state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
case mk.h.associator_inv
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ d✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ : b✝ ⟶ c✝
h✝ : c✝ ⟶ d✝
⊢ (fun p => normalizeAux p (f✝ ≫ g✝ ≫ h✝)) = fun p => normalizeAux p ((f✝ ≫ g✝) ≫ h✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
| _ => funext; rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.associator_inv
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ d✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ : b✝ ⟶ c✝
h✝ : c✝ ⟶ d✝
⊢ (fun p => normalizeAux p (f✝ ≫ g✝ ≫ h✝)) = fun p => normalizeAux p ((f✝ ≫ g✝) ≫ h✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ =>
|
funext
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.associator_inv.h
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ d✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ : b✝ ⟶ c✝
h✝ : c✝ ⟶ d✝
x✝ : Path a a✝
⊢ normalizeAux x✝ (f✝ ≫ g✝ ≫ h✝) = normalizeAux x✝ ((f✝ ≫ g✝) ≫ h✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext;
|
rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext;
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.right_unitor
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
⊢ (fun p => normalizeAux p (f✝ ≫ 𝟙 b✝)) = fun p => normalizeAux p f✝
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
| _ => funext; rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.right_unitor
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
⊢ (fun p => normalizeAux p (f✝ ≫ 𝟙 b✝)) = fun p => normalizeAux p f✝
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ =>
|
funext
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.right_unitor.h
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
x✝ : Path a a✝
⊢ normalizeAux x✝ (f✝ ≫ 𝟙 b✝) = normalizeAux x✝ f✝
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext;
|
rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext;
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.right_unitor_inv
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
⊢ (fun p => normalizeAux p f✝) = fun p => normalizeAux p (f✝ ≫ 𝟙 b✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
| _ => funext; rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.right_unitor_inv
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
⊢ (fun p => normalizeAux p f✝) = fun p => normalizeAux p (f✝ ≫ 𝟙 b✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ =>
|
funext
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.right_unitor_inv.h
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
x✝ : Path a a✝
⊢ normalizeAux x✝ f✝ = normalizeAux x✝ (f✝ ≫ 𝟙 b✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext;
|
rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext;
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.left_unitor
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
⊢ (fun p => normalizeAux p (𝟙 a✝ ≫ f✝)) = fun p => normalizeAux p f✝
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
| _ => funext; rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.left_unitor
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
⊢ (fun p => normalizeAux p (𝟙 a✝ ≫ f✝)) = fun p => normalizeAux p f✝
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ =>
|
funext
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.left_unitor.h
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
x✝ : Path a a✝
⊢ normalizeAux x✝ (𝟙 a✝ ≫ f✝) = normalizeAux x✝ f✝
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext;
|
rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext;
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.left_unitor_inv
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
⊢ (fun p => normalizeAux p f✝) = fun p => normalizeAux p (𝟙 a✝ ≫ f✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
| _ => funext; rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.left_unitor_inv
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
⊢ (fun p => normalizeAux p f✝) = fun p => normalizeAux p (𝟙 a✝ ≫ f✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ =>
|
funext
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.h.left_unitor_inv.h
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
x✝ : Path a a✝
⊢ normalizeAux x✝ f✝ = normalizeAux x✝ (𝟙 a✝ ≫ f✝)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext;
|
rfl
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext;
|
Mathlib.CategoryTheory.Bicategory.Coherence.145_0.scNCB7gGNV3iY0Z
|
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
B : Type u
inst✝ : Quiver B
a b c : B
p : Path a b
f g : Hom b c
η : f ⟶ g
⊢ (↑(preinclusion B)).map { as := p } ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f } = { as := normalizeAux p g }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
|
rcases η with ⟨η'⟩
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk
B : Type u
inst✝ : Quiver B
a b c : B
p : Path a b
f g : Hom b c
η : f ⟶ g
η' : Hom₂ f g
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η' ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f } = { as := normalizeAux p g }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩;
|
clear η
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩;
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk
B : Type u
inst✝ : Quiver B
a b c : B
p : Path a b
f g : Hom b c
η' : Hom₂ f g
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η' ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f } = { as := normalizeAux p g }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
|
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk
B : Type u
inst✝ : Quiver B
a b c : B
p : Path a b
f g : Hom b c
η' : Hom₂ f g
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η' ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f } = { as := normalizeAux p g }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
|
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.id
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.id f✝) ≫ (normalizeIso p f✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p f✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
|
| id => simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.id
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.id f✝) ≫ (normalizeIso p f✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p f✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id =>
|
simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.vcomp
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.vcomp η θ) ≫ (normalizeIso p h✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p h✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
|
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.vcomp
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.vcomp η θ) ≫ (normalizeIso p h✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p h✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
|
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.vcomp
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
⊢ ((↑(preinclusion B)).map { as := p } ◁ Hom₂.mk η ≫ (↑(preinclusion B)).map { as := p } ◁ Hom₂.mk θ) ≫
(normalizeIso p h✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p h✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
|
slice_lhs 2 3 => rw [ihg]
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case a
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
| (↑(preinclusion B)).map { as := p } ◁ Hom₂.mk θ ≫ (normalizeIso p h✝).hom
case a
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
| (↑(preinclusion B)).map { as := p } ◁ Hom₂.mk η
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 =>
|
rw [ihg]
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case a
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
| (↑(preinclusion B)).map { as := p } ◁ Hom₂.mk θ ≫ (normalizeIso p h✝).hom
case a
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
| (↑(preinclusion B)).map { as := p } ◁ Hom₂.mk η
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 =>
|
rw [ihg]
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case a
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
| (↑(preinclusion B)).map { as := p } ◁ Hom₂.mk θ ≫ (normalizeIso p h✝).hom
case a
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
| (↑(preinclusion B)).map { as := p } ◁ Hom₂.mk η
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 =>
|
rw [ihg]
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.vcomp
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Hom₂.mk η ≫
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ })) =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p h✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
|
slice_lhs 1 2 => rw [ihf]
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case a
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
| (↑(preinclusion B)).map { as := p } ◁ Hom₂.mk η ≫ (normalizeIso p g✝).hom
case a
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
| PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 =>
|
rw [ihf]
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case a
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
| (↑(preinclusion B)).map { as := p } ◁ Hom₂.mk η ≫ (normalizeIso p g✝).hom
case a
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
| PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 =>
|
rw [ihf]
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case a
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
| (↑(preinclusion B)).map { as := p } ◁ Hom₂.mk η ≫ (normalizeIso p g✝).hom
case a
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
| PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 =>
|
rw [ihf]
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.vcomp
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ g✝ h✝ : a✝ ⟶ b✝
η : Hom₂ f✝ g✝
θ : Hom₂ g✝ h✝
ihf :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
ihg :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel θ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
⊢ ((normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))) ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ })) =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p h✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
|
simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.whisker_left
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ h✝ : b✝ ⟶ c✝
η✝ : Hom₂ g✝ h✝
ih :
∀ (p : Path a b✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η✝ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.whisker_left f✝ η✝) ≫ (normalizeIso p (f✝ ≫ h✝)).hom =
(normalizeIso p (f✝ ≫ g✝)).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p (f✝ ≫ g✝) } = { as := normalizeAux p (f✝ ≫ h✝) }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
|
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.whisker_left
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ h✝ : b✝ ⟶ c✝
η✝ : Hom₂ g✝ h✝
ih :
∀ (p : Path a b✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η✝ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.whisker_left f✝ η✝) ≫ (normalizeIso p (f✝ ≫ h✝)).hom =
(normalizeIso p (f✝ ≫ g✝)).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p (f✝ ≫ g✝) } = { as := normalizeAux p (f✝ ≫ h✝) }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
|
dsimp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.whisker_left
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ h✝ : b✝ ⟶ c✝
η✝ : Hom₂ g✝ h✝
ih :
∀ (p : Path a b✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η✝ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ f✝ ◁ Hom₂.mk η✝ ≫
(α_ ((↑(preinclusion B)).map { as := p }) f✝ h✝).inv ≫
(normalizeIso p f✝).hom ▷ h✝ ≫ (normalizeIso (normalizeAux p f✝) h✝).hom =
((α_ ((↑(preinclusion B)).map { as := p }) f✝ g✝).inv ≫
(normalizeIso p f✝).hom ▷ g✝ ≫ (normalizeIso (normalizeAux p f✝) g✝).hom) ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux (normalizeAux p f✝) g✝ } = { as := normalizeAux (normalizeAux p f✝) h✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
|
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.whisker_left
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ h✝ : b✝ ⟶ c✝
η✝ : Hom₂ g✝ h✝
ih :
∀ (p : Path a b✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η✝ ≫ (normalizeIso p h✝).hom =
(normalizeIso p g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p g✝ } = { as := normalizeAux p h✝ }))
p : Path a a✝
⊢ (α_ ((↑(preinclusion B)).map { as := p }) f✝ g✝).inv ≫
(normalizeIso p f✝).hom ▷ g✝ ≫
(normalizeIso (normalizeAux p f✝) g✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom
(_ : { as := normalizeAux (normalizeAux p f✝) g✝ } = { as := normalizeAux (normalizeAux p f✝) h✝ })) =
((α_ ((↑(preinclusion B)).map { as := p }) f✝ g✝).inv ≫
(normalizeIso p f✝).hom ▷ g✝ ≫ (normalizeIso (normalizeAux p f✝) g✝).hom) ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux (normalizeAux p f✝) g✝ } = { as := normalizeAux (normalizeAux p f✝) h✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
|
simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.whisker_right
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ g✝ : a✝ ⟶ b✝
h : b✝ ⟶ c✝
η' : Hom₂ f✝ g✝
ih :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η' ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.whisker_right h η') ≫ (normalizeIso p (Hom.comp g✝ h)).hom =
(normalizeIso p (Hom.comp f✝ h)).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p (Hom.comp f✝ h) } = { as := normalizeAux p (Hom.comp g✝ h) }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
|
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.whisker_right
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ g✝ : a✝ ⟶ b✝
h : b✝ ⟶ c✝
η' : Hom₂ f✝ g✝
ih :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η' ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.whisker_right h η') ≫ (normalizeIso p (Hom.comp g✝ h)).hom =
(normalizeIso p (Hom.comp f✝ h)).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p (Hom.comp f✝ h) } = { as := normalizeAux p (Hom.comp g✝ h) }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
|
dsimp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.whisker_right
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ g✝ : a✝ ⟶ b✝
h : b✝ ⟶ c✝
η' : Hom₂ f✝ g✝
ih :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η' ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Hom₂.mk η' ▷ h ≫
(α_ ((↑(preinclusion B)).map { as := p }) g✝ h).inv ≫
(normalizeIso p g✝).hom ▷ h ≫ (normalizeIso (normalizeAux p g✝) h).hom =
((α_ ((↑(preinclusion B)).map { as := p }) f✝ h).inv ≫
(normalizeIso p f✝).hom ▷ h ≫ (normalizeIso (normalizeAux p f✝) h).hom) ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux (normalizeAux p f✝) h } = { as := normalizeAux (normalizeAux p g✝) h }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
|
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.whisker_right
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ g✝ : a✝ ⟶ b✝
h : b✝ ⟶ c✝
η' : Hom₂ f✝ g✝
ih :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η' ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
p : Path a a✝
⊢ (α_ ((↑(preinclusion B)).map { as := p }) f✝ h).inv ≫
((normalizeIso p f✝).hom ▷ h ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ })) ▷
h) ≫
(normalizeIso (normalizeAux p g✝) h).hom =
((α_ ((↑(preinclusion B)).map { as := p }) f✝ h).inv ≫
(normalizeIso p f✝).hom ▷ h ≫ (normalizeIso (normalizeAux p f✝) h).hom) ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux (normalizeAux p f✝) h } = { as := normalizeAux (normalizeAux p g✝) h }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
|
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.whisker_right
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ g✝ : a✝ ⟶ b✝
h : b✝ ⟶ c✝
η' : Hom₂ f✝ g✝
ih :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η' ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
p : Path a a✝
this :
(normalizeIso (normalizeAux p f✝) h).hom =
eqToHom
(_ :
(↑(preinclusion B)).map { as := normalizeAux p f✝ } ≫ h =
(↑(preinclusion B)).map { as := normalizeAux p g✝ } ≫ h) ≫
(normalizeIso (normalizeAux p g✝) h).hom ≫
eqToHom
(_ :
(↑(preinclusion B)).map { as := normalizeAux (normalizeAux p g✝) h } =
(↑(preinclusion B)).map { as := normalizeAux (normalizeAux p f✝) h })
⊢ (α_ ((↑(preinclusion B)).map { as := p }) f✝ h).inv ≫
((normalizeIso p f✝).hom ▷ h ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ })) ▷
h) ≫
(normalizeIso (normalizeAux p g✝) h).hom =
((α_ ((↑(preinclusion B)).map { as := p }) f✝ h).inv ≫
(normalizeIso p f✝).hom ▷ h ≫ (normalizeIso (normalizeAux p f✝) h).hom) ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux (normalizeAux p f✝) h } = { as := normalizeAux (normalizeAux p g✝) h }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
|
dsimp at this
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.whisker_right
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ : FreeBicategory B
f✝ g✝ : a✝ ⟶ b✝
h : b✝ ⟶ c✝
η' : Hom₂ f✝ g✝
ih :
∀ (p : Path a a✝),
(↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel η' ≫ (normalizeIso p g✝).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B) (eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ }))
p : Path a a✝
this :
(normalizeIso (normalizeAux p f✝) h).hom =
eqToHom
(_ :
(↑(preinclusion B)).map { as := normalizeAux p f✝ } ≫ h =
(↑(preinclusion B)).map { as := normalizeAux p g✝ } ≫ h) ≫
(normalizeIso (normalizeAux p g✝) h).hom ≫
eqToHom
(_ :
(↑(preinclusion B)).map { as := normalizeAux (normalizeAux p g✝) h } =
(↑(preinclusion B)).map { as := normalizeAux (normalizeAux p f✝) h })
⊢ (α_ ((↑(preinclusion B)).map { as := p }) f✝ h).inv ≫
((normalizeIso p f✝).hom ▷ h ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p g✝ })) ▷
h) ≫
(normalizeIso (normalizeAux p g✝) h).hom =
((α_ ((↑(preinclusion B)).map { as := p }) f✝ h).inv ≫
(normalizeIso p f✝).hom ▷ h ≫ (normalizeIso (normalizeAux p f✝) h).hom) ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux (normalizeAux p f✝) h } = { as := normalizeAux (normalizeAux p g✝) h }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this;
|
simp [this]
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this;
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.associator
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ d✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ : b✝ ⟶ c✝
h✝ : c✝ ⟶ d✝
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.associator f✝ g✝ h✝) ≫ (normalizeIso p (f✝ ≫ g✝ ≫ h✝)).hom =
(normalizeIso p ((f✝ ≫ g✝) ≫ h✝)).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p ((f✝ ≫ g✝) ≫ h✝) } = { as := normalizeAux p (f✝ ≫ g✝ ≫ h✝) }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
|
| _ => simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.associator
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ d✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ : b✝ ⟶ c✝
h✝ : c✝ ⟶ d✝
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.associator f✝ g✝ h✝) ≫ (normalizeIso p (f✝ ≫ g✝ ≫ h✝)).hom =
(normalizeIso p ((f✝ ≫ g✝) ≫ h✝)).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p ((f✝ ≫ g✝) ≫ h✝) } = { as := normalizeAux p (f✝ ≫ g✝ ≫ h✝) }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ =>
|
simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.associator_inv
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ d✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ : b✝ ⟶ c✝
h✝ : c✝ ⟶ d✝
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.associator_inv f✝ g✝ h✝) ≫
(normalizeIso p ((f✝ ≫ g✝) ≫ h✝)).hom =
(normalizeIso p (f✝ ≫ g✝ ≫ h✝)).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p (f✝ ≫ g✝ ≫ h✝) } = { as := normalizeAux p ((f✝ ≫ g✝) ≫ h✝) }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
|
| _ => simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.associator_inv
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ c✝ d✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
g✝ : b✝ ⟶ c✝
h✝ : c✝ ⟶ d✝
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.associator_inv f✝ g✝ h✝) ≫
(normalizeIso p ((f✝ ≫ g✝) ≫ h✝)).hom =
(normalizeIso p (f✝ ≫ g✝ ≫ h✝)).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p (f✝ ≫ g✝ ≫ h✝) } = { as := normalizeAux p ((f✝ ≫ g✝) ≫ h✝) }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ =>
|
simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.right_unitor
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.right_unitor f✝) ≫ (normalizeIso p f✝).hom =
(normalizeIso p (f✝ ≫ 𝟙 b✝)).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p (f✝ ≫ 𝟙 b✝) } = { as := normalizeAux p f✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
|
| _ => simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.right_unitor
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.right_unitor f✝) ≫ (normalizeIso p f✝).hom =
(normalizeIso p (f✝ ≫ 𝟙 b✝)).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p (f✝ ≫ 𝟙 b✝) } = { as := normalizeAux p f✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ =>
|
simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.right_unitor_inv
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.right_unitor_inv f✝) ≫ (normalizeIso p (f✝ ≫ 𝟙 b✝)).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p (f✝ ≫ 𝟙 b✝) }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
|
| _ => simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.right_unitor_inv
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.right_unitor_inv f✝) ≫ (normalizeIso p (f✝ ≫ 𝟙 b✝)).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p (f✝ ≫ 𝟙 b✝) }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ =>
|
simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.left_unitor
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.left_unitor f✝) ≫ (normalizeIso p f✝).hom =
(normalizeIso p (𝟙 a✝ ≫ f✝)).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p (𝟙 a✝ ≫ f✝) } = { as := normalizeAux p f✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
|
| _ => simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.left_unitor
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.left_unitor f✝) ≫ (normalizeIso p f✝).hom =
(normalizeIso p (𝟙 a✝ ≫ f✝)).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p (𝟙 a✝ ≫ f✝) } = { as := normalizeAux p f✝ }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ =>
|
simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.left_unitor_inv
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.left_unitor_inv f✝) ≫ (normalizeIso p (𝟙 a✝ ≫ f✝)).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p (𝟙 a✝ ≫ f✝) }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
|
| _ => simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.left_unitor_inv
B : Type u
inst✝ : Quiver B
a b c : B
f g : Hom b c
a✝ b✝ : FreeBicategory B
f✝ : a✝ ⟶ b✝
p : Path a a✝
⊢ (↑(preinclusion B)).map { as := p } ◁ Quot.mk Rel (Hom₂.left_unitor_inv f✝) ≫ (normalizeIso p (𝟙 a✝ ≫ f✝)).hom =
(normalizeIso p f✝).hom ≫
PrelaxFunctor.map₂ (preinclusion B)
(eqToHom (_ : { as := normalizeAux p f✝ } = { as := normalizeAux p (𝟙 a✝ ≫ f✝) }))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ =>
|
simp
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.160_0.scNCB7gGNV3iY0Z
|
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η)))
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
B : Type u
inst✝ : Quiver B
a b c : B
f : Hom a b
g : Hom b c
⊢ normalizeAux nil (Hom.comp f g) = comp (normalizeAux nil f) (normalizeAux nil g)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
|
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
|
Mathlib.CategoryTheory.Bicategory.Coherence.188_0.scNCB7gGNV3iY0Z
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
B : Type u
inst✝ : Quiver B
a b c : B
f : Hom a b
g : Hom b c
⊢ normalizeAux nil (Hom.comp f g) = comp (normalizeAux nil f) (normalizeAux nil g)
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
|
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
|
Mathlib.CategoryTheory.Bicategory.Coherence.188_0.scNCB7gGNV3iY0Z
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case id
B : Type u
inst✝ : Quiver B
b c a✝ a : B
f : Hom a a✝
⊢ normalizeAux nil (Hom.comp f (Hom.id a✝)) = comp (normalizeAux nil f) (normalizeAux nil (Hom.id a✝))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
|
| id => rfl
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
|
Mathlib.CategoryTheory.Bicategory.Coherence.188_0.scNCB7gGNV3iY0Z
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case id
B : Type u
inst✝ : Quiver B
b c a✝ a : B
f : Hom a a✝
⊢ normalizeAux nil (Hom.comp f (Hom.id a✝)) = comp (normalizeAux nil f) (normalizeAux nil (Hom.id a✝))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id =>
|
rfl
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.188_0.scNCB7gGNV3iY0Z
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case of
B : Type u
inst✝ : Quiver B
b c a✝ b✝ : B
f✝ : a✝ ⟶ b✝
a : B
f : Hom a a✝
⊢ normalizeAux nil (Hom.comp f (Hom.of f✝)) = comp (normalizeAux nil f) (normalizeAux nil (Hom.of f✝))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
|
| of => rfl
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
|
Mathlib.CategoryTheory.Bicategory.Coherence.188_0.scNCB7gGNV3iY0Z
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case of
B : Type u
inst✝ : Quiver B
b c a✝ b✝ : B
f✝ : a✝ ⟶ b✝
a : B
f : Hom a a✝
⊢ normalizeAux nil (Hom.comp f (Hom.of f✝)) = comp (normalizeAux nil f) (normalizeAux nil (Hom.of f✝))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of =>
|
rfl
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.188_0.scNCB7gGNV3iY0Z
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case comp
B : Type u
inst✝ : Quiver B
b c a✝ b✝ c✝ : B
g : Hom a✝ b✝
g✝ : Hom b✝ c✝
ihf : ∀ {a : B} (f : Hom a a✝), normalizeAux nil (Hom.comp f g) = comp (normalizeAux nil f) (normalizeAux nil g)
ihg : ∀ {a : B} (f : Hom a b✝), normalizeAux nil (Hom.comp f g✝) = comp (normalizeAux nil f) (normalizeAux nil g✝)
a : B
f : Hom a a✝
⊢ normalizeAux nil (Hom.comp f (Hom.comp g g✝)) = comp (normalizeAux nil f) (normalizeAux nil (Hom.comp g g✝))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
|
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
|
Mathlib.CategoryTheory.Bicategory.Coherence.188_0.scNCB7gGNV3iY0Z
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case comp
B : Type u
inst✝ : Quiver B
b c a✝ b✝ c✝ : B
g : Hom a✝ b✝
g✝ : Hom b✝ c✝
ihf : ∀ {a : B} (f : Hom a a✝), normalizeAux nil (Hom.comp f g) = comp (normalizeAux nil f) (normalizeAux nil g)
ihg : ∀ {a : B} (f : Hom a b✝), normalizeAux nil (Hom.comp f g✝) = comp (normalizeAux nil f) (normalizeAux nil g✝)
a : B
f : Hom a a✝
⊢ normalizeAux nil (Hom.comp f (Hom.comp g g✝)) = comp (normalizeAux nil f) (normalizeAux nil (Hom.comp g g✝))
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg =>
|
erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.188_0.scNCB7gGNV3iY0Z
|
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
B : Type u
inst✝ : Quiver B
a b : FreeBicategory B
⊢ ∀ {X Y : a ⟶ b} (f : X ⟶ Y),
(𝟭 (a ⟶ b)).map f ≫ ((fun f => (λ_ f).symm ≪≫ normalizeIso nil f) Y).hom =
((fun f => (λ_ f).symm ≪≫ normalizeIso nil f) X).hom ≫
(Pseudofunctor.mapFunctor (normalize B) a b ⋙ inclusionPath a b).map f
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
#align category_theory.free_bicategory.normalize_aux_nil_comp CategoryTheory.FreeBicategory.normalizeAux_nil_comp
/-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/
def normalize (B : Type u) [Quiver.{v + 1} B] :
Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where
obj := id
map f := ⟨normalizeAux nil f⟩
map₂ η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η
mapId a := eqToIso <| Discrete.ext _ _ rfl
mapComp f g := eqToIso <| Discrete.ext _ _ <| normalizeAux_nil_comp f g
#align category_theory.free_bicategory.normalize CategoryTheory.FreeBicategory.normalize
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
|
intro f g η
|
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
|
Mathlib.CategoryTheory.Bicategory.Coherence.206_0.scNCB7gGNV3iY0Z
|
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
B : Type u
inst✝ : Quiver B
a b : FreeBicategory B
f g : a ⟶ b
η : f ⟶ g
⊢ (𝟭 (a ⟶ b)).map η ≫ ((fun f => (λ_ f).symm ≪≫ normalizeIso nil f) g).hom =
((fun f => (λ_ f).symm ≪≫ normalizeIso nil f) f).hom ≫
(Pseudofunctor.mapFunctor (normalize B) a b ⋙ inclusionPath a b).map η
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
#align category_theory.free_bicategory.normalize_aux_nil_comp CategoryTheory.FreeBicategory.normalizeAux_nil_comp
/-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/
def normalize (B : Type u) [Quiver.{v + 1} B] :
Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where
obj := id
map f := ⟨normalizeAux nil f⟩
map₂ η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η
mapId a := eqToIso <| Discrete.ext _ _ rfl
mapComp f g := eqToIso <| Discrete.ext _ _ <| normalizeAux_nil_comp f g
#align category_theory.free_bicategory.normalize CategoryTheory.FreeBicategory.normalize
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
|
erw [leftUnitor_inv_naturality_assoc, assoc]
|
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
|
Mathlib.CategoryTheory.Bicategory.Coherence.206_0.scNCB7gGNV3iY0Z
|
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
B : Type u
inst✝ : Quiver B
a b : FreeBicategory B
f g : a ⟶ b
η : f ⟶ g
⊢ (λ_ ((𝟭 (a ⟶ b)).obj f)).inv ≫ 𝟙 a ◁ (𝟭 (a ⟶ b)).map η ≫ (normalizeIso nil g).hom =
(λ_ f).symm.hom ≫ (normalizeIso nil f).hom ≫ (Pseudofunctor.mapFunctor (normalize B) a b ⋙ inclusionPath a b).map η
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
#align category_theory.free_bicategory.normalize_aux_nil_comp CategoryTheory.FreeBicategory.normalizeAux_nil_comp
/-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/
def normalize (B : Type u) [Quiver.{v + 1} B] :
Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where
obj := id
map f := ⟨normalizeAux nil f⟩
map₂ η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η
mapId a := eqToIso <| Discrete.ext _ _ rfl
mapComp f g := eqToIso <| Discrete.ext _ _ <| normalizeAux_nil_comp f g
#align category_theory.free_bicategory.normalize CategoryTheory.FreeBicategory.normalize
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
erw [leftUnitor_inv_naturality_assoc, assoc]
|
congr 1
|
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
erw [leftUnitor_inv_naturality_assoc, assoc]
|
Mathlib.CategoryTheory.Bicategory.Coherence.206_0.scNCB7gGNV3iY0Z
|
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case e_a
B : Type u
inst✝ : Quiver B
a b : FreeBicategory B
f g : a ⟶ b
η : f ⟶ g
⊢ 𝟙 a ◁ (𝟭 (a ⟶ b)).map η ≫ (normalizeIso nil g).hom =
(normalizeIso nil f).hom ≫ (Pseudofunctor.mapFunctor (normalize B) a b ⋙ inclusionPath a b).map η
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
#align category_theory.free_bicategory.normalize_aux_nil_comp CategoryTheory.FreeBicategory.normalizeAux_nil_comp
/-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/
def normalize (B : Type u) [Quiver.{v + 1} B] :
Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where
obj := id
map f := ⟨normalizeAux nil f⟩
map₂ η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η
mapId a := eqToIso <| Discrete.ext _ _ rfl
mapComp f g := eqToIso <| Discrete.ext _ _ <| normalizeAux_nil_comp f g
#align category_theory.free_bicategory.normalize CategoryTheory.FreeBicategory.normalize
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
erw [leftUnitor_inv_naturality_assoc, assoc]
congr 1
|
exact normalize_naturality nil η
|
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
erw [leftUnitor_inv_naturality_assoc, assoc]
congr 1
|
Mathlib.CategoryTheory.Bicategory.Coherence.206_0.scNCB7gGNV3iY0Z
|
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
B : Type u
inst✝ : Quiver B
a b : B
f : Discrete (Path a b)
⊢ (inclusionPath a b ⋙ Pseudofunctor.mapFunctor (normalize B) a b).obj f = (𝟭 (Discrete (Path a b))).obj f
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
#align category_theory.free_bicategory.normalize_aux_nil_comp CategoryTheory.FreeBicategory.normalizeAux_nil_comp
/-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/
def normalize (B : Type u) [Quiver.{v + 1} B] :
Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where
obj := id
map f := ⟨normalizeAux nil f⟩
map₂ η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η
mapId a := eqToIso <| Discrete.ext _ _ rfl
mapComp f g := eqToIso <| Discrete.ext _ _ <| normalizeAux_nil_comp f g
#align category_theory.free_bicategory.normalize CategoryTheory.FreeBicategory.normalize
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
erw [leftUnitor_inv_naturality_assoc, assoc]
congr 1
exact normalize_naturality nil η)
#align category_theory.free_bicategory.normalize_unit_iso CategoryTheory.FreeBicategory.normalizeUnitIso
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
|
induction' f with f
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
|
Mathlib.CategoryTheory.Bicategory.Coherence.217_0.scNCB7gGNV3iY0Z
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk
B : Type u
inst✝ : Quiver B
a b : B
f : Path a b
⊢ (inclusionPath a b ⋙ Pseudofunctor.mapFunctor (normalize B) a b).obj { as := f } =
(𝟭 (Discrete (Path a b))).obj { as := f }
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
#align category_theory.free_bicategory.normalize_aux_nil_comp CategoryTheory.FreeBicategory.normalizeAux_nil_comp
/-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/
def normalize (B : Type u) [Quiver.{v + 1} B] :
Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where
obj := id
map f := ⟨normalizeAux nil f⟩
map₂ η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η
mapId a := eqToIso <| Discrete.ext _ _ rfl
mapComp f g := eqToIso <| Discrete.ext _ _ <| normalizeAux_nil_comp f g
#align category_theory.free_bicategory.normalize CategoryTheory.FreeBicategory.normalize
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
erw [leftUnitor_inv_naturality_assoc, assoc]
congr 1
exact normalize_naturality nil η)
#align category_theory.free_bicategory.normalize_unit_iso CategoryTheory.FreeBicategory.normalizeUnitIso
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
|
induction' f with _ _ _ _ ih
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
|
Mathlib.CategoryTheory.Bicategory.Coherence.217_0.scNCB7gGNV3iY0Z
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.nil
B : Type u
inst✝ : Quiver B
a b : B
⊢ (inclusionPath a a ⋙ Pseudofunctor.mapFunctor (normalize B) a a).obj { as := nil } =
(𝟭 (Discrete (Path a a))).obj { as := nil }
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
#align category_theory.free_bicategory.normalize_aux_nil_comp CategoryTheory.FreeBicategory.normalizeAux_nil_comp
/-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/
def normalize (B : Type u) [Quiver.{v + 1} B] :
Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where
obj := id
map f := ⟨normalizeAux nil f⟩
map₂ η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η
mapId a := eqToIso <| Discrete.ext _ _ rfl
mapComp f g := eqToIso <| Discrete.ext _ _ <| normalizeAux_nil_comp f g
#align category_theory.free_bicategory.normalize CategoryTheory.FreeBicategory.normalize
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
erw [leftUnitor_inv_naturality_assoc, assoc]
congr 1
exact normalize_naturality nil η)
#align category_theory.free_bicategory.normalize_unit_iso CategoryTheory.FreeBicategory.normalizeUnitIso
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
·
|
rfl
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
·
|
Mathlib.CategoryTheory.Bicategory.Coherence.217_0.scNCB7gGNV3iY0Z
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.cons
B : Type u
inst✝ : Quiver B
a b b✝ c✝ : B
a✝¹ : Path a b✝
a✝ : b✝ ⟶ c✝
ih :
(inclusionPath a b✝ ⋙ Pseudofunctor.mapFunctor (normalize B) a b✝).obj { as := a✝¹ } =
(𝟭 (Discrete (Path a b✝))).obj { as := a✝¹ }
⊢ (inclusionPath a c✝ ⋙ Pseudofunctor.mapFunctor (normalize B) a c✝).obj { as := cons a✝¹ a✝ } =
(𝟭 (Discrete (Path a c✝))).obj { as := cons a✝¹ a✝ }
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
#align category_theory.free_bicategory.normalize_aux_nil_comp CategoryTheory.FreeBicategory.normalizeAux_nil_comp
/-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/
def normalize (B : Type u) [Quiver.{v + 1} B] :
Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where
obj := id
map f := ⟨normalizeAux nil f⟩
map₂ η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η
mapId a := eqToIso <| Discrete.ext _ _ rfl
mapComp f g := eqToIso <| Discrete.ext _ _ <| normalizeAux_nil_comp f g
#align category_theory.free_bicategory.normalize CategoryTheory.FreeBicategory.normalize
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
erw [leftUnitor_inv_naturality_assoc, assoc]
congr 1
exact normalize_naturality nil η)
#align category_theory.free_bicategory.normalize_unit_iso CategoryTheory.FreeBicategory.normalizeUnitIso
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
· rfl
·
|
ext1
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
· rfl
·
|
Mathlib.CategoryTheory.Bicategory.Coherence.217_0.scNCB7gGNV3iY0Z
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.cons.as
B : Type u
inst✝ : Quiver B
a b b✝ c✝ : B
a✝¹ : Path a b✝
a✝ : b✝ ⟶ c✝
ih :
(inclusionPath a b✝ ⋙ Pseudofunctor.mapFunctor (normalize B) a b✝).obj { as := a✝¹ } =
(𝟭 (Discrete (Path a b✝))).obj { as := a✝¹ }
⊢ ((inclusionPath a c✝ ⋙ Pseudofunctor.mapFunctor (normalize B) a c✝).obj { as := cons a✝¹ a✝ }).as =
((𝟭 (Discrete (Path a c✝))).obj { as := cons a✝¹ a✝ }).as
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
#align category_theory.free_bicategory.normalize_aux_nil_comp CategoryTheory.FreeBicategory.normalizeAux_nil_comp
/-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/
def normalize (B : Type u) [Quiver.{v + 1} B] :
Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where
obj := id
map f := ⟨normalizeAux nil f⟩
map₂ η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η
mapId a := eqToIso <| Discrete.ext _ _ rfl
mapComp f g := eqToIso <| Discrete.ext _ _ <| normalizeAux_nil_comp f g
#align category_theory.free_bicategory.normalize CategoryTheory.FreeBicategory.normalize
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
erw [leftUnitor_inv_naturality_assoc, assoc]
congr 1
exact normalize_naturality nil η)
#align category_theory.free_bicategory.normalize_unit_iso CategoryTheory.FreeBicategory.normalizeUnitIso
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
· rfl
· ext1
|
injection ih with ih
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
· rfl
· ext1
|
Mathlib.CategoryTheory.Bicategory.Coherence.217_0.scNCB7gGNV3iY0Z
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
case mk.cons.as
B : Type u
inst✝ : Quiver B
a b b✝ c✝ : B
a✝¹ : Path a b✝
a✝ : b✝ ⟶ c✝
ih : normalizeAux nil ((inclusionPath a b✝).obj { as := a✝¹ }) = a✝¹
⊢ ((inclusionPath a c✝ ⋙ Pseudofunctor.mapFunctor (normalize B) a c✝).obj { as := cons a✝¹ a✝ }).as =
((𝟭 (Discrete (Path a c✝))).obj { as := cons a✝¹ a✝ }).as
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
#align category_theory.free_bicategory.normalize_aux_nil_comp CategoryTheory.FreeBicategory.normalizeAux_nil_comp
/-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/
def normalize (B : Type u) [Quiver.{v + 1} B] :
Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where
obj := id
map f := ⟨normalizeAux nil f⟩
map₂ η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η
mapId a := eqToIso <| Discrete.ext _ _ rfl
mapComp f g := eqToIso <| Discrete.ext _ _ <| normalizeAux_nil_comp f g
#align category_theory.free_bicategory.normalize CategoryTheory.FreeBicategory.normalize
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
erw [leftUnitor_inv_naturality_assoc, assoc]
congr 1
exact normalize_naturality nil η)
#align category_theory.free_bicategory.normalize_unit_iso CategoryTheory.FreeBicategory.normalizeUnitIso
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
· rfl
· ext1
injection ih with ih
|
conv =>
rhs
rw [← ih]
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
· rfl
· ext1
injection ih with ih
|
Mathlib.CategoryTheory.Bicategory.Coherence.217_0.scNCB7gGNV3iY0Z
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
B : Type u
inst✝ : Quiver B
a b b✝ c✝ : B
a✝¹ : Path a b✝
a✝ : b✝ ⟶ c✝
ih : normalizeAux nil ((inclusionPath a b✝).obj { as := a✝¹ }) = a✝¹
| ((inclusionPath a c✝ ⋙ Pseudofunctor.mapFunctor (normalize B) a c✝).obj { as := cons a✝¹ a✝ }).as =
((𝟭 (Discrete (Path a c✝))).obj { as := cons a✝¹ a✝ }).as
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
#align category_theory.free_bicategory.normalize_aux_nil_comp CategoryTheory.FreeBicategory.normalizeAux_nil_comp
/-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/
def normalize (B : Type u) [Quiver.{v + 1} B] :
Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where
obj := id
map f := ⟨normalizeAux nil f⟩
map₂ η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η
mapId a := eqToIso <| Discrete.ext _ _ rfl
mapComp f g := eqToIso <| Discrete.ext _ _ <| normalizeAux_nil_comp f g
#align category_theory.free_bicategory.normalize CategoryTheory.FreeBicategory.normalize
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
erw [leftUnitor_inv_naturality_assoc, assoc]
congr 1
exact normalize_naturality nil η)
#align category_theory.free_bicategory.normalize_unit_iso CategoryTheory.FreeBicategory.normalizeUnitIso
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
· rfl
· ext1
injection ih with ih
conv =>
|
rhs
rw [← ih]
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
· rfl
· ext1
injection ih with ih
conv =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.217_0.scNCB7gGNV3iY0Z
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
B : Type u
inst✝ : Quiver B
a b b✝ c✝ : B
a✝¹ : Path a b✝
a✝ : b✝ ⟶ c✝
ih : normalizeAux nil ((inclusionPath a b✝).obj { as := a✝¹ }) = a✝¹
| ((inclusionPath a c✝ ⋙ Pseudofunctor.mapFunctor (normalize B) a c✝).obj { as := cons a✝¹ a✝ }).as =
((𝟭 (Discrete (Path a c✝))).obj { as := cons a✝¹ a✝ }).as
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
#align category_theory.free_bicategory.normalize_aux_nil_comp CategoryTheory.FreeBicategory.normalizeAux_nil_comp
/-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/
def normalize (B : Type u) [Quiver.{v + 1} B] :
Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where
obj := id
map f := ⟨normalizeAux nil f⟩
map₂ η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η
mapId a := eqToIso <| Discrete.ext _ _ rfl
mapComp f g := eqToIso <| Discrete.ext _ _ <| normalizeAux_nil_comp f g
#align category_theory.free_bicategory.normalize CategoryTheory.FreeBicategory.normalize
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
erw [leftUnitor_inv_naturality_assoc, assoc]
congr 1
exact normalize_naturality nil η)
#align category_theory.free_bicategory.normalize_unit_iso CategoryTheory.FreeBicategory.normalizeUnitIso
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
· rfl
· ext1
injection ih with ih
conv =>
|
rhs
rw [← ih]
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
· rfl
· ext1
injection ih with ih
conv =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.217_0.scNCB7gGNV3iY0Z
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
B : Type u
inst✝ : Quiver B
a b b✝ c✝ : B
a✝¹ : Path a b✝
a✝ : b✝ ⟶ c✝
ih : normalizeAux nil ((inclusionPath a b✝).obj { as := a✝¹ }) = a✝¹
| ((inclusionPath a c✝ ⋙ Pseudofunctor.mapFunctor (normalize B) a c✝).obj { as := cons a✝¹ a✝ }).as =
((𝟭 (Discrete (Path a c✝))).obj { as := cons a✝¹ a✝ }).as
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
#align category_theory.free_bicategory.normalize_aux_nil_comp CategoryTheory.FreeBicategory.normalizeAux_nil_comp
/-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/
def normalize (B : Type u) [Quiver.{v + 1} B] :
Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where
obj := id
map f := ⟨normalizeAux nil f⟩
map₂ η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η
mapId a := eqToIso <| Discrete.ext _ _ rfl
mapComp f g := eqToIso <| Discrete.ext _ _ <| normalizeAux_nil_comp f g
#align category_theory.free_bicategory.normalize CategoryTheory.FreeBicategory.normalize
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
erw [leftUnitor_inv_naturality_assoc, assoc]
congr 1
exact normalize_naturality nil η)
#align category_theory.free_bicategory.normalize_unit_iso CategoryTheory.FreeBicategory.normalizeUnitIso
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
· rfl
· ext1
injection ih with ih
conv =>
|
rhs
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
· rfl
· ext1
injection ih with ih
conv =>
|
Mathlib.CategoryTheory.Bicategory.Coherence.217_0.scNCB7gGNV3iY0Z
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
B : Type u
inst✝ : Quiver B
a b b✝ c✝ : B
a✝¹ : Path a b✝
a✝ : b✝ ⟶ c✝
ih : normalizeAux nil ((inclusionPath a b✝).obj { as := a✝¹ }) = a✝¹
| ((𝟭 (Discrete (Path a c✝))).obj { as := cons a✝¹ a✝ }).as
|
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno, Junyan Xu
-/
import Mathlib.CategoryTheory.PathCategory
import Mathlib.CategoryTheory.Functor.FullyFaithful
import Mathlib.CategoryTheory.Bicategory.Free
import Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
#align_import category_theory.bicategory.coherence from "leanprover-community/mathlib"@"f187f1074fa1857c94589cc653c786cadc4c35ff"
/-!
# The coherence theorem for bicategories
In this file, we prove the coherence theorem for bicategories, stated in the following form: the
free bicategory over any quiver is locally thin.
The proof is almost the same as the proof of the coherence theorem for monoidal categories that
has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin
and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the
free bicategory on the same quiver. A normalization procedure is then described by
`normalize : Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B))`, which is a
pseudofunctor from the free bicategory to the locally discrete bicategory on the path category.
It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence
theorem follows immediately from this fact.
## Main statements
* `locally_thin` : the free bicategory is locally thin, that is, there is at most one
2-morphism between two fixed 1-morphisms.
## References
* [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a
proof of normalization for monoids][beylin1996]
-/
open Quiver (Path)
open Quiver.Path
namespace CategoryTheory
open Bicategory Category
universe v u
namespace FreeBicategory
variable {B : Type u} [Quiver.{v + 1} B]
/-- Auxiliary definition for `inclusionPath`. -/
@[simp]
def inclusionPathAux {a : B} : ∀ {b : B}, Path a b → Hom a b
| _, nil => Hom.id a
| _, cons p f => (inclusionPathAux p).comp (Hom.of f)
#align category_theory.free_bicategory.inclusion_path_aux CategoryTheory.FreeBicategory.inclusionPathAux
/- Porting note: Since the following instance was removed when porting
`CategoryTheory.Bicategory.Free`, we add it locally here. -/
/-- Category structure on `Hom a b`. In this file, we will use `Hom a b` for `a b : B`
(precisely, `FreeBicategory.Hom a b`) instead of the definitionally equal expression
`a ⟶ b` for `a b : FreeBicategory B`. The main reason is that we have to annoyingly write
`@Quiver.Hom (FreeBicategory B) _ a b` to get the latter expression when given `a b : B`. -/
local instance homCategory' (a b : B) : Category (Hom a b) :=
homCategory a b
/-- The discrete category on the paths includes into the category of 1-morphisms in the free
bicategory.
-/
def inclusionPath (a b : B) : Discrete (Path.{v + 1} a b) ⥤ Hom a b :=
Discrete.functor inclusionPathAux
#align category_theory.free_bicategory.inclusion_path CategoryTheory.FreeBicategory.inclusionPath
/-- The inclusion from the locally discrete bicategory on the path category into the free bicategory
as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem.
See `inclusion`.
-/
def preinclusion (B : Type u) [Quiver.{v + 1} B] :
PrelaxFunctor (LocallyDiscrete (Paths B)) (FreeBicategory B) where
obj := id
map := @fun a b => (@inclusionPath B _ a b).obj
map₂ η := (inclusionPath _ _).map η
#align category_theory.free_bicategory.preinclusion CategoryTheory.FreeBicategory.preinclusion
@[simp]
theorem preinclusion_obj (a : B) : (preinclusion B).obj a = a :=
rfl
#align category_theory.free_bicategory.preinclusion_obj CategoryTheory.FreeBicategory.preinclusion_obj
@[simp]
theorem preinclusion_map₂ {a b : B} (f g : Discrete (Path.{v + 1} a b)) (η : f ⟶ g) :
(preinclusion B).map₂ η = eqToHom (congr_arg _ (Discrete.ext _ _ (Discrete.eq_of_hom η))) := by
rcases η with ⟨⟨⟩⟩
cases Discrete.ext _ _ (by assumption)
convert (inclusionPath a b).map_id _
#align category_theory.free_bicategory.preinclusion_map₂ CategoryTheory.FreeBicategory.preinclusion_map₂
/-- The normalization of the composition of `p : Path a b` and `f : Hom b c`.
`p` will eventually be taken to be `nil` and we then get the normalization
of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of
`normalizeIso` and the `whisker_left` case of `normalizeAux_congr` and `normalize_naturality`.
-/
@[simp]
def normalizeAux {a : B} : ∀ {b c : B}, Path a b → Hom b c → Path a c
| _, _, p, Hom.of f => p.cons f
| _, _, p, Hom.id _ => p
| _, _, p, Hom.comp f g => normalizeAux (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_aux CategoryTheory.FreeBicategory.normalizeAux
/-
We may define
```
def normalizeAux' : ∀ {a b : B}, Hom a b → Path a b
| _, _, (Hom.of f) => f.toPath
| _, _, (Hom.id b) => nil
| _, _, (Hom.comp f g) => (normalizeAux' f).comp (normalizeAux' g)
```
and define `normalizeAux p f` to be `p.comp (normalizeAux' f)` and this will be
equal to the above definition, but the equality proof requires `comp_assoc`, and it
thus lacks the correct definitional property to make the definition of `normalizeIso`
typecheck.
```
example {a b c : B} (p : Path a b) (f : Hom b c) :
normalizeAux p f = p.comp (normalizeAux' f) := by
induction f; rfl; rfl;
case comp _ _ _ _ _ ihf ihg => rw [normalizeAux, ihf, ihg]; apply comp_assoc
```
-/
/-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the
fully-normalized 1-morphism.
-/
@[simp]
def normalizeIso {a : B} :
∀ {b c : B} (p : Path a b) (f : Hom b c),
(preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalizeAux p f⟩
| _, _, _, Hom.of _ => Iso.refl _
| _, _, _, Hom.id b => ρ_ _
| _, _, p, Hom.comp f g =>
(α_ _ _ _).symm ≪≫ whiskerRightIso (normalizeIso p f) g ≪≫ normalizeIso (normalizeAux p f) g
#align category_theory.free_bicategory.normalize_iso CategoryTheory.FreeBicategory.normalizeIso
/-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality
`normalizeAux p f = normalizeAux p g`.
-/
theorem normalizeAux_congr {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
normalizeAux p f = normalizeAux p g := by
rcases η with ⟨η'⟩
apply @congr_fun _ _ fun p => normalizeAux p f
clear p η
induction η' with
| vcomp _ _ _ _ => apply Eq.trans <;> assumption
| whisker_left _ _ ih => funext; apply congr_fun ih
| whisker_right _ _ ih => funext; apply congr_arg₂ _ (congr_fun ih _) rfl
| _ => funext; rfl
#align category_theory.free_bicategory.normalize_aux_congr CategoryTheory.FreeBicategory.normalizeAux_congr
/-- The 2-isomorphism `normalizeIso p f` is natural in `f`. -/
theorem normalize_naturality {a b c : B} (p : Path a b) {f g : Hom b c} (η : f ⟶ g) :
(preinclusion B).map ⟨p⟩ ◁ η ≫ (normalizeIso p g).hom =
(normalizeIso p f).hom ≫
(preinclusion B).map₂ (eqToHom (Discrete.ext _ _ (normalizeAux_congr p η))) := by
rcases η with ⟨η'⟩; clear η;
induction η' with
| id => simp
| vcomp η θ ihf ihg =>
simp only [mk_vcomp, Bicategory.whiskerLeft_comp]
slice_lhs 2 3 => rw [ihg]
slice_lhs 1 2 => rw [ihf]
simp
-- p ≠ nil required! See the docstring of `normalizeAux`.
| whisker_left _ _ ih =>
dsimp
rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih]
simp
| whisker_right h η' ih =>
dsimp
rw [associator_inv_naturality_middle_assoc, ← comp_whiskerRight_assoc, ih, comp_whiskerRight]
have := dcongr_arg (fun x => (normalizeIso x h).hom) (normalizeAux_congr p (Quot.mk _ η'))
dsimp at this; simp [this]
| _ => simp
#align category_theory.free_bicategory.normalize_naturality CategoryTheory.FreeBicategory.normalize_naturality
-- Porting note: the left-hand side is not in simp-normal form.
-- @[simp]
theorem normalizeAux_nil_comp {a b c : B} (f : Hom a b) (g : Hom b c) :
normalizeAux nil (f.comp g) = (normalizeAux nil f).comp (normalizeAux nil g) := by
induction g generalizing a with
| id => rfl
| of => rfl
| comp g _ ihf ihg => erw [ihg (f.comp g), ihf f, ihg g, comp_assoc]
#align category_theory.free_bicategory.normalize_aux_nil_comp CategoryTheory.FreeBicategory.normalizeAux_nil_comp
/-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/
def normalize (B : Type u) [Quiver.{v + 1} B] :
Pseudofunctor (FreeBicategory B) (LocallyDiscrete (Paths B)) where
obj := id
map f := ⟨normalizeAux nil f⟩
map₂ η := eqToHom <| Discrete.ext _ _ <| normalizeAux_congr nil η
mapId a := eqToIso <| Discrete.ext _ _ rfl
mapComp f g := eqToIso <| Discrete.ext _ _ <| normalizeAux_nil_comp f g
#align category_theory.free_bicategory.normalize CategoryTheory.FreeBicategory.normalize
/-- Auxiliary definition for `normalizeEquiv`. -/
def normalizeUnitIso (a b : FreeBicategory B) :
𝟭 (a ⟶ b) ≅ (normalize B).mapFunctor a b ⋙ @inclusionPath B _ a b :=
NatIso.ofComponents (fun f => (λ_ f).symm ≪≫ normalizeIso nil f)
(by
intro f g η
erw [leftUnitor_inv_naturality_assoc, assoc]
congr 1
exact normalize_naturality nil η)
#align category_theory.free_bicategory.normalize_unit_iso CategoryTheory.FreeBicategory.normalizeUnitIso
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
· rfl
· ext1
injection ih with ih
conv =>
rhs
|
rw [← ih]
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b) :=
Equivalence.mk ((normalize _).mapFunctor a b) (inclusionPath a b) (normalizeUnitIso a b)
(Discrete.natIso fun f => eqToIso (by
induction' f with f
induction' f with _ _ _ _ ih
-- Porting note: `tidy` closes the goal in mathlib3 but `aesop` doesn't here.
· rfl
· ext1
injection ih with ih
conv =>
rhs
|
Mathlib.CategoryTheory.Bicategory.Coherence.217_0.scNCB7gGNV3iY0Z
|
/-- Normalization as an equivalence of categories. -/
def normalizeEquiv (a b : B) : Hom a b ≌ Discrete (Path.{v + 1} a b)
|
Mathlib_CategoryTheory_Bicategory_Coherence
|
R : Type u_1
M : Type u_2
P : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid P
inst✝¹ : Module R M
inst✝ : Module R P
N : Submodule R M
⊢ IsNoetherian R ↥N ↔ ∀ s ≤ N, Submodule.FG s
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
|
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
|
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
|
Mathlib.RingTheory.Noetherian.88_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid P
inst✝¹ : Module R M
inst✝ : Module R P
N : Submodule R M
h : ∀ s ≤ N, Submodule.FG s
s : Submodule R ↥N
⊢ Submodule.FG s
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
|
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
|
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
|
Mathlib.RingTheory.Noetherian.88_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid P
inst✝¹ : Module R M
inst✝ : Module R P
N : Submodule R M
h : ∀ s ≤ N, Submodule.FG s
s : Submodule R ↥N
f : ↥(Submodule.map (Submodule.subtype N) s) ≃ₗ[R] ↥s
⊢ Submodule.FG s
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
|
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
|
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
|
Mathlib.RingTheory.Noetherian.88_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid P
inst✝¹ : Module R M
inst✝ : Module R P
N : Submodule R M
h : ∀ s ≤ N, Submodule.FG s
s : Submodule R ↥N
f : ↥(Submodule.map (Submodule.subtype N) s) ≃ₗ[R] ↥s
h₁ : Submodule.FG (Submodule.map (Submodule.subtype N) s)
⊢ Submodule.FG s
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
|
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
|
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
|
Mathlib.RingTheory.Noetherian.88_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid P
inst✝¹ : Module R M
inst✝ : Module R P
N : Submodule R M
h : ∀ s ≤ N, Submodule.FG s
s : Submodule R ↥N
f : ↥(Submodule.map (Submodule.subtype N) s) ≃ₗ[R] ↥s
h₁ : Submodule.FG (Submodule.map (Submodule.subtype N) s)
⊢ Submodule.map f ⊤ = ⊤
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by
|
simp
|
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by
|
Mathlib.RingTheory.Noetherian.88_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid P
inst✝¹ : Module R M
inst✝ : Module R P
N : Submodule R M
h : ∀ s ≤ N, Submodule.FG s
s : Submodule R ↥N
f : ↥(Submodule.map (Submodule.subtype N) s) ≃ₗ[R] ↥s
h₁ : Submodule.FG (Submodule.map (Submodule.subtype N) s)
h₂ : Submodule.map f ⊤ = ⊤
⊢ Submodule.FG s
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
|
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
|
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
|
Mathlib.RingTheory.Noetherian.88_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid P
inst✝¹ : Module R M
inst✝ : Module R P
N : Submodule R M
h : ∀ s ≤ N, Submodule.FG s
s : Submodule R ↥N
f : ↥(Submodule.map (Submodule.subtype N) s) ≃ₗ[R] ↥s
h₁ : Submodule.FG (Submodule.map (Submodule.subtype N) s)
h₂ : Submodule.map f ⊤ = ⊤
h₃ : Submodule.FG (Submodule.map ↑f ⊤)
⊢ Submodule.FG s
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
|
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
|
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
|
Mathlib.RingTheory.Noetherian.88_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid P
inst✝¹ : Module R M
inst✝ : Module R P
⊢ IsNoetherian R ↥⊤ ↔ IsNoetherian R M
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
|
constructor
|
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
|
Mathlib.RingTheory.Noetherian.135_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M
|
Mathlib_RingTheory_Noetherian
|
case mp
R : Type u_1
M : Type u_2
P : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid P
inst✝¹ : Module R M
inst✝ : Module R P
⊢ IsNoetherian R ↥⊤ → IsNoetherian R M
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;>
|
intro h
|
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;>
|
Mathlib.RingTheory.Noetherian.135_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M
|
Mathlib_RingTheory_Noetherian
|
case mpr
R : Type u_1
M : Type u_2
P : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid P
inst✝¹ : Module R M
inst✝ : Module R P
⊢ IsNoetherian R M → IsNoetherian R ↥⊤
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;>
|
intro h
|
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;>
|
Mathlib.RingTheory.Noetherian.135_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M
|
Mathlib_RingTheory_Noetherian
|
case mp
R : Type u_1
M : Type u_2
P : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid P
inst✝¹ : Module R M
inst✝ : Module R P
h : IsNoetherian R ↥⊤
⊢ IsNoetherian R M
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
·
|
exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
|
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
·
|
Mathlib.RingTheory.Noetherian.135_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M
|
Mathlib_RingTheory_Noetherian
|
case mpr
R : Type u_1
M : Type u_2
P : Type u_3
inst✝⁴ : Semiring R
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid P
inst✝¹ : Module R M
inst✝ : Module R P
h : IsNoetherian R M
⊢ IsNoetherian R ↥⊤
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
·
|
exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
|
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
·
|
Mathlib.RingTheory.Noetherian.135_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M
|
Mathlib_RingTheory_Noetherian
|
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
⊢ IsNoetherian R ((i : ι) → M i)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
|
cases nonempty_fintype ι
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case intro
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
⊢ IsNoetherian R ((i : ι) → M i)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
|
haveI := Classical.decEq ι
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case intro
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
⊢ IsNoetherian R ((i : ι) → M i)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
|
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case intro
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
on_finset : ∀ (s : Finset ι), IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
⊢ IsNoetherian R ((i : ι) → M i)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
·
|
let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
·
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case intro
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
on_finset : ∀ (s : Finset ι), IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
coe_e : { x // x ∈ Finset.univ } ≃ ι := Equiv.subtypeUnivEquiv (_ : ∀ (x : ι), x ∈ Finset.univ)
⊢ IsNoetherian R ((i : ι) → M i)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
|
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case intro
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this✝ : DecidableEq ι
on_finset : ∀ (s : Finset ι), IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
coe_e : { x // x ∈ Finset.univ } ≃ ι := Equiv.subtypeUnivEquiv (_ : ∀ (x : ι), x ∈ Finset.univ)
this : IsNoetherian R ((i : { x // x ∈ Finset.univ }) → M (coe_e i)) := on_finset Finset.univ
⊢ IsNoetherian R ((i : ι) → M i)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
|
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
⊢ ∀ (s : Finset ι), IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
|
intro s
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
s : Finset ι
⊢ IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
|
induction' s using Finset.induction with a s has ih
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.empty
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
⊢ IsNoetherian R ((i : { x // x ∈ ∅ }) → M ↑i)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
·
|
exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
·
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
s : Submodule R ((i : { x // x ∈ ∅ }) → M ↑i)
⊢ Submodule.FG s
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
|
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
s : Submodule R ((i : { x // x ∈ ∅ }) → M ↑i)
⊢ s = ⊥
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by
|
simp only [eq_iff_true_of_subsingleton]
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this✝ : DecidableEq ι
s : Submodule R ((i : { x // x ∈ ∅ }) → M ↑i)
this : s = ⊥
⊢ Submodule.FG s
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
|
rw [this]
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.