state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this✝ : DecidableEq ι s : Submodule R ((i : { x // x ∈ ∅ }) → M ↑i) this : s = ⊥ ⊢ Submodule.FG ⊥
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this]
apply Submodule.fg_bot
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this]
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) ⊢ IsNoetherian R ((i : { x // x ∈ insert a s }) → M ↑i)
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩
refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) ⊢ (M a × ((i : { x // x ∈ s }) → M ↑i)) ≃ₗ[R] (i : { x // x ∈ insert a s }) → M ↑i
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ }
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_1 R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) ⊢ ∀ (x y : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (x + y) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) x + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) y
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } ·
intro f g
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } ·
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_1 R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f g : M a × ((i : { x // x ∈ s }) → M ↑i) ⊢ (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g
ext i
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_1.h R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f g : M a × ((i : { x // x ∈ s }) → M ↑i) i : { x // x ∈ insert a s } ⊢ (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) i = ((fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) i
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i
unfold Or.by_cases
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_1.h R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f g : M a × ((i : { x // x ∈ s }) → M ↑i) i : { x // x ∈ insert a s } ⊢ (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) (f + g) i = ((fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) f + (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) g) i
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases
cases' i with i hi
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_1.h.mk R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f g : M a × ((i : { x // x ∈ s }) → M ↑i) i : ι hi : i ∈ insert a s ⊢ (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) (f + g) { val := i, property := hi } = ((fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) f + (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) g) { val := i, property := hi }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_1.h.mk.inl R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι s : Finset ι ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) i : ι has : i ∉ s f g : M i × ((i : { x // x ∈ s }) → M ↑i) hi : i ∈ insert i s ⊢ (fun f i_1 => if hp : ↑i_1 = i then (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (_ : ↑i_1 ∈ s)) (f + g) { val := i, property := hi } = ((fun f i_1 => if hp : ↑i_1 = i then (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (_ : ↑i_1 ∈ s)) f + (fun f i_1 => if hp : ↑i_1 = i then (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (_ : ↑i_1 ∈ s)) g) { val := i, property := hi }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) ·
change _ = _ + _
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) ·
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_1.h.mk.inl R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι s : Finset ι ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) i : ι has : i ∉ s f g : M i × ((i : { x // x ∈ s }) → M ↑i) hi : i ∈ insert i s ⊢ (fun f i_1 => if hp : ↑i_1 = i then (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (_ : ↑i_1 ∈ s)) (f + g) { val := i, property := hi } = (fun f i_1 => if hp : ↑i_1 = i then (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (_ : ↑i_1 ∈ s)) f { val := i, property := hi } + (fun f i_1 => if hp : ↑i_1 = i then (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (_ : ↑i_1 ∈ s)) g { val := i, property := hi }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _
simp only [dif_pos]
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_1.h.mk.inl R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι s : Finset ι ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) i : ι has : i ∉ s f g : M i × ((i : { x // x ∈ s }) → M ↑i) hi : i ∈ insert i s ⊢ (f + g).1 = f.1 + g.1
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos]
rfl
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos]
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_1.h.mk.inr R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f g : M a × ((i : { x // x ∈ s }) → M ↑i) i : ι hi : i ∈ insert a s h : i ∈ s ⊢ (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) (f + g) { val := i, property := hi } = ((fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) f + (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) g) { val := i, property := hi }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl ·
change _ = _ + _
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl ·
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_1.h.mk.inr R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f g : M a × ((i : { x // x ∈ s }) → M ↑i) i : ι hi : i ∈ insert a s h : i ∈ s ⊢ (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) (f + g) { val := i, property := hi } = (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) f { val := i, property := hi } + (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) g { val := i, property := hi }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _
have : ¬i = a := by rintro rfl exact has h
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f g : M a × ((i : { x // x ∈ s }) → M ↑i) i : ι hi : i ∈ insert a s h : i ∈ s ⊢ ¬i = a
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by
rintro rfl
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι s : Finset ι ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) i : ι h : i ∈ s has : i ∉ s f g : M i × ((i : { x // x ∈ s }) → M ↑i) hi : i ∈ insert i s ⊢ False
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl
exact has h
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_1.h.mk.inr R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this✝ : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f g : M a × ((i : { x // x ∈ s }) → M ↑i) i : ι hi : i ∈ insert a s h : i ∈ s this : ¬i = a ⊢ (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) (f + g) { val := i, property := hi } = (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) f { val := i, property := hi } + (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) g { val := i, property := hi }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h
simp only [dif_neg this, dif_pos h]
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_1.h.mk.inr R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this✝ : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f g : M a × ((i : { x // x ∈ s }) → M ↑i) i : ι hi : i ∈ insert a s h : i ∈ s this : ¬i = a ⊢ (f + g).2 { val := i, property := (_ : i ∈ s) } = f.2 { val := i, property := (_ : i ∈ s) } + g.2 { val := i, property := (_ : i ∈ s) }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h]
rfl
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h]
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_2 R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) ⊢ ∀ (r : R) (x : M a × ((i : { x // x ∈ s }) → M ↑i)), AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } (r • x) = (RingHom.id R) r • AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } x
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl ·
intro c f
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl ·
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_2 R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) c : R f : M a × ((i : { x // x ∈ s }) → M ↑i) ⊢ AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } (c • f) = (RingHom.id R) c • AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } f
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f
ext i
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_2.h R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) c : R f : M a × ((i : { x // x ∈ s }) → M ↑i) i : { x // x ∈ insert a s } ⊢ AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } (c • f) i = ((RingHom.id R) c • AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } f) i
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i
unfold Or.by_cases
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_2.h R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) c : R f : M a × ((i : { x // x ∈ s }) → M ↑i) i : { x // x ∈ insert a s } ⊢ AddHom.toFun { toFun := fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s), map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) (f + g) = (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) f + (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) g) } (c • f) i = ((RingHom.id R) c • AddHom.toFun { toFun := fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s), map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) (f + g) = (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) f + (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) g) } f) i
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases
cases' i with i hi
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_2.h.mk R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) c : R f : M a × ((i : { x // x ∈ s }) → M ↑i) i : ι hi : i ∈ insert a s ⊢ AddHom.toFun { toFun := fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s), map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) (f + g) = (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) f + (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) g) } (c • f) { val := i, property := hi } = ((RingHom.id R) c • AddHom.toFun { toFun := fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s), map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) (f + g) = (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) f + (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) g) } f) { val := i, property := hi }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_2.h.mk.inl R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι s : Finset ι ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) c : R i : ι has : i ∉ s f : M i × ((i : { x // x ∈ s }) → M ↑i) hi : i ∈ insert i s ⊢ AddHom.toFun { toFun := fun f i_1 => if hp : ↑i_1 = i then (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (_ : ↑i_1 ∈ s), map_add' := (_ : ∀ (f g : M i × ((i : { x // x ∈ s }) → M ↑i)), (fun f i_1 => if hp : ↑i_1 = i then (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (_ : ↑i_1 ∈ s)) (f + g) = (fun f i_1 => if hp : ↑i_1 = i then (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (_ : ↑i_1 ∈ s)) f + (fun f i_1 => if hp : ↑i_1 = i then (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (_ : ↑i_1 ∈ s)) g) } (c • f) { val := i, property := hi } = ((RingHom.id R) c • AddHom.toFun { toFun := fun f i_1 => if hp : ↑i_1 = i then (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (_ : ↑i_1 ∈ s), map_add' := (_ : ∀ (f g : M i × ((i : { x // x ∈ s }) → M ↑i)), (fun f i_1 => if hp : ↑i_1 = i then (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (_ : ↑i_1 ∈ s)) (f + g) = (fun f i_1 => if hp : ↑i_1 = i then (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (_ : ↑i_1 ∈ s)) f + (fun f i_1 => if hp : ↑i_1 = i then (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (_ : ↑i_1 ∈ s)) g) } f) { val := i, property := hi }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) ·
dsimp
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) ·
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_2.h.mk.inl R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι s : Finset ι ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) c : R i : ι has : i ∉ s f : M i × ((i : { x // x ∈ s }) → M ↑i) hi : i ∈ insert i s ⊢ (if hp : i = i then c • f.1 else c • f.2 { val := i, property := (_ : i ∈ s) }) = c • if hp : i = i then f.1 else f.2 { val := i, property := (_ : i ∈ s) }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp
simp only [dif_pos]
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_2.h.mk.inr R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) c : R f : M a × ((i : { x // x ∈ s }) → M ↑i) i : ι hi : i ∈ insert a s h : i ∈ s ⊢ AddHom.toFun { toFun := fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s), map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) (f + g) = (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) f + (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) g) } (c • f) { val := i, property := hi } = ((RingHom.id R) c • AddHom.toFun { toFun := fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s), map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) (f + g) = (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) f + (fun f i => if hp : ↑i = a then (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) hp else (fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (_ : ↑i ∈ s)) g) } f) { val := i, property := hi }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] ·
dsimp
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] ·
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_2.h.mk.inr R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) c : R f : M a × ((i : { x // x ∈ s }) → M ↑i) i : ι hi : i ∈ insert a s h : i ∈ s ⊢ (if hp : i = a then (_ : a = i) ▸ (c • f.1) else c • f.2 { val := i, property := (_ : i ∈ s) }) = c • if hp : i = a then (_ : a = i) ▸ f.1 else f.2 { val := i, property := (_ : i ∈ s) }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp
have : ¬i = a := by rintro rfl exact has h
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) c : R f : M a × ((i : { x // x ∈ s }) → M ↑i) i : ι hi : i ∈ insert a s h : i ∈ s ⊢ ¬i = a
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by
rintro rfl
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι s : Finset ι ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) c : R i : ι h : i ∈ s has : i ∉ s f : M i × ((i : { x // x ∈ s }) → M ↑i) hi : i ∈ insert i s ⊢ False
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl
exact has h
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_2.h.mk.inr R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this✝ : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) c : R f : M a × ((i : { x // x ∈ s }) → M ↑i) i : ι hi : i ∈ insert a s h : i ∈ s this : ¬i = a ⊢ (if hp : i = a then (_ : a = i) ▸ (c • f.1) else c • f.2 { val := i, property := (_ : i ∈ s) }) = c • if hp : i = a then (_ : a = i) ▸ f.1 else f.2 { val := i, property := (_ : i ∈ s) }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h
simp only [dif_neg this, dif_pos h]
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_3 R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) ⊢ Function.LeftInverse (fun f => (f { val := a, property := (_ : a ∈ insert a s) }, fun i => f { val := ↑i, property := (_ : ↑i ∈ insert a s) })) { toAddHom := { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) }, map_smul' := (_ : ∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)), AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } (c • f) = (RingHom.id R) c • AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } f) }.toAddHom.toFun
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] ·
intro f
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] ·
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_3 R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f : M a × ((i : { x // x ∈ s }) → M ↑i) ⊢ (fun f => (f { val := a, property := (_ : a ∈ insert a s) }, fun i => f { val := ↑i, property := (_ : ↑i ∈ insert a s) })) (AddHom.toFun { toAddHom := { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) }, map_smul' := (_ : ∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)), AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } (c • f) = (RingHom.id R) c • AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } f) }.toAddHom f) = f
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f
apply Prod.ext
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_3.a R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f : M a × ((i : { x // x ∈ s }) → M ↑i) ⊢ ((fun f => (f { val := a, property := (_ : a ∈ insert a s) }, fun i => f { val := ↑i, property := (_ : ↑i ∈ insert a s) })) (AddHom.toFun { toAddHom := { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) }, map_smul' := (_ : ∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)), AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } (c • f) = (RingHom.id R) c • AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } f) }.toAddHom f)).1 = f.1
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext ·
simp only [Or.by_cases, dif_pos]
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext ·
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_3.a R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f : M a × ((i : { x // x ∈ s }) → M ↑i) ⊢ ((fun f => (f { val := a, property := (_ : a ∈ insert a s) }, fun i => f { val := ↑i, property := (_ : ↑i ∈ insert a s) })) (AddHom.toFun { toAddHom := { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) }, map_smul' := (_ : ∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)), AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } (c • f) = (RingHom.id R) c • AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } f) }.toAddHom f)).2 = f.2
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] ·
ext ⟨i, his⟩
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] ·
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_3.a.h.mk R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f : M a × ((i : { x // x ∈ s }) → M ↑i) i : ι his : i ∈ s ⊢ ((fun f => (f { val := a, property := (_ : a ∈ insert a s) }, fun i => f { val := ↑i, property := (_ : ↑i ∈ insert a s) })) (AddHom.toFun { toAddHom := { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) }, map_smul' := (_ : ∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)), AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } (c • f) = (RingHom.id R) c • AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } f) }.toAddHom f)).2 { val := i, property := his } = f.2 { val := i, property := his }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩
have : ¬i = a := by rintro rfl exact has his
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f : M a × ((i : { x // x ∈ s }) → M ↑i) i : ι his : i ∈ s ⊢ ¬i = a
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by
rintro rfl
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι s : Finset ι ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) i : ι his : i ∈ s has : i ∉ s f : M i × ((i : { x // x ∈ s }) → M ↑i) ⊢ False
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl
exact has his
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_3.a.h.mk R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this✝ : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f : M a × ((i : { x // x ∈ s }) → M ↑i) i : ι his : i ∈ s this : ¬i = a ⊢ ((fun f => (f { val := a, property := (_ : a ∈ insert a s) }, fun i => f { val := ↑i, property := (_ : ↑i ∈ insert a s) })) (AddHom.toFun { toAddHom := { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) }, map_smul' := (_ : ∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)), AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } (c • f) = (RingHom.id R) c • AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } f) }.toAddHom f)).2 { val := i, property := his } = f.2 { val := i, property := his }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_4 R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) ⊢ Function.RightInverse (fun f => (f { val := a, property := (_ : a ∈ insert a s) }, fun i => f { val := ↑i, property := (_ : ↑i ∈ insert a s) })) { toAddHom := { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) }, map_smul' := (_ : ∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)), AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } (c • f) = (RingHom.id R) c • AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } f) }.toAddHom.toFun
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] ·
intro f
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] ·
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_4 R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f : (i : { x // x ∈ insert a s }) → M ↑i ⊢ AddHom.toFun { toAddHom := { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) }, map_smul' := (_ : ∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)), AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } (c • f) = (RingHom.id R) c • AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } f) }.toAddHom ((fun f => (f { val := a, property := (_ : a ∈ insert a s) }, fun i => f { val := ↑i, property := (_ : ↑i ∈ insert a s) })) f) = f
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f
ext ⟨i, hi⟩
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_4.h.mk R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f : (i : { x // x ∈ insert a s }) → M ↑i i : ι hi : i ∈ insert a s ⊢ AddHom.toFun { toAddHom := { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) }, map_smul' := (_ : ∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)), AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } (c • f) = (RingHom.id R) c • AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } f) }.toAddHom ((fun f => (f { val := a, property := (_ : a ∈ insert a s) }, fun i => f { val := ↑i, property := (_ : ↑i ∈ insert a s) })) f) { val := i, property := hi } = f { val := i, property := hi }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_4.h.mk.inl R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι s : Finset ι ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) i : ι has : i ∉ s f : (i_1 : { x // x ∈ insert i s }) → M ↑i_1 hi : i ∈ insert i s ⊢ AddHom.toFun { toAddHom := { toFun := fun f i_1 => Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s) (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this, map_add' := (_ : ∀ (f g : M i × ((i : { x // x ∈ s }) → M ↑i)), (fun f i_1 => Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s) (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (f + g) = (fun f i_1 => Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s) (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) f + (fun f i_1 => Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s) (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) g) }, map_smul' := (_ : ∀ (c : R) (f : M i × ((i : { x // x ∈ s }) → M ↑i)), AddHom.toFun { toFun := fun f i_1 => Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s) (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this, map_add' := (_ : ∀ (f g : M i × ((i : { x // x ∈ s }) → M ↑i)), (fun f i_1 => Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s) (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (f + g) = (fun f i_1 => Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s) (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) f + (fun f i_1 => Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s) (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) g) } (c • f) = (RingHom.id R) c • AddHom.toFun { toFun := fun f i_1 => Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s) (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this, map_add' := (_ : ∀ (f g : M i × ((i : { x // x ∈ s }) → M ↑i)), (fun f i_1 => Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s) (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) (f + g) = (fun f i_1 => Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s) (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) f + (fun f i_1 => Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s) (fun h => let_fun this := Eq.recOn (_ : i = ↑i_1) f.1; this) fun h => let_fun this := f.2 { val := ↑i_1, property := h }; this) g) } f) }.toAddHom ((fun f => (f { val := i, property := (_ : i ∈ insert i s) }, fun i_1 => f { val := ↑i_1, property := (_ : ↑i_1 ∈ insert i s) })) f) { val := i, property := hi } = f { val := i, property := hi }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) ·
simp only [Or.by_cases, dif_pos]
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) ·
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_4.h.mk.inr R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f : (i : { x // x ∈ insert a s }) → M ↑i i : ι hi : i ∈ insert a s h : i ∈ s ⊢ AddHom.toFun { toAddHom := { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) }, map_smul' := (_ : ∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)), AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } (c • f) = (RingHom.id R) c • AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } f) }.toAddHom ((fun f => (f { val := a, property := (_ : a ∈ insert a s) }, fun i => f { val := ↑i, property := (_ : ↑i ∈ insert a s) })) f) { val := i, property := hi } = f { val := i, property := hi }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] ·
have : ¬i = a := by rintro rfl exact has h
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] ·
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f : (i : { x // x ∈ insert a s }) → M ↑i i : ι hi : i ∈ insert a s h : i ∈ s ⊢ ¬i = a
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by
rintro rfl
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this : DecidableEq ι s : Finset ι ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) i : ι h : i ∈ s has : i ∉ s f : (i_1 : { x // x ∈ insert i s }) → M ↑i_1 hi : i ∈ insert i s ⊢ False
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl
exact has h
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
case on_finset.insert.refine_4.h.mk.inr R✝ : Type u_1 M✝ : Type u_2 P : Type u_3 inst✝⁹ : Ring R✝ inst✝⁸ : AddCommGroup M✝ inst✝⁷ : AddCommGroup P inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ P R : Type u_4 ι : Type u_5 M : ι → Type u_6 inst✝⁴ : Ring R inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : Finite ι inst✝ : ∀ (i : ι), IsNoetherian R (M i) val✝ : Fintype ι this✝ : DecidableEq ι a : ι s : Finset ι has : a ∉ s ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i) f : (i : { x // x ∈ insert a s }) → M ↑i i : ι hi : i ∈ insert a s h : i ∈ s this : ¬i = a ⊢ AddHom.toFun { toAddHom := { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) }, map_smul' := (_ : ∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)), AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } (c • f) = (RingHom.id R) c • AddHom.toFun { toFun := fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this, map_add' := (_ : ∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)), (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) (f + g) = (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) f + (fun f i => Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s) (fun h => let_fun this := Eq.recOn (_ : a = ↑i) f.1; this) fun h => let_fun this := f.2 { val := ↑i, property := h }; this) g) } f) }.toAddHom ((fun f => (f { val := a, property := (_ : a ∈ insert a s) }, fun i => f { val := ↑i, property := (_ : ↑i ∈ insert a s) })) f) { val := i, property := hi } = f { val := i, property := hi }
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : Module R M inst✝² : Module R N inst✝¹ : IsNoetherian R M inst✝ : Module.Finite R N ⊢ IsNoetherian R (N →ₗ[R] M)
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
Mathlib.RingTheory.Noetherian.296_0.5UPGNrmhtW81IjE
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M)
Mathlib_RingTheory_Noetherian
case intro.intro R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : Module R M inst✝² : Module R N inst✝¹ : IsNoetherian R M inst✝ : Module.Finite R N n : ℕ f : (Fin n → R) →ₗ[R] N hf : Function.Surjective ⇑f ⊢ IsNoetherian R (N →ₗ[R] M)
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
Mathlib.RingTheory.Noetherian.296_0.5UPGNrmhtW81IjE
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M)
Mathlib_RingTheory_Noetherian
case intro.intro R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : Module R M inst✝² : Module R N inst✝¹ : IsNoetherian R M inst✝ : Module.Finite R N n : ℕ f : (Fin n → R) →ₗ[R] N hf : Function.Surjective ⇑f g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.flip (LinearMap.llcomp R (Fin n → R) N M)) f ⊢ IsNoetherian R (N →ₗ[R] M)
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
Mathlib.RingTheory.Noetherian.296_0.5UPGNrmhtW81IjE
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M)
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P ⊢ IsNoetherian R M ↔ WellFounded fun x x_1 => x > x_1
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
Mathlib.RingTheory.Noetherian.312_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop)
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P this : (WellFounded fun x x_1 => x > x_1) ↔ ∀ (k : Submodule R M), CompleteLattice.IsCompactElement k ⊢ IsNoetherian R M ↔ WellFounded fun x x_1 => x > x_1
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable
Mathlib.RingTheory.Noetherian.312_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop)
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P this : (WellFounded fun x x_1 => x > x_1) ↔ ∀ (k : Submodule R M), CompleteLattice.IsCompactElement k ⊢ IsNoetherian R M ↔ ∀ (k : Submodule R M), CompleteLattice.IsCompactElement k
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this]
exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this]
Mathlib.RingTheory.Noetherian.312_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop)
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P ⊢ IsNoetherian R M ↔ WellFounded fun x x_1 => x > x_1
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } ⊢ IsNoetherian R M ↔ WellFounded fun x x_1 => x > x_1
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG }
constructor
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG }
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
case mp R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } ⊢ IsNoetherian R M → WellFounded fun x x_1 => x > x_1
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor ·
intro H
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor ·
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
case mp R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } H : IsNoetherian R M ⊢ WellFounded fun x x_1 => x > x_1
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
case mp R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } H : IsNoetherian R M f : α ↪o Submodule R M := OrderEmbedding.subtype fun N => FG N ⊢ WellFounded fun x x_1 => x > x_1
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
case mpr R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } ⊢ (WellFounded fun x x_1 => x > x_1) → IsNoetherian R M
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) ·
intro H
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) ·
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
case mpr R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } H : WellFounded fun x x_1 => x > x_1 ⊢ IsNoetherian R M
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H
constructor
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
case mpr.noetherian R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } H : WellFounded fun x x_1 => x > x_1 ⊢ ∀ (s : Submodule R M), FG s
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor
intro N
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
case mpr.noetherian R : Type u_1 M : Type u_2 P : Type u_3 N✝ : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N✝ inst✝² : Module R N✝ inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } H : WellFounded fun x x_1 => x > x_1 N : Submodule R M ⊢ FG N
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
case mpr.noetherian.intro.mk.intro R : Type u_1 M : Type u_2 P : Type u_3 N✝ : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N✝ inst✝² : Module R N✝ inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } H : WellFounded fun x x_1 => x > x_1 N N₀ : Submodule R M h₁ : FG N₀ e : N₀ ≤ N h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ } ⊢ FG N
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
case h.e'_6 R : Type u_1 M : Type u_2 P : Type u_3 N✝ : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N✝ inst✝² : Module R N✝ inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } H : WellFounded fun x x_1 => x > x_1 N N₀ : Submodule R M h₁ : FG N₀ e : N₀ ≤ N h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ } ⊢ N = N₀
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁
refine' (e.antisymm _).symm
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
case h.e'_6 R : Type u_1 M : Type u_2 P : Type u_3 N✝ : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N✝ inst✝² : Module R N✝ inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } H : WellFounded fun x x_1 => x > x_1 N N₀ : Submodule R M h₁ : FG N₀ e : N₀ ≤ N h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ } ⊢ N ≤ N₀
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm
by_contra h₃
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
case h.e'_6 R : Type u_1 M : Type u_2 P : Type u_3 N✝ : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N✝ inst✝² : Module R N✝ inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } H : WellFounded fun x x_1 => x > x_1 N N₀ : Submodule R M h₁ : FG N₀ e : N₀ ≤ N h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ } h₃ : ¬N ≤ N₀ ⊢ False
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
case h.e'_6.intro.intro R : Type u_1 M : Type u_2 P : Type u_3 N✝ : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N✝ inst✝² : Module R N✝ inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } H : WellFounded fun x x_1 => x > x_1 N N₀ : Submodule R M h₁ : FG N₀ e : N₀ ≤ N h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ } h₃ : ¬N ≤ N₀ x : M hx₁ : x ∈ N hx₂ : x ∉ N₀ ⊢ False
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
case h.e'_6.intro.intro R : Type u_1 M : Type u_2 P : Type u_3 N✝ : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N✝ inst✝² : Module R N✝ inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } H : WellFounded fun x x_1 => x > x_1 N N₀ : Submodule R M h₁ : FG N₀ e : N₀ ≤ N h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ } h₃ : ¬N ≤ N₀ x : M hx₁ : x ∈ N hx₂ : x ∉ N₀ ⊢ x ∈ N₀
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N✝ : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N✝ inst✝² : Module R N✝ inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } H : WellFounded fun x x_1 => x > x_1 N N₀ : Submodule R M h₁ : FG N₀ e : N₀ ≤ N h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ } h₃ : ¬N ≤ N₀ x : M hx₁ : x ∈ N hx₂ : x ∉ N₀ ⊢ span R ↑{x} = span R {x}
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by
rw [Finset.coe_singleton]
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
case h.e'_6.intro.intro R : Type u_1 M : Type u_2 P : Type u_3 N✝ : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N✝ inst✝² : Module R N✝ inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_2 := { N // FG N } H : WellFounded fun x x_1 => x > x_1 N N₀ : Submodule R M h₁ : FG N₀ e : N₀ ≤ N h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ } h₃ : ¬N ≤ N₀ x : M hx₁ : x ∈ N hx₂ : x ∉ N₀ ⊢ x ∈ span R {x} ⊔ N₀
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P ⊢ (∀ (a : Set (Submodule R M)), Set.Nonempty a → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
Mathlib.RingTheory.Noetherian.356_0.5UPGNrmhtW81IjE
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P ⊢ (∀ (f : ℕ →o Submodule R M), ∃ n, ∀ (m : ℕ), n ≤ m → f n = f m) ↔ IsNoetherian R M
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
Mathlib.RingTheory.Noetherian.363_0.5UPGNrmhtW81IjE
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P inst✝ : IsNoetherian R M f : ℕ →o Submodule R M ⊢ EventuallyConst (⇑f) atTop
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by
Mathlib.RingTheory.Noetherian.369_0.5UPGNrmhtW81IjE
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P inst✝ : IsNoetherian R M f : ℕ →o Submodule R M ⊢ ∃ i, ∀ (j : ℕ), i ≤ j → f i = f j
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm]
Mathlib.RingTheory.Noetherian.369_0.5UPGNrmhtW81IjE
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val ⊢ Set.Finite s
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s ⊢ (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s f : ℕ ↪ ↑s ⊢ (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s f : ℕ ↪ ↑s ⊢ ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
case intro.intro R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s f : ℕ ↪ ↑s n y : ℕ left✝ : y ∈ {m | m ≤ n} ⊢ (Subtype.val ∘ ⇑f) y ∈ s
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩
exact (f y).2
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s f : ℕ ↪ ↑s this : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s ⊢ (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2
let coe' : s → M := (↑)
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s f : ℕ ↪ ↑s this : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s coe' : ↑s → M := Subtype.val ⊢ (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑)
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s f : ℕ ↪ ↑s this : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s coe' : ↑s → M := Subtype.val ⊢ ∀ (a b : ℕ), a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b})
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s f : ℕ ↪ ↑s this : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s coe' : ↑s → M := Subtype.val a b : ℕ ⊢ a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b})
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b
rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s f : ℕ ↪ ↑s this : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s coe' : ↑s → M := Subtype.val a b : ℕ ⊢ a ≤ b ↔ ∀ x ∈ {m | m ≤ a}, x ∈ {m | m ≤ b}
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s f : ℕ ↪ ↑s this✝ : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s coe' : ↑s → M := Subtype.val this : ∀ (a b : ℕ), a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b}) ⊢ (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s f : ℕ ↪ ↑s this✝ : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s coe' : ↑s → M := Subtype.val this : ∀ (a b : ℕ), a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b}) x y : ℕ ⊢ (fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n})) x = (fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n})) y → x = y
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s f : ℕ ↪ ↑s this✝ : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s coe' : ↑s → M := Subtype.val this : ∀ (a b : ℕ), a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b}) x y : ℕ ⊢ True
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s f : ℕ ↪ ↑s this✝ : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s coe' : ↑s → M := Subtype.val this : ∀ (a b : ℕ), a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b}) ⊢ ∀ {a b : ℕ}, { toFun := fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n}), inj' := (_ : ∀ (x y : ℕ), (fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n})) x = (fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n})) y → x = y) } a > { toFun := fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n}), inj' := (_ : ∀ (x y : ℕ), (fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n})) x = (fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n})) y → x = y) } b ↔ a > b
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by
dsimp [GT.gt]
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s f : ℕ ↪ ↑s this✝ : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s coe' : ↑s → M := Subtype.val this : ∀ (a b : ℕ), a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b}) ⊢ ∀ {a b : ℕ}, span R (Subtype.val ∘ ⇑f '' {m | m ≤ b}) < span R (Subtype.val ∘ ⇑f '' {m | m ≤ a}) ↔ b < a
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt];
simp only [lt_iff_le_not_le, (this _ _).symm]
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt];
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : Nontrivial R s : Set M hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val hf : ¬Set.Finite s f : ℕ ↪ ↑s this✝ : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s coe' : ↑s → M := Subtype.val this : ∀ (a b : ℕ), a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b}) ⊢ ∀ {a b : ℕ}, True
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm];
tauto
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm];
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : IsNoetherian R P f : M →ₗ[R] N g : N →ₗ[R] P hf : Injective ⇑f hg : Surjective ⇑g h : LinearMap.range f = LinearMap.ker g ⊢ ∀ (a : Submodule R N), Submodule.map f (Submodule.comap f a) = a ⊓ LinearMap.range f
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩ #align finite_of_linear_independent finite_of_linearIndependent /-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N := isNoetherian_iff_wellFounded.2 <| wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P) (LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g) (Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg) (by
simp [Submodule.map_comap_eq, inf_comm]
/-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N := isNoetherian_iff_wellFounded.2 <| wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P) (LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g) (Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg) (by
Mathlib.RingTheory.Noetherian.418_0.5UPGNrmhtW81IjE
/-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P inst✝¹ : IsNoetherian R M inst✝ : IsNoetherian R P f : M →ₗ[R] N g : N →ₗ[R] P hf : Injective ⇑f hg : Surjective ⇑g h : LinearMap.range f = LinearMap.ker g ⊢ ∀ (a : Submodule R N), Submodule.comap g (Submodule.map g a) = a ⊔ LinearMap.range f
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩ #align finite_of_linear_independent finite_of_linearIndependent /-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N := isNoetherian_iff_wellFounded.2 <| wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P) (LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g) (Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg) (by simp [Submodule.map_comap_eq, inf_comm]) (by
simp [Submodule.comap_map_eq, h]
/-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N := isNoetherian_iff_wellFounded.2 <| wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P) (LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g) (Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg) (by simp [Submodule.map_comap_eq, inf_comm]) (by
Mathlib.RingTheory.Noetherian.418_0.5UPGNrmhtW81IjE
/-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P inst✝ : IsNoetherian R M f : M →ₗ[R] M ⊢ ∀ᶠ (n : ℕ) in atTop, Disjoint (ker (f ^ n)) (range (f ^ n))
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩ #align finite_of_linear_independent finite_of_linearIndependent /-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N := isNoetherian_iff_wellFounded.2 <| wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P) (LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g) (Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg) (by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h]) #align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker /-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
Mathlib_RingTheory_Noetherian
case intro R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P inst✝ : IsNoetherian R M f : M →ₗ[R] M n : ℕ hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m) ⊢ ∀ᶠ (n : ℕ) in atTop, Disjoint (ker (f ^ n)) (range (f ^ n))
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩ #align finite_of_linear_independent finite_of_linearIndependent /-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N := isNoetherian_iff_wellFounded.2 <| wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P) (LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g) (Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg) (by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h]) #align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker /-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
Mathlib_RingTheory_Noetherian
case intro R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P inst✝ : IsNoetherian R M f : M →ₗ[R] M n : ℕ hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m) m : ℕ hm : m ≥ n ⊢ ker (f ^ m) ⊓ range (f ^ m) = ⊥
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩ #align finite_of_linear_independent finite_of_linearIndependent /-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N := isNoetherian_iff_wellFounded.2 <| wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P) (LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g) (Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg) (by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h]) #align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker /-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
rw [← hn _ hm, Submodule.eq_bot_iff]
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
Mathlib_RingTheory_Noetherian
case intro R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P inst✝ : IsNoetherian R M f : M →ₗ[R] M n : ℕ hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m) m : ℕ hm : m ≥ n ⊢ ∀ x ∈ ker (f ^ n) ⊓ range (f ^ m), x = 0
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩ #align finite_of_linear_independent finite_of_linearIndependent /-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N := isNoetherian_iff_wellFounded.2 <| wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P) (LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g) (Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg) (by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h]) #align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker /-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩ rw [← hn _ hm, Submodule.eq_bot_iff]
rintro - ⟨hx, ⟨x, rfl⟩⟩
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩ rw [← hn _ hm, Submodule.eq_bot_iff]
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
Mathlib_RingTheory_Noetherian
case intro.intro.intro R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P inst✝ : IsNoetherian R M f : M →ₗ[R] M n : ℕ hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m) m : ℕ hm : m ≥ n x : M hx : (f ^ m) x ∈ ↑(ker (f ^ n)) ⊢ (f ^ m) x = 0
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩ #align finite_of_linear_independent finite_of_linearIndependent /-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N := isNoetherian_iff_wellFounded.2 <| wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P) (LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g) (Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg) (by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h]) #align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker /-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩ rw [← hn _ hm, Submodule.eq_bot_iff] rintro - ⟨hx, ⟨x, rfl⟩⟩
apply LinearMap.pow_map_zero_of_le hm
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩ rw [← hn _ hm, Submodule.eq_bot_iff] rintro - ⟨hx, ⟨x, rfl⟩⟩
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
Mathlib_RingTheory_Noetherian
case intro.intro.intro R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P inst✝ : IsNoetherian R M f : M →ₗ[R] M n : ℕ hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m) m : ℕ hm : m ≥ n x : M hx : (f ^ m) x ∈ ↑(ker (f ^ n)) ⊢ (f ^ n) x = 0
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩ #align finite_of_linear_independent finite_of_linearIndependent /-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N := isNoetherian_iff_wellFounded.2 <| wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P) (LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g) (Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg) (by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h]) #align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker /-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩ rw [← hn _ hm, Submodule.eq_bot_iff] rintro - ⟨hx, ⟨x, rfl⟩⟩ apply LinearMap.pow_map_zero_of_le hm
replace hx : x ∈ LinearMap.ker (f ^ (n + m)) := by simpa [f.pow_apply n, f.pow_apply m, ← f.pow_apply (n + m), ← iterate_add_apply] using hx
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩ rw [← hn _ hm, Submodule.eq_bot_iff] rintro - ⟨hx, ⟨x, rfl⟩⟩ apply LinearMap.pow_map_zero_of_le hm
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P inst✝ : IsNoetherian R M f : M →ₗ[R] M n : ℕ hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m) m : ℕ hm : m ≥ n x : M hx : (f ^ m) x ∈ ↑(ker (f ^ n)) ⊢ x ∈ ker (f ^ (n + m))
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩ #align finite_of_linear_independent finite_of_linearIndependent /-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N := isNoetherian_iff_wellFounded.2 <| wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P) (LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g) (Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg) (by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h]) #align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker /-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩ rw [← hn _ hm, Submodule.eq_bot_iff] rintro - ⟨hx, ⟨x, rfl⟩⟩ apply LinearMap.pow_map_zero_of_le hm replace hx : x ∈ LinearMap.ker (f ^ (n + m)) := by
simpa [f.pow_apply n, f.pow_apply m, ← f.pow_apply (n + m), ← iterate_add_apply] using hx
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩ rw [← hn _ hm, Submodule.eq_bot_iff] rintro - ⟨hx, ⟨x, rfl⟩⟩ apply LinearMap.pow_map_zero_of_le hm replace hx : x ∈ LinearMap.ker (f ^ (n + m)) := by
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
Mathlib_RingTheory_Noetherian
case intro.intro.intro R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P inst✝ : IsNoetherian R M f : M →ₗ[R] M n : ℕ hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m) m : ℕ hm : m ≥ n x : M hx : x ∈ ker (f ^ (n + m)) ⊢ (f ^ n) x = 0
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩ #align finite_of_linear_independent finite_of_linearIndependent /-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N := isNoetherian_iff_wellFounded.2 <| wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P) (LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g) (Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg) (by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h]) #align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker /-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩ rw [← hn _ hm, Submodule.eq_bot_iff] rintro - ⟨hx, ⟨x, rfl⟩⟩ apply LinearMap.pow_map_zero_of_le hm replace hx : x ∈ LinearMap.ker (f ^ (n + m)) := by simpa [f.pow_apply n, f.pow_apply m, ← f.pow_apply (n + m), ← iterate_add_apply] using hx
rwa [← hn _ (n.le_add_right m)] at hx
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩ rw [← hn _ hm, Submodule.eq_bot_iff] rintro - ⟨hx, ⟨x, rfl⟩⟩ apply LinearMap.pow_map_zero_of_le hm replace hx : x ∈ LinearMap.ker (f ^ (n + m)) := by simpa [f.pow_apply n, f.pow_apply m, ← f.pow_apply (n + m), ← iterate_add_apply] using hx
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
Mathlib_RingTheory_Noetherian
R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P inst✝ : IsNoetherian R M f : M →ₗ[R] M ⊢ ∀ᶠ (n : ℕ) in atTop, ⨆ m, ker (f ^ m) = ker (f ^ n)
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩ #align finite_of_linear_independent finite_of_linearIndependent /-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N := isNoetherian_iff_wellFounded.2 <| wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P) (LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g) (Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg) (by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h]) #align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker /-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩ rw [← hn _ hm, Submodule.eq_bot_iff] rintro - ⟨hx, ⟨x, rfl⟩⟩ apply LinearMap.pow_map_zero_of_le hm replace hx : x ∈ LinearMap.ker (f ^ (n + m)) := by simpa [f.pow_apply n, f.pow_apply m, ← f.pow_apply (n + m), ← iterate_add_apply] using hx rwa [← hn _ (n.le_add_right m)] at hx #align is_noetherian.exists_endomorphism_iterate_ker_inf_range_eq_bot LinearMap.eventually_disjoint_ker_pow_range_pow lemma LinearMap.eventually_iSup_ker_pow_eq (f : M →ₗ[R] M) : ∀ᶠ n in atTop, ⨆ m, LinearMap.ker (f ^ m) = LinearMap.ker (f ^ n) := by
obtain ⟨n, hn : ∀ m, n ≤ m → ker (f ^ n) = ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
lemma LinearMap.eventually_iSup_ker_pow_eq (f : M →ₗ[R] M) : ∀ᶠ n in atTop, ⨆ m, LinearMap.ker (f ^ m) = LinearMap.ker (f ^ n) := by
Mathlib.RingTheory.Noetherian.446_0.5UPGNrmhtW81IjE
lemma LinearMap.eventually_iSup_ker_pow_eq (f : M →ₗ[R] M) : ∀ᶠ n in atTop, ⨆ m, LinearMap.ker (f ^ m) = LinearMap.ker (f ^ n)
Mathlib_RingTheory_Noetherian
case intro R : Type u_1 M : Type u_2 P : Type u_3 N : Type w inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P inst✝ : IsNoetherian R M f : M →ₗ[R] M n : ℕ hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m) ⊢ ∀ᶠ (n : ℕ) in atTop, ⨆ m, ker (f ^ m) = ker (f ^ n)
/- Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Buzzard -/ import Mathlib.Algebra.Algebra.Subalgebra.Basic import Mathlib.Algebra.Algebra.Tower import Mathlib.Algebra.Ring.Idempotents import Mathlib.GroupTheory.Finiteness import Mathlib.LinearAlgebra.LinearIndependent import Mathlib.Order.CompactlyGenerated import Mathlib.Order.Filter.EventuallyConst import Mathlib.Order.OrderIsoNat import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Nilpotent #align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90" /-! # Noetherian rings and modules The following are equivalent for a module M over a ring R: 1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises. 2. Every submodule is finitely generated. A module satisfying these equivalent conditions is said to be a *Noetherian* R-module. A ring is a *Noetherian ring* if it is Noetherian as a module over itself. (Note that we do not assume yet that our rings are commutative, so perhaps this should be called "left Noetherian". To avoid cumbersome names once we specialize to the commutative case, we don't make this explicit in the declaration names.) ## Main definitions Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. * `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class, implemented as the predicate that all `R`-submodules of `M` are finitely generated. ## Main statements * `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff `>` is well-founded on `Submodule R M`. Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X], is proved in `RingTheory.Polynomial`. ## References * [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] * [samuel1967] ## Tags Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module -/ open Set Filter BigOperators Pointwise /-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module, implemented as the predicate that all `R`-submodules of `M` are finitely generated. -/ -- Porting note: should this be renamed to `Noetherian`? class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where noetherian : ∀ s : Submodule R M, s.FG #align is_noetherian IsNoetherian attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian section variable {R : Type*} {M : Type*} {P : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P] variable [Module R M] [Module R P] open IsNoetherian /-- An R-module is Noetherian iff all its submodules are finitely-generated. -/ theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG := ⟨fun h => h.noetherian, IsNoetherian.mk⟩ #align is_noetherian_def isNoetherian_def theorem isNoetherian_submodule {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by refine ⟨fun ⟨hn⟩ => fun s hs => have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs Submodule.map_comap_eq_self this ▸ (hn _).map _, fun h => ⟨fun s => ?_⟩⟩ have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s) have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s) exact (Submodule.fg_top _).1 (h₂ ▸ h₃) #align is_noetherian_submodule isNoetherian_submodule theorem isNoetherian_submodule_left {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩ #align is_noetherian_submodule_left isNoetherian_submodule_left theorem isNoetherian_submodule_right {N : Submodule R M} : IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG := isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩ #align is_noetherian_submodule_right isNoetherian_submodule_right instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N := isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _ #align is_noetherian_submodule' isNoetherian_submodule' theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) : IsNoetherian R s := isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h) #align is_noetherian_of_le isNoetherian_of_le variable (M) theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] : IsNoetherian R P := ⟨fun s => have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top this ▸ (noetherian _).map _⟩ #align is_noetherian_of_surjective isNoetherian_of_surjective variable {M} theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P := isNoetherian_of_surjective _ f.toLinearMap f.range #align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by constructor <;> intro h · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl) · exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm #align is_noetherian_top_iff isNoetherian_top_iff theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm #align is_noetherian_of_injective isNoetherian_of_injective theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : Function.Injective f) : N.FG := haveI := isNoetherian_of_injective f hf IsNoetherian.noetherian N #align fg_of_injective fg_of_injective end namespace Module variable {R M N : Type*} variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] variable (R M) -- see Note [lower instance priority] instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M := ⟨IsNoetherian.noetherian ⊤⟩ #align module.is_noetherian.finite Module.IsNoetherian.finite variable {R M} theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) : Finite R M := ⟨fg_of_injective f hf⟩ #align module.finite.of_injective Module.Finite.of_injective end Module section variable {R : Type*} {M : Type*} {P : Type*} variable [Ring R] [AddCommGroup M] [AddCommGroup P] variable [Module R M] [Module R P] open IsNoetherian theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : IsNoetherian R M := isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm #align is_noetherian_of_ker_bot isNoetherian_of_ker_bot theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) : N.FG := haveI := isNoetherian_of_ker_bot f hf IsNoetherian.noetherian N #align fg_of_ker_bot fg_of_ker_bot instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) := ⟨fun s => Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <| have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) := fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩ Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩ #align is_noetherian_prod isNoetherian_prod instance isNoetherian_pi {R ι : Type*} {M : ι → Type*} [Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι] [∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by cases nonempty_fintype ι haveI := Classical.decEq ι suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i) · let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _ letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e) intro s induction' s using Finset.induction with a s has ih · exact ⟨fun s => by have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton] rw [this] apply Submodule.fg_bot⟩ refine @isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <| @isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih refine { toFun := fun f i => (Finset.mem_insert.1 i.2).by_cases (fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1) (fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩), invFun := fun f => (f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩), map_add' := ?_, map_smul' := ?_ left_inv := ?_, right_inv := ?_ } · intro f g ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · change _ = _ + _ simp only [dif_pos] rfl · change _ = _ + _ have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] rfl · intro c f ext i unfold Or.by_cases cases' i with i hi rcases Finset.mem_insert.1 hi with (rfl | h) · dsimp simp only [dif_pos] · dsimp have : ¬i = a := by rintro rfl exact has h simp only [dif_neg this, dif_pos h] · intro f apply Prod.ext · simp only [Or.by_cases, dif_pos] · ext ⟨i, his⟩ have : ¬i = a := by rintro rfl exact has his simp only [Or.by_cases, this, not_false_iff, dif_neg] · intro f ext ⟨i, hi⟩ rcases Finset.mem_insert.1 hi with (rfl | h) · simp only [Or.by_cases, dif_pos] · have : ¬i = a := by rintro rfl exact has h simp only [Or.by_cases, dif_neg this, dif_pos h] #align is_noetherian_pi isNoetherian_pi /-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι] [IsNoetherian R M] : IsNoetherian R (ι → M) := isNoetherian_pi #align is_noetherian_pi' isNoetherian_pi' end section CommRing variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [IsNoetherian R M] [Module.Finite R N] instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) := let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M) instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f exact isNoetherian_of_injective g hf.injective_linearMapComp_right end CommRing open IsNoetherian Submodule Function section universe w variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] theorem isNoetherian_iff_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3 -- Porting note: inlining this makes rw complain about it being a metavariable rw [this] exact ⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h => ⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩ #align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded theorem isNoetherian_iff_fg_wellFounded : IsNoetherian R M ↔ WellFounded ((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by let α := { N : Submodule R M // N.FG } constructor · intro H let f : α ↪o Submodule R M := OrderEmbedding.subtype _ exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H) · intro H constructor intro N obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ := WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩ convert h₁ refine' (e.antisymm _).symm by_contra h₃ obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃ apply hx₂ rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂ ⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <| sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)] exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _) #align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded variable (R M) theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] : ∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := isNoetherian_iff_wellFounded.mp ‹_› #align well_founded_submodule_gt wellFounded_submodule_gt variable {R M} /-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them. -/ theorem set_has_maximal_iff_noetherian : (∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min] #align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian /-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/ theorem monotone_stabilizes_iff_noetherian : (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] #align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) : atTop.EventuallyConst f := by simp_rw [eventuallyConst_atTop, eq_comm] exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f /-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop} (hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I := WellFounded.recursion (wellFounded_submodule_gt R M) I hgt #align is_noetherian.induction IsNoetherian.induction end section universe w variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M] lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M} (h : CompleteLattice.Independent N) : Set.Finite {i | N i ≠ ⊥} := CompleteLattice.WellFounded.finite_ne_bot_of_independent (isNoetherian_iff_wellFounded.mp inferInstance) h theorem finite_of_linearIndependent [Nontrivial R] {s : Set M} (hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by refine' by_contradiction fun hf => (RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _ have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by rintro n x ⟨y, _, rfl⟩ exact (f y).2 let coe' : s → M := (↑) have : ∀ a b : ℕ, a ≤ b ↔ span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by intro a b rw [span_le_span_iff hs (this a) (this b), Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def] exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩ exact ⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self] trivial⟩, by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩ #align finite_of_linear_independent finite_of_linearIndependent /-- If the first and final modules in a short exact sequence are Noetherian, then the middle module is also Noetherian. -/ theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g) (h : LinearMap.range f = LinearMap.ker g) : IsNoetherian R N := isNoetherian_iff_wellFounded.2 <| wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P) (LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g) (Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg) (by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h]) #align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker /-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel and range. -/ theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) : ∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩ rw [← hn _ hm, Submodule.eq_bot_iff] rintro - ⟨hx, ⟨x, rfl⟩⟩ apply LinearMap.pow_map_zero_of_le hm replace hx : x ∈ LinearMap.ker (f ^ (n + m)) := by simpa [f.pow_apply n, f.pow_apply m, ← f.pow_apply (n + m), ← iterate_add_apply] using hx rwa [← hn _ (n.le_add_right m)] at hx #align is_noetherian.exists_endomorphism_iterate_ker_inf_range_eq_bot LinearMap.eventually_disjoint_ker_pow_range_pow lemma LinearMap.eventually_iSup_ker_pow_eq (f : M →ₗ[R] M) : ∀ᶠ n in atTop, ⨆ m, LinearMap.ker (f ^ m) = LinearMap.ker (f ^ n) := by obtain ⟨n, hn : ∀ m, n ≤ m → ker (f ^ n) = ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ ?_⟩
lemma LinearMap.eventually_iSup_ker_pow_eq (f : M →ₗ[R] M) : ∀ᶠ n in atTop, ⨆ m, LinearMap.ker (f ^ m) = LinearMap.ker (f ^ n) := by obtain ⟨n, hn : ∀ m, n ≤ m → ker (f ^ n) = ker (f ^ m)⟩ := monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
Mathlib.RingTheory.Noetherian.446_0.5UPGNrmhtW81IjE
lemma LinearMap.eventually_iSup_ker_pow_eq (f : M →ₗ[R] M) : ∀ᶠ n in atTop, ⨆ m, LinearMap.ker (f ^ m) = LinearMap.ker (f ^ n)
Mathlib_RingTheory_Noetherian