v,u} (F ⋙ forget)) }
#align Top.forget_preserves_limits_of_size TopCat.forgetPreservesLimitsOfSize
instance forgetPreservesLimits : PreservesLimits forget :=
TopCat.forgetPreservesLimitsOfSize.{u,u}
#align Top.forget_preserves_limits TopCat.forgetPreservesLimits
/-- A choice of colimit cocone for a functor `F : J ⥤ TopCat`.
Generally you should just use `colimit.cocone F`, unless you need the actual definition
(which is in terms of `Types.colimitCocone`).
-/
def colimitCocone (F : J ⥤ TopCatMax.{v, u}) : Cocone F where
pt :=
⟨(Types.colimitCocone.{v,u} (F ⋙ forget)).pt,
⨆ j, (F.obj j).str.coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j)⟩
ι :=
{ app := fun j =>
⟨(Types.colimitCocone (F ⋙ forget)).ι.app j, continuous_iff_coinduced_le.mpr <|
-- Porting note: didn't need function before
le_iSup (fun j => coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j) (F.obj j).str) j⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.colimitCocone (F ⋙ forget)).ι.naturality f) }
#align Top.colimit_cocone TopCat.colimitCocone
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality]
dsimp
rw [Category.comp_id]
· exact
continuous_iff_le_induced.mpr
(iSup_le fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.ι.app j).continuous : _))
·
|
rfl
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality]
dsimp
rw [Category.comp_id]
· exact
continuous_iff_le_induced.mpr
(iSup_le fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.ι.app j).continuous : _))
·
|
Mathlib.Topology.Category.TopCat.Limits.Basic.166_0.lEtiPsL1dQihFhl
|
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F)
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
X : TopCat
⊢ Continuous fun x => PUnit.unit
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
· rfl
#align Top.limit_cone_infi_is_limit TopCat.limitConeInfiIsLimit
instance topCat_hasLimitsOfSize : HasLimitsOfSize.{v} TopCatMax.{v, u} where
has_limits_of_shape _ :=
{ has_limit := fun F =>
HasLimit.mk
{ cone := limitCone.{v,u} F
isLimit := limitConeIsLimit F } }
#align Top.Top_has_limits_of_size TopCat.topCat_hasLimitsOfSize
instance topCat_hasLimits : HasLimits TopCat.{u} :=
TopCat.topCat_hasLimitsOfSize.{u, u}
#align Top.Top_has_limits TopCat.topCat_hasLimits
instance forgetPreservesLimitsOfSize : PreservesLimitsOfSize forget where
preservesLimitsOfShape {_} :=
{ preservesLimit := fun {F} =>
preservesLimitOfPreservesLimitCone (limitConeIsLimit.{v,u} F)
(Types.limitConeIsLimit.{v,u} (F ⋙ forget)) }
#align Top.forget_preserves_limits_of_size TopCat.forgetPreservesLimitsOfSize
instance forgetPreservesLimits : PreservesLimits forget :=
TopCat.forgetPreservesLimitsOfSize.{u,u}
#align Top.forget_preserves_limits TopCat.forgetPreservesLimits
/-- A choice of colimit cocone for a functor `F : J ⥤ TopCat`.
Generally you should just use `colimit.cocone F`, unless you need the actual definition
(which is in terms of `Types.colimitCocone`).
-/
def colimitCocone (F : J ⥤ TopCatMax.{v, u}) : Cocone F where
pt :=
⟨(Types.colimitCocone.{v,u} (F ⋙ forget)).pt,
⨆ j, (F.obj j).str.coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j)⟩
ι :=
{ app := fun j =>
⟨(Types.colimitCocone (F ⋙ forget)).ι.app j, continuous_iff_coinduced_le.mpr <|
-- Porting note: didn't need function before
le_iSup (fun j => coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j) (F.obj j).str) j⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.colimitCocone (F ⋙ forget)).ι.naturality f) }
#align Top.colimit_cocone TopCat.colimitCocone
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality]
dsimp
rw [Category.comp_id]
· exact
continuous_iff_le_induced.mpr
(iSup_le fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.ι.app j).continuous : _))
· rfl
#align Top.colimit_cocone_is_colimit TopCat.colimitCoconeIsColimit
instance topCat_hasColimitsOfSize : HasColimitsOfSize.{v,v} TopCatMax.{v, u} where
has_colimits_of_shape _ :=
{ has_colimit := fun F =>
HasColimit.mk
{ cocone := colimitCocone F
isColimit := colimitCoconeIsColimit F } }
#align Top.Top_has_colimits_of_size TopCat.topCat_hasColimitsOfSize
instance topCat_hasColimits : HasColimits TopCat.{u} :=
TopCat.topCat_hasColimitsOfSize.{u, u}
#align Top.Top_has_colimits TopCat.topCat_hasColimits
instance forgetPreservesColimitsOfSize :
PreservesColimitsOfSize.{v, v} forget where
preservesColimitsOfShape :=
{ preservesColimit := fun {F} =>
preservesColimitOfPreservesColimitCocone (colimitCoconeIsColimit F)
(Types.colimitCoconeIsColimit (F ⋙ forget)) }
#align Top.forget_preserves_colimits_of_size TopCat.forgetPreservesColimitsOfSize
instance forgetPreservesColimits : PreservesColimits (forget : TopCat.{u} ⥤ Type u) :=
TopCat.forgetPreservesColimitsOfSize.{u, u}
#align Top.forget_preserves_colimits TopCat.forgetPreservesColimits
/-- The terminal object of `Top` is `PUnit`. -/
def isTerminalPUnit : IsTerminal (TopCat.of PUnit.{u + 1}) :=
haveI : ∀ X, Unique (X ⟶ TopCat.of PUnit.{u + 1}) := fun X =>
⟨⟨⟨fun _ => PUnit.unit, by
|
continuity
|
/-- The terminal object of `Top` is `PUnit`. -/
def isTerminalPUnit : IsTerminal (TopCat.of PUnit.{u + 1}) :=
haveI : ∀ X, Unique (X ⟶ TopCat.of PUnit.{u + 1}) := fun X =>
⟨⟨⟨fun _ => PUnit.unit, by
|
Mathlib.Topology.Category.TopCat.Limits.Basic.213_0.lEtiPsL1dQihFhl
|
/-- The terminal object of `Top` is `PUnit`. -/
def isTerminalPUnit : IsTerminal (TopCat.of PUnit.{u + 1})
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
X : TopCat
f : X ⟶ of PUnit.{u + 1}
⊢ f = default
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
· rfl
#align Top.limit_cone_infi_is_limit TopCat.limitConeInfiIsLimit
instance topCat_hasLimitsOfSize : HasLimitsOfSize.{v} TopCatMax.{v, u} where
has_limits_of_shape _ :=
{ has_limit := fun F =>
HasLimit.mk
{ cone := limitCone.{v,u} F
isLimit := limitConeIsLimit F } }
#align Top.Top_has_limits_of_size TopCat.topCat_hasLimitsOfSize
instance topCat_hasLimits : HasLimits TopCat.{u} :=
TopCat.topCat_hasLimitsOfSize.{u, u}
#align Top.Top_has_limits TopCat.topCat_hasLimits
instance forgetPreservesLimitsOfSize : PreservesLimitsOfSize forget where
preservesLimitsOfShape {_} :=
{ preservesLimit := fun {F} =>
preservesLimitOfPreservesLimitCone (limitConeIsLimit.{v,u} F)
(Types.limitConeIsLimit.{v,u} (F ⋙ forget)) }
#align Top.forget_preserves_limits_of_size TopCat.forgetPreservesLimitsOfSize
instance forgetPreservesLimits : PreservesLimits forget :=
TopCat.forgetPreservesLimitsOfSize.{u,u}
#align Top.forget_preserves_limits TopCat.forgetPreservesLimits
/-- A choice of colimit cocone for a functor `F : J ⥤ TopCat`.
Generally you should just use `colimit.cocone F`, unless you need the actual definition
(which is in terms of `Types.colimitCocone`).
-/
def colimitCocone (F : J ⥤ TopCatMax.{v, u}) : Cocone F where
pt :=
⟨(Types.colimitCocone.{v,u} (F ⋙ forget)).pt,
⨆ j, (F.obj j).str.coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j)⟩
ι :=
{ app := fun j =>
⟨(Types.colimitCocone (F ⋙ forget)).ι.app j, continuous_iff_coinduced_le.mpr <|
-- Porting note: didn't need function before
le_iSup (fun j => coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j) (F.obj j).str) j⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.colimitCocone (F ⋙ forget)).ι.naturality f) }
#align Top.colimit_cocone TopCat.colimitCocone
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality]
dsimp
rw [Category.comp_id]
· exact
continuous_iff_le_induced.mpr
(iSup_le fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.ι.app j).continuous : _))
· rfl
#align Top.colimit_cocone_is_colimit TopCat.colimitCoconeIsColimit
instance topCat_hasColimitsOfSize : HasColimitsOfSize.{v,v} TopCatMax.{v, u} where
has_colimits_of_shape _ :=
{ has_colimit := fun F =>
HasColimit.mk
{ cocone := colimitCocone F
isColimit := colimitCoconeIsColimit F } }
#align Top.Top_has_colimits_of_size TopCat.topCat_hasColimitsOfSize
instance topCat_hasColimits : HasColimits TopCat.{u} :=
TopCat.topCat_hasColimitsOfSize.{u, u}
#align Top.Top_has_colimits TopCat.topCat_hasColimits
instance forgetPreservesColimitsOfSize :
PreservesColimitsOfSize.{v, v} forget where
preservesColimitsOfShape :=
{ preservesColimit := fun {F} =>
preservesColimitOfPreservesColimitCocone (colimitCoconeIsColimit F)
(Types.colimitCoconeIsColimit (F ⋙ forget)) }
#align Top.forget_preserves_colimits_of_size TopCat.forgetPreservesColimitsOfSize
instance forgetPreservesColimits : PreservesColimits (forget : TopCat.{u} ⥤ Type u) :=
TopCat.forgetPreservesColimitsOfSize.{u, u}
#align Top.forget_preserves_colimits TopCat.forgetPreservesColimits
/-- The terminal object of `Top` is `PUnit`. -/
def isTerminalPUnit : IsTerminal (TopCat.of PUnit.{u + 1}) :=
haveI : ∀ X, Unique (X ⟶ TopCat.of PUnit.{u + 1}) := fun X =>
⟨⟨⟨fun _ => PUnit.unit, by continuity⟩⟩, fun f => by
|
ext
|
/-- The terminal object of `Top` is `PUnit`. -/
def isTerminalPUnit : IsTerminal (TopCat.of PUnit.{u + 1}) :=
haveI : ∀ X, Unique (X ⟶ TopCat.of PUnit.{u + 1}) := fun X =>
⟨⟨⟨fun _ => PUnit.unit, by continuity⟩⟩, fun f => by
|
Mathlib.Topology.Category.TopCat.Limits.Basic.213_0.lEtiPsL1dQihFhl
|
/-- The terminal object of `Top` is `PUnit`. -/
def isTerminalPUnit : IsTerminal (TopCat.of PUnit.{u + 1})
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
case w
J : Type v
inst✝ : SmallCategory J
X : TopCat
f : X ⟶ of PUnit.{u + 1}
x✝ : forget.obj X
⊢ f x✝ = default x✝
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
· rfl
#align Top.limit_cone_infi_is_limit TopCat.limitConeInfiIsLimit
instance topCat_hasLimitsOfSize : HasLimitsOfSize.{v} TopCatMax.{v, u} where
has_limits_of_shape _ :=
{ has_limit := fun F =>
HasLimit.mk
{ cone := limitCone.{v,u} F
isLimit := limitConeIsLimit F } }
#align Top.Top_has_limits_of_size TopCat.topCat_hasLimitsOfSize
instance topCat_hasLimits : HasLimits TopCat.{u} :=
TopCat.topCat_hasLimitsOfSize.{u, u}
#align Top.Top_has_limits TopCat.topCat_hasLimits
instance forgetPreservesLimitsOfSize : PreservesLimitsOfSize forget where
preservesLimitsOfShape {_} :=
{ preservesLimit := fun {F} =>
preservesLimitOfPreservesLimitCone (limitConeIsLimit.{v,u} F)
(Types.limitConeIsLimit.{v,u} (F ⋙ forget)) }
#align Top.forget_preserves_limits_of_size TopCat.forgetPreservesLimitsOfSize
instance forgetPreservesLimits : PreservesLimits forget :=
TopCat.forgetPreservesLimitsOfSize.{u,u}
#align Top.forget_preserves_limits TopCat.forgetPreservesLimits
/-- A choice of colimit cocone for a functor `F : J ⥤ TopCat`.
Generally you should just use `colimit.cocone F`, unless you need the actual definition
(which is in terms of `Types.colimitCocone`).
-/
def colimitCocone (F : J ⥤ TopCatMax.{v, u}) : Cocone F where
pt :=
⟨(Types.colimitCocone.{v,u} (F ⋙ forget)).pt,
⨆ j, (F.obj j).str.coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j)⟩
ι :=
{ app := fun j =>
⟨(Types.colimitCocone (F ⋙ forget)).ι.app j, continuous_iff_coinduced_le.mpr <|
-- Porting note: didn't need function before
le_iSup (fun j => coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j) (F.obj j).str) j⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.colimitCocone (F ⋙ forget)).ι.naturality f) }
#align Top.colimit_cocone TopCat.colimitCocone
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality]
dsimp
rw [Category.comp_id]
· exact
continuous_iff_le_induced.mpr
(iSup_le fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.ι.app j).continuous : _))
· rfl
#align Top.colimit_cocone_is_colimit TopCat.colimitCoconeIsColimit
instance topCat_hasColimitsOfSize : HasColimitsOfSize.{v,v} TopCatMax.{v, u} where
has_colimits_of_shape _ :=
{ has_colimit := fun F =>
HasColimit.mk
{ cocone := colimitCocone F
isColimit := colimitCoconeIsColimit F } }
#align Top.Top_has_colimits_of_size TopCat.topCat_hasColimitsOfSize
instance topCat_hasColimits : HasColimits TopCat.{u} :=
TopCat.topCat_hasColimitsOfSize.{u, u}
#align Top.Top_has_colimits TopCat.topCat_hasColimits
instance forgetPreservesColimitsOfSize :
PreservesColimitsOfSize.{v, v} forget where
preservesColimitsOfShape :=
{ preservesColimit := fun {F} =>
preservesColimitOfPreservesColimitCocone (colimitCoconeIsColimit F)
(Types.colimitCoconeIsColimit (F ⋙ forget)) }
#align Top.forget_preserves_colimits_of_size TopCat.forgetPreservesColimitsOfSize
instance forgetPreservesColimits : PreservesColimits (forget : TopCat.{u} ⥤ Type u) :=
TopCat.forgetPreservesColimitsOfSize.{u, u}
#align Top.forget_preserves_colimits TopCat.forgetPreservesColimits
/-- The terminal object of `Top` is `PUnit`. -/
def isTerminalPUnit : IsTerminal (TopCat.of PUnit.{u + 1}) :=
haveI : ∀ X, Unique (X ⟶ TopCat.of PUnit.{u + 1}) := fun X =>
⟨⟨⟨fun _ => PUnit.unit, by continuity⟩⟩, fun f => by ext;
|
aesop
|
/-- The terminal object of `Top` is `PUnit`. -/
def isTerminalPUnit : IsTerminal (TopCat.of PUnit.{u + 1}) :=
haveI : ∀ X, Unique (X ⟶ TopCat.of PUnit.{u + 1}) := fun X =>
⟨⟨⟨fun _ => PUnit.unit, by continuity⟩⟩, fun f => by ext;
|
Mathlib.Topology.Category.TopCat.Limits.Basic.213_0.lEtiPsL1dQihFhl
|
/-- The terminal object of `Top` is `PUnit`. -/
def isTerminalPUnit : IsTerminal (TopCat.of PUnit.{u + 1})
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
X : TopCat
⊢ Continuous fun x => PEmpty.elim x
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
· rfl
#align Top.limit_cone_infi_is_limit TopCat.limitConeInfiIsLimit
instance topCat_hasLimitsOfSize : HasLimitsOfSize.{v} TopCatMax.{v, u} where
has_limits_of_shape _ :=
{ has_limit := fun F =>
HasLimit.mk
{ cone := limitCone.{v,u} F
isLimit := limitConeIsLimit F } }
#align Top.Top_has_limits_of_size TopCat.topCat_hasLimitsOfSize
instance topCat_hasLimits : HasLimits TopCat.{u} :=
TopCat.topCat_hasLimitsOfSize.{u, u}
#align Top.Top_has_limits TopCat.topCat_hasLimits
instance forgetPreservesLimitsOfSize : PreservesLimitsOfSize forget where
preservesLimitsOfShape {_} :=
{ preservesLimit := fun {F} =>
preservesLimitOfPreservesLimitCone (limitConeIsLimit.{v,u} F)
(Types.limitConeIsLimit.{v,u} (F ⋙ forget)) }
#align Top.forget_preserves_limits_of_size TopCat.forgetPreservesLimitsOfSize
instance forgetPreservesLimits : PreservesLimits forget :=
TopCat.forgetPreservesLimitsOfSize.{u,u}
#align Top.forget_preserves_limits TopCat.forgetPreservesLimits
/-- A choice of colimit cocone for a functor `F : J ⥤ TopCat`.
Generally you should just use `colimit.cocone F`, unless you need the actual definition
(which is in terms of `Types.colimitCocone`).
-/
def colimitCocone (F : J ⥤ TopCatMax.{v, u}) : Cocone F where
pt :=
⟨(Types.colimitCocone.{v,u} (F ⋙ forget)).pt,
⨆ j, (F.obj j).str.coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j)⟩
ι :=
{ app := fun j =>
⟨(Types.colimitCocone (F ⋙ forget)).ι.app j, continuous_iff_coinduced_le.mpr <|
-- Porting note: didn't need function before
le_iSup (fun j => coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j) (F.obj j).str) j⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.colimitCocone (F ⋙ forget)).ι.naturality f) }
#align Top.colimit_cocone TopCat.colimitCocone
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality]
dsimp
rw [Category.comp_id]
· exact
continuous_iff_le_induced.mpr
(iSup_le fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.ι.app j).continuous : _))
· rfl
#align Top.colimit_cocone_is_colimit TopCat.colimitCoconeIsColimit
instance topCat_hasColimitsOfSize : HasColimitsOfSize.{v,v} TopCatMax.{v, u} where
has_colimits_of_shape _ :=
{ has_colimit := fun F =>
HasColimit.mk
{ cocone := colimitCocone F
isColimit := colimitCoconeIsColimit F } }
#align Top.Top_has_colimits_of_size TopCat.topCat_hasColimitsOfSize
instance topCat_hasColimits : HasColimits TopCat.{u} :=
TopCat.topCat_hasColimitsOfSize.{u, u}
#align Top.Top_has_colimits TopCat.topCat_hasColimits
instance forgetPreservesColimitsOfSize :
PreservesColimitsOfSize.{v, v} forget where
preservesColimitsOfShape :=
{ preservesColimit := fun {F} =>
preservesColimitOfPreservesColimitCocone (colimitCoconeIsColimit F)
(Types.colimitCoconeIsColimit (F ⋙ forget)) }
#align Top.forget_preserves_colimits_of_size TopCat.forgetPreservesColimitsOfSize
instance forgetPreservesColimits : PreservesColimits (forget : TopCat.{u} ⥤ Type u) :=
TopCat.forgetPreservesColimitsOfSize.{u, u}
#align Top.forget_preserves_colimits TopCat.forgetPreservesColimits
/-- The terminal object of `Top` is `PUnit`. -/
def isTerminalPUnit : IsTerminal (TopCat.of PUnit.{u + 1}) :=
haveI : ∀ X, Unique (X ⟶ TopCat.of PUnit.{u + 1}) := fun X =>
⟨⟨⟨fun _ => PUnit.unit, by continuity⟩⟩, fun f => by ext; aesop⟩
Limits.IsTerminal.ofUnique _
#align Top.is_terminal_punit TopCat.isTerminalPUnit
/-- The terminal object of `Top` is `PUnit`. -/
def terminalIsoPUnit : ⊤_ TopCat.{u} ≅ TopCat.of PUnit :=
terminalIsTerminal.uniqueUpToIso isTerminalPUnit
#align Top.terminal_iso_punit TopCat.terminalIsoPUnit
/-- The initial object of `Top` is `PEmpty`. -/
def isInitialPEmpty : IsInitial (TopCat.of PEmpty.{u + 1}) :=
haveI : ∀ X, Unique (TopCat.of PEmpty.{u + 1} ⟶ X) := fun X =>
⟨⟨⟨fun x => x.elim, by
|
continuity
|
/-- The initial object of `Top` is `PEmpty`. -/
def isInitialPEmpty : IsInitial (TopCat.of PEmpty.{u + 1}) :=
haveI : ∀ X, Unique (TopCat.of PEmpty.{u + 1} ⟶ X) := fun X =>
⟨⟨⟨fun x => x.elim, by
|
Mathlib.Topology.Category.TopCat.Limits.Basic.225_0.lEtiPsL1dQihFhl
|
/-- The initial object of `Top` is `PEmpty`. -/
def isInitialPEmpty : IsInitial (TopCat.of PEmpty.{u + 1})
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
J : Type v
inst✝ : SmallCategory J
X : TopCat
f : of PEmpty.{u + 1} ⟶ X
⊢ f = default
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Scott Morrison, Mario Carneiro, Andrew Yang
-/
import Mathlib.Topology.Category.TopCat.Basic
import Mathlib.CategoryTheory.Limits.ConcreteCategory
#align_import topology.category.Top.limits.basic from "leanprover-community/mathlib"@"178a32653e369dce2da68dc6b2694e385d484ef1"
/-!
# The category of topological spaces has all limits and colimits
Further, these limits and colimits are preserved by the forgetful functor --- that is, the
underlying types are just the limits in the category of types.
-/
-- Porting note: every ML3 decl has an uppercase letter
set_option linter.uppercaseLean3 false
open TopologicalSpace CategoryTheory CategoryTheory.Limits Opposite
/--
Universe inequalities in Mathlib 3 are expressed through use of `max u v`. Unfortunately,
this leads to unbound universes which cannot be solved for during unification, eg
`max u v =?= max v ?`.
The current solution is to wrap `Type max u v` in `TypeMax.{u,v}`
to expose both universe parameters directly.
Similarly, for other concrete categories for which we need to refer to the maximum of two universes
(e.g. any category for which we are constructing limits), we need an analogous abbreviation.
-/
@[nolint checkUnivs]
abbrev TopCatMax.{u, v} := TopCat.{max u v}
universe v u w
noncomputable section
namespace TopCat
variable {J : Type v} [SmallCategory J]
local notation "forget" => forget TopCat
/-- A choice of limit cone for a functor `F : J ⥤ TopCat`.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitCone (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt := TopCat.of { u : ∀ j : J, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j }
π :=
{ app := fun j =>
{ toFun := fun u => u.val j
-- Porting note: `continuity` from the original mathlib3 proof failed here.
continuous_toFun := Continuous.comp (continuous_apply _) (continuous_subtype_val) }
naturality := fun X Y f => by
-- Automation fails in various ways in this proof. Why?!
dsimp
rw [Category.id_comp]
apply ContinuousMap.ext
intro a
exact (a.2 f).symm }
#align Top.limit_cone TopCat.limitCone
/-- A choice of limit cone for a functor `F : J ⥤ TopCat` whose topology is defined as an
infimum of topologies infimum.
Generally you should just use `limit.cone F`, unless you need the actual definition
(which is in terms of `Types.limitCone`).
-/
def limitConeInfi (F : J ⥤ TopCatMax.{v, u}) : Cone F where
pt :=
⟨(Types.limitCone.{v,u} (F ⋙ forget)).pt,
⨅ j, (F.obj j).str.induced ((Types.limitCone.{v,u} (F ⋙ forget)).π.app j)⟩
π :=
{ app := fun j =>
⟨(Types.limitCone.{v,u} (F ⋙ forget)).π.app j, continuous_iff_le_induced.mpr (iInf_le _ _)⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.limitCone.{v,u} (F ⋙ forget)).π.naturality f) }
#align Top.limit_cone_infi TopCat.limitConeInfi
/-- The chosen cone `TopCat.limitCone F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitCone.{v,u} F) where
lift S :=
{ toFun := fun x =>
⟨fun j => S.π.app _ x, fun f => by
dsimp
erw [← S.w f]
rfl⟩
continuous_toFun :=
Continuous.subtype_mk (continuous_pi <| fun j => (S.π.app j).2) fun x i j f => by
dsimp
rw [← S.w f]
rfl }
uniq S m h := by
apply ContinuousMap.ext; intros a; apply Subtype.ext; funext j
dsimp
rw [← h]
rfl
#align Top.limit_cone_is_limit TopCat.limitConeIsLimit
/-- The chosen cone `TopCat.limitConeInfi F` for a functor `F : J ⥤ TopCat` is a limit cone.
Generally you should just use `limit.isLimit F`, unless you need the actual definition
(which is in terms of `Types.limitConeIsLimit`).
-/
def limitConeInfiIsLimit (F : J ⥤ TopCatMax.{v, u}) : IsLimit (limitConeInfi.{v,u} F) := by
refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v,u} (F ⋙ forget))
-- Porting note: previously could infer all ?_ except continuity
(fun s => ⟨fun v => ⟨ fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_
· dsimp [Functor.sections]
intro _ _ _
rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe]
dsimp
rw [Category.id_comp]
· exact
continuous_iff_coinduced_le.mpr
(le_iInf fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.π.app j).continuous : _))
· rfl
#align Top.limit_cone_infi_is_limit TopCat.limitConeInfiIsLimit
instance topCat_hasLimitsOfSize : HasLimitsOfSize.{v} TopCatMax.{v, u} where
has_limits_of_shape _ :=
{ has_limit := fun F =>
HasLimit.mk
{ cone := limitCone.{v,u} F
isLimit := limitConeIsLimit F } }
#align Top.Top_has_limits_of_size TopCat.topCat_hasLimitsOfSize
instance topCat_hasLimits : HasLimits TopCat.{u} :=
TopCat.topCat_hasLimitsOfSize.{u, u}
#align Top.Top_has_limits TopCat.topCat_hasLimits
instance forgetPreservesLimitsOfSize : PreservesLimitsOfSize forget where
preservesLimitsOfShape {_} :=
{ preservesLimit := fun {F} =>
preservesLimitOfPreservesLimitCone (limitConeIsLimit.{v,u} F)
(Types.limitConeIsLimit.{v,u} (F ⋙ forget)) }
#align Top.forget_preserves_limits_of_size TopCat.forgetPreservesLimitsOfSize
instance forgetPreservesLimits : PreservesLimits forget :=
TopCat.forgetPreservesLimitsOfSize.{u,u}
#align Top.forget_preserves_limits TopCat.forgetPreservesLimits
/-- A choice of colimit cocone for a functor `F : J ⥤ TopCat`.
Generally you should just use `colimit.cocone F`, unless you need the actual definition
(which is in terms of `Types.colimitCocone`).
-/
def colimitCocone (F : J ⥤ TopCatMax.{v, u}) : Cocone F where
pt :=
⟨(Types.colimitCocone.{v,u} (F ⋙ forget)).pt,
⨆ j, (F.obj j).str.coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j)⟩
ι :=
{ app := fun j =>
⟨(Types.colimitCocone (F ⋙ forget)).ι.app j, continuous_iff_coinduced_le.mpr <|
-- Porting note: didn't need function before
le_iSup (fun j => coinduced ((Types.colimitCocone (F ⋙ forget)).ι.app j) (F.obj j).str) j⟩
naturality := fun _ _ f =>
ContinuousMap.coe_injective ((Types.colimitCocone (F ⋙ forget)).ι.naturality f) }
#align Top.colimit_cocone TopCat.colimitCocone
/-- The chosen cocone `TopCat.colimitCocone F` for a functor `F : J ⥤ TopCat` is a colimit cocone.
Generally you should just use `colimit.isColimit F`, unless you need the actual definition
(which is in terms of `Types.colimitCoconeIsColimit`).
-/
def colimitCoconeIsColimit (F : J ⥤ TopCatMax.{v, u}) : IsColimit (colimitCocone F) := by
refine
IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s =>
-- Porting note: it appears notation for forget breaks dot notation (also above)
-- Porting note: previously function was inferred
⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_
· intro _ _ ⟨_, h⟩
dsimp
rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality]
dsimp
rw [Category.comp_id]
· exact
continuous_iff_le_induced.mpr
(iSup_le fun j =>
coinduced_le_iff_le_induced.mp <|
(continuous_iff_coinduced_le.mp (s.ι.app j).continuous : _))
· rfl
#align Top.colimit_cocone_is_colimit TopCat.colimitCoconeIsColimit
instance topCat_hasColimitsOfSize : HasColimitsOfSize.{v,v} TopCatMax.{v, u} where
has_colimits_of_shape _ :=
{ has_colimit := fun F =>
HasColimit.mk
{ cocone := colimitCocone F
isColimit := colimitCoconeIsColimit F } }
#align Top.Top_has_colimits_of_size TopCat.topCat_hasColimitsOfSize
instance topCat_hasColimits : HasColimits TopCat.{u} :=
TopCat.topCat_hasColimitsOfSize.{u, u}
#align Top.Top_has_colimits TopCat.topCat_hasColimits
instance forgetPreservesColimitsOfSize :
PreservesColimitsOfSize.{v, v} forget where
preservesColimitsOfShape :=
{ preservesColimit := fun {F} =>
preservesColimitOfPreservesColimitCocone (colimitCoconeIsColimit F)
(Types.colimitCoconeIsColimit (F ⋙ forget)) }
#align Top.forget_preserves_colimits_of_size TopCat.forgetPreservesColimitsOfSize
instance forgetPreservesColimits : PreservesColimits (forget : TopCat.{u} ⥤ Type u) :=
TopCat.forgetPreservesColimitsOfSize.{u, u}
#align Top.forget_preserves_colimits TopCat.forgetPreservesColimits
/-- The terminal object of `Top` is `PUnit`. -/
def isTerminalPUnit : IsTerminal (TopCat.of PUnit.{u + 1}) :=
haveI : ∀ X, Unique (X ⟶ TopCat.of PUnit.{u + 1}) := fun X =>
⟨⟨⟨fun _ => PUnit.unit, by continuity⟩⟩, fun f => by ext; aesop⟩
Limits.IsTerminal.ofUnique _
#align Top.is_terminal_punit TopCat.isTerminalPUnit
/-- The terminal object of `Top` is `PUnit`. -/
def terminalIsoPUnit : ⊤_ TopCat.{u} ≅ TopCat.of PUnit :=
terminalIsTerminal.uniqueUpToIso isTerminalPUnit
#align Top.terminal_iso_punit TopCat.terminalIsoPUnit
/-- The initial object of `Top` is `PEmpty`. -/
def isInitialPEmpty : IsInitial (TopCat.of PEmpty.{u + 1}) :=
haveI : ∀ X, Unique (TopCat.of PEmpty.{u + 1} ⟶ X) := fun X =>
⟨⟨⟨fun x => x.elim, by continuity⟩⟩, fun f => by
|
ext ⟨⟩
|
/-- The initial object of `Top` is `PEmpty`. -/
def isInitialPEmpty : IsInitial (TopCat.of PEmpty.{u + 1}) :=
haveI : ∀ X, Unique (TopCat.of PEmpty.{u + 1} ⟶ X) := fun X =>
⟨⟨⟨fun x => x.elim, by continuity⟩⟩, fun f => by
|
Mathlib.Topology.Category.TopCat.Limits.Basic.225_0.lEtiPsL1dQihFhl
|
/-- The initial object of `Top` is `PEmpty`. -/
def isInitialPEmpty : IsInitial (TopCat.of PEmpty.{u + 1})
|
Mathlib_Topology_Category_TopCat_Limits_Basic
|
B : Type u
inst✝ : Quiver B
a b : B
f g : Discrete (Path a b)
η : f ⟶ g
⊢ PrelaxFunctor.map₂ (preinclusion B) η = eqToHom (_ : (↑(preinclusion B)).map f = (↑(preinclusion B)).map g)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
|
rcases η with ⟨⟨⟩⟩
|
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
|
Mathlib.CategoryTheory.Bicategory.Coherence.93_0.scNCB7gGNV3iY0Z
|
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case up.up
B : Type u
inst✝ : Quiver B
a b : B
f g : Discrete (Path a b)
down✝ : f.as = g.as
⊢ PrelaxFunctor.map₂ (preinclusion B) { down := { down := down✝ } } =
eqToHom (_ : (↑(preinclusion B)).map f = (↑(preinclusion B)).map g)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
|
cases Discrete.ext _ _ (by assumption)
|
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
|
Mathlib.CategoryTheory.Bicategory.Coherence.93_0.scNCB7gGNV3iY0Z
|
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
B : Type u
inst✝ : Quiver B
a b : B
f g : Discrete (Path a b)
down✝ : f.as = g.as
⊢ ?m.4739.as = ?m.4740.as
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by
|
assumption
|
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by
|
Mathlib.CategoryTheory.Bicategory.Coherence.93_0.scNCB7gGNV3iY0Z
|
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case up.up.refl
B : Type u
inst✝ : Quiver B
a b : B
f : Discrete (Path a b)
down✝ : f.as = f.as
⊢ PrelaxFunctor.map₂ (preinclusion B) { down := { down := down✝ } } =
eqToHom (_ : (↑(preinclusion B)).map f = (↑(preinclusion B)).map f)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
|
convert (inclusionPath a b).map_id _
|
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
|
Mathlib.CategoryTheory.Bicategory.Coherence.93_0.scNCB7gGNV3iY0Z
|
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
B : Type u
inst✝ : Quiver B
a b c : B
p : Path a b
f g : Hom b c
η : f ⟶ g
⊢ normalizeAux p f = normalizeAux p g
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
|
rcases η with ⟨η'⟩
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk
B : Type u
inst✝ : Quiver B
a b c : B
p : Path a b
f g : Hom b c
η : f ⟶ g
η' : Hom₂ f g
⊢ normalizeAux p f = normalizeAux p g
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
|
apply @congr_fun _ _ fun p => normalizeAux p f
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h
B : Type u
inst✝ : Quiver B
a b c : B
p : Path a b
f g : Hom b c
η : f ⟶ g
η' : Hom₂ f g
⊢ (fun p => normalizeAux p f) = fun p => normalizeAux p g
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
|
clear p η
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
η' : Hom₂ f g
⊢ (fun p => normalizeAux p f) = fun p => normalizeAux p g
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
|
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
η' : Hom₂ f g
⊢ (fun p => normalizeAux p f) = fun p => normalizeAux p g
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
|
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.vcomp
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η✝ : Hom₂ f✝ g✝
θ✝ : Hom₂ g✝ h✝
η_ih✝ : (fun p => normalizeAux p f✝) = fun p => normalizeAux p g✝
θ_ih✝ : (fun p => normalizeAux p g✝) = fun p => normalizeAux p h✝
⊢ (fun p => normalizeAux p f✝) = fun p => normalizeAux p h✝
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
|
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.vcomp
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η✝ : Hom₂ f✝ g✝
θ✝ : Hom₂ g✝ h✝
η_ih✝ : (fun p => normalizeAux p f✝) = fun p => normalizeAux p g✝
θ_ih✝ : (fun p => normalizeAux p g✝) = fun p => normalizeAux p h✝
⊢ (fun p => normalizeAux p f✝) = fun p => normalizeAux p h✝
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ =>
|
apply Eq.trans
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.vcomp.h₁
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η✝ : Hom₂ f✝ g✝
θ✝ : Hom₂ g✝ h✝
η_ih✝ : (fun p => normalizeAux p f✝) = fun p => normalizeAux p g✝
θ_ih✝ : (fun p => normalizeAux p g✝) = fun p => normalizeAux p h✝
⊢ (fun p => normalizeAux p f✝) = ?mk.h.vcomp.b
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;>
|
assumption
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;>
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.vcomp.h₂
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η✝ : Hom₂ f✝ g✝
θ✝ : Hom₂ g✝ h✝
η_ih✝ : (fun p => normalizeAux p f✝) = fun p => normalizeAux p g✝
θ_ih✝ : (fun p => normalizeAux p g✝) = fun p => normalizeAux p h✝
⊢ (fun p => normalizeAux p g✝) = fun p => normalizeAux p h✝
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;>
|
assumption
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;>
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.whisker_left
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ h✝ : b✝ ⟶ c✝
η✝ : Hom₂ g✝ h✝
ih : (fun p => normalizeAux p g✝) = fun p => normalizeAux p h✝
⊢ (fun p => normalizeAux p (f✝ ≫ g✝)) = fun p => normalizeAux p (f✝ ≫ h✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
|
| whisker_left _ _ ih => funext; apply congr_fun ih
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.whisker_left
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ h✝ : b✝ ⟶ c✝
η✝ : Hom₂ g✝ h✝
ih : (fun p => normalizeAux p g✝) = fun p => normalizeAux p h✝
⊢ (fun p => normalizeAux p (f✝ ≫ g✝)) = fun p => normalizeAux p (f✝ ≫ h✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih =>
|
funext
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.whisker_left.h
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ h✝ : b✝ ⟶ c✝
η✝ : Hom₂ g✝ h✝
ih : (fun p => normalizeAux p g✝) = fun p => normalizeAux p h✝
x✝ : Path a a✝
⊢ normalizeAux x✝ (f✝ ≫ g✝) = normalizeAux x✝ (f✝ ≫ h✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext;
|
apply congr_fun ih
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext;
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.whisker_right
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ g✝ : a✝ ⟶ b✝
h✝ : b✝ ⟶ c✝
η✝ : Hom₂ f✝ g✝
ih : (fun p => normalizeAux p f✝) = fun p => normalizeAux p g✝
⊢ (fun p => normalizeAux p (Hom.comp f✝ h✝)) = fun p => normalizeAux p (Hom.comp g✝ h✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
|
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.whisker_right
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ g✝ : a✝ ⟶ b✝
h✝ : b✝ ⟶ c✝
η✝ : Hom₂ f✝ g✝
ih : (fun p => normalizeAux p f✝) = fun p => normalizeAux p g✝
⊢ (fun p => normalizeAux p (Hom.comp f✝ h✝)) = fun p => normalizeAux p (Hom.comp g✝ h✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih =>
|
funext
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.whisker_right.h
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ g✝ : a✝ ⟶ b✝
h✝ : b✝ ⟶ c✝
η✝ : Hom₂ f✝ g✝
ih : (fun p => normalizeAux p f✝) = fun p => normalizeAux p g✝
x✝ : Path a a✝
⊢ normalizeAux x✝ (Hom.comp f✝ h✝) = normalizeAux x✝ (Hom.comp g✝ h✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext;
|
apply congr_arg₂ _ (congr_fun ih _) rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext;
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.id
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
⊢ (fun p => normalizeAux p f✝) = fun p => normalizeAux p f✝
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
| _ => funext; rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.id
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
⊢ (fun p => normalizeAux p f✝) = fun p => normalizeAux p f✝
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ =>
|
funext
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.id.h
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
x✝ : Path a a✝
⊢ normalizeAux x✝ f✝ = normalizeAux x✝ f✝
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext;
|
rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext;
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.associator
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ d✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ : b✝ ⟶ c✝
h✝ : c✝ ⟶ d✝
⊢ (fun p => normalizeAux p ((f✝ ≫ g✝) ≫ h✝)) = fun p => normalizeAux p (f✝ ≫ g✝ ≫ h✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
| _ => funext; rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.associator
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ d✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ : b✝ ⟶ c✝
h✝ : c✝ ⟶ d✝
⊢ (fun p => normalizeAux p ((f✝ ≫ g✝) ≫ h✝)) = fun p => normalizeAux p (f✝ ≫ g✝ ≫ h✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ =>
|
funext
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.associator.h
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ d✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ : b✝ ⟶ c✝
h✝ : c✝ ⟶ d✝
x✝ : Path a a✝
⊢ normalizeAux x✝ ((f✝ ≫ g✝) ≫ h✝) = normalizeAux x✝ (f✝ ≫ g✝ ≫ h✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext;
|
rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext;
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.