state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this✝ : DecidableEq ι
s : Submodule R ((i : { x // x ∈ ∅ }) → M ↑i)
this : s = ⊥
⊢ Submodule.FG ⊥
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
|
apply Submodule.fg_bot
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
⊢ IsNoetherian R ((i : { x // x ∈ insert a s }) → M ↑i)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
|
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
⊢ (M a × ((i : { x // x ∈ s }) → M ↑i)) ≃ₗ[R] (i : { x // x ∈ insert a s }) → M ↑i
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
|
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_1
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
⊢ ∀ (x y : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(x + y) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
x +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
y
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
·
|
intro f g
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
·
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_1
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f g : M a × ((i : { x // x ∈ s }) → M ↑i)
⊢ (fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
|
ext i
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_1.h
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f g : M a × ((i : { x // x ∈ s }) → M ↑i)
i : { x // x ∈ insert a s }
⊢ (fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) i =
((fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g)
i
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
|
unfold Or.by_cases
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_1.h
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f g : M a × ((i : { x // x ∈ s }) → M ↑i)
i : { x // x ∈ insert a s }
⊢ (fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
(f + g) i =
((fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
f +
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
g)
i
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
|
cases' i with i hi
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_1.h.mk
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f g : M a × ((i : { x // x ∈ s }) → M ↑i)
i : ι
hi : i ∈ insert a s
⊢ (fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
(f + g) { val := i, property := hi } =
((fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
f +
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
g)
{ val := i, property := hi }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
|
rcases Finset.mem_insert.1 hi with (rfl | h)
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_1.h.mk.inl
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
s : Finset ι
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
i : ι
has : i ∉ s
f g : M i × ((i : { x // x ∈ s }) → M ↑i)
hi : i ∈ insert i s
⊢ (fun f i_1 =>
if hp : ↑i_1 = i then
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(_ : ↑i_1 ∈ s))
(f + g) { val := i, property := hi } =
((fun f i_1 =>
if hp : ↑i_1 = i then
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(_ : ↑i_1 ∈ s))
f +
(fun f i_1 =>
if hp : ↑i_1 = i then
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(_ : ↑i_1 ∈ s))
g)
{ val := i, property := hi }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
·
|
change _ = _ + _
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
·
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_1.h.mk.inl
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
s : Finset ι
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
i : ι
has : i ∉ s
f g : M i × ((i : { x // x ∈ s }) → M ↑i)
hi : i ∈ insert i s
⊢ (fun f i_1 =>
if hp : ↑i_1 = i then
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(_ : ↑i_1 ∈ s))
(f + g) { val := i, property := hi } =
(fun f i_1 =>
if hp : ↑i_1 = i then
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(_ : ↑i_1 ∈ s))
f { val := i, property := hi } +
(fun f i_1 =>
if hp : ↑i_1 = i then
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(_ : ↑i_1 ∈ s))
g { val := i, property := hi }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
|
simp only [dif_pos]
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_1.h.mk.inl
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
s : Finset ι
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
i : ι
has : i ∉ s
f g : M i × ((i : { x // x ∈ s }) → M ↑i)
hi : i ∈ insert i s
⊢ (f + g).1 = f.1 + g.1
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
|
rfl
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_1.h.mk.inr
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f g : M a × ((i : { x // x ∈ s }) → M ↑i)
i : ι
hi : i ∈ insert a s
h : i ∈ s
⊢ (fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
(f + g) { val := i, property := hi } =
((fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
f +
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
g)
{ val := i, property := hi }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
·
|
change _ = _ + _
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
·
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_1.h.mk.inr
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f g : M a × ((i : { x // x ∈ s }) → M ↑i)
i : ι
hi : i ∈ insert a s
h : i ∈ s
⊢ (fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
(f + g) { val := i, property := hi } =
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
f { val := i, property := hi } +
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
g { val := i, property := hi }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
|
have : ¬i = a := by
rintro rfl
exact has h
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f g : M a × ((i : { x // x ∈ s }) → M ↑i)
i : ι
hi : i ∈ insert a s
h : i ∈ s
⊢ ¬i = a
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
|
rintro rfl
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
s : Finset ι
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
i : ι
h : i ∈ s
has : i ∉ s
f g : M i × ((i : { x // x ∈ s }) → M ↑i)
hi : i ∈ insert i s
⊢ False
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
|
exact has h
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_1.h.mk.inr
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this✝ : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f g : M a × ((i : { x // x ∈ s }) → M ↑i)
i : ι
hi : i ∈ insert a s
h : i ∈ s
this : ¬i = a
⊢ (fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
(f + g) { val := i, property := hi } =
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
f { val := i, property := hi } +
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
g { val := i, property := hi }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
|
simp only [dif_neg this, dif_pos h]
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_1.h.mk.inr
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this✝ : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f g : M a × ((i : { x // x ∈ s }) → M ↑i)
i : ι
hi : i ∈ insert a s
h : i ∈ s
this : ¬i = a
⊢ (f + g).2 { val := i, property := (_ : i ∈ s) } =
f.2 { val := i, property := (_ : i ∈ s) } + g.2 { val := i, property := (_ : i ∈ s) }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
|
rfl
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_2
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
⊢ ∀ (r : R) (x : M a × ((i : { x // x ∈ s }) → M ↑i)),
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
(r • x) =
(RingHom.id R) r •
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
x
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
·
|
intro c f
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
·
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_2
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
c : R
f : M a × ((i : { x // x ∈ s }) → M ↑i)
⊢ AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
(c • f) =
(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
f
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
|
ext i
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_2.h
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
c : R
f : M a × ((i : { x // x ∈ s }) → M ↑i)
i : { x // x ∈ insert a s }
⊢ AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
(c • f) i =
((RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
f)
i
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
|
unfold Or.by_cases
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_2.h
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
c : R
f : M a × ((i : { x // x ∈ s }) → M ↑i)
i : { x // x ∈ insert a s }
⊢ AddHom.toFun
{
toFun := fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s),
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
(f + g) =
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
f +
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
g) }
(c • f) i =
((RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s),
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
(f + g) =
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
f +
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
g) }
f)
i
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
|
cases' i with i hi
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_2.h.mk
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
c : R
f : M a × ((i : { x // x ∈ s }) → M ↑i)
i : ι
hi : i ∈ insert a s
⊢ AddHom.toFun
{
toFun := fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s),
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
(f + g) =
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
f +
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
g) }
(c • f) { val := i, property := hi } =
((RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s),
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
(f + g) =
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
f +
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
g) }
f)
{ val := i, property := hi }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
|
rcases Finset.mem_insert.1 hi with (rfl | h)
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_2.h.mk.inl
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
s : Finset ι
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
c : R
i : ι
has : i ∉ s
f : M i × ((i : { x // x ∈ s }) → M ↑i)
hi : i ∈ insert i s
⊢ AddHom.toFun
{
toFun := fun f i_1 =>
if hp : ↑i_1 = i then
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(_ : ↑i_1 ∈ s),
map_add' :=
(_ :
∀ (f g : M i × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i_1 =>
if hp : ↑i_1 = i then
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(_ : ↑i_1 ∈ s))
(f + g) =
(fun f i_1 =>
if hp : ↑i_1 = i then
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(_ : ↑i_1 ∈ s))
f +
(fun f i_1 =>
if hp : ↑i_1 = i then
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(_ : ↑i_1 ∈ s))
g) }
(c • f) { val := i, property := hi } =
((RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i_1 =>
if hp : ↑i_1 = i then
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(_ : ↑i_1 ∈ s),
map_add' :=
(_ :
∀ (f g : M i × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i_1 =>
if hp : ↑i_1 = i then
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(_ : ↑i_1 ∈ s))
(f + g) =
(fun f i_1 =>
if hp : ↑i_1 = i then
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(_ : ↑i_1 ∈ s))
f +
(fun f i_1 =>
if hp : ↑i_1 = i then
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(_ : ↑i_1 ∈ s))
g) }
f)
{ val := i, property := hi }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
·
|
dsimp
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
·
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_2.h.mk.inl
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
s : Finset ι
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
c : R
i : ι
has : i ∉ s
f : M i × ((i : { x // x ∈ s }) → M ↑i)
hi : i ∈ insert i s
⊢ (if hp : i = i then c • f.1 else c • f.2 { val := i, property := (_ : i ∈ s) }) =
c • if hp : i = i then f.1 else f.2 { val := i, property := (_ : i ∈ s) }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
|
simp only [dif_pos]
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_2.h.mk.inr
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
c : R
f : M a × ((i : { x // x ∈ s }) → M ↑i)
i : ι
hi : i ∈ insert a s
h : i ∈ s
⊢ AddHom.toFun
{
toFun := fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s),
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
(f + g) =
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
f +
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
g) }
(c • f) { val := i, property := hi } =
((RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s),
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
(f + g) =
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
f +
(fun f i =>
if hp : ↑i = a then
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
hp
else
(fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(_ : ↑i ∈ s))
g) }
f)
{ val := i, property := hi }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
·
|
dsimp
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
·
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_2.h.mk.inr
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
c : R
f : M a × ((i : { x // x ∈ s }) → M ↑i)
i : ι
hi : i ∈ insert a s
h : i ∈ s
⊢ (if hp : i = a then (_ : a = i) ▸ (c • f.1) else c • f.2 { val := i, property := (_ : i ∈ s) }) =
c • if hp : i = a then (_ : a = i) ▸ f.1 else f.2 { val := i, property := (_ : i ∈ s) }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
|
have : ¬i = a := by
rintro rfl
exact has h
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
c : R
f : M a × ((i : { x // x ∈ s }) → M ↑i)
i : ι
hi : i ∈ insert a s
h : i ∈ s
⊢ ¬i = a
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
|
rintro rfl
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
s : Finset ι
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
c : R
i : ι
h : i ∈ s
has : i ∉ s
f : M i × ((i : { x // x ∈ s }) → M ↑i)
hi : i ∈ insert i s
⊢ False
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
|
exact has h
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_2.h.mk.inr
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this✝ : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
c : R
f : M a × ((i : { x // x ∈ s }) → M ↑i)
i : ι
hi : i ∈ insert a s
h : i ∈ s
this : ¬i = a
⊢ (if hp : i = a then (_ : a = i) ▸ (c • f.1) else c • f.2 { val := i, property := (_ : i ∈ s) }) =
c • if hp : i = a then (_ : a = i) ▸ f.1 else f.2 { val := i, property := (_ : i ∈ s) }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
|
simp only [dif_neg this, dif_pos h]
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_3
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
⊢ Function.LeftInverse
(fun f =>
(f { val := a, property := (_ : a ∈ insert a s) }, fun i => f { val := ↑i, property := (_ : ↑i ∈ insert a s) }))
{
toAddHom :=
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) },
map_smul' :=
(_ :
∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)),
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
(c • f) =
(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
f) }.toAddHom.toFun
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
·
|
intro f
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
·
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_3
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f : M a × ((i : { x // x ∈ s }) → M ↑i)
⊢ (fun f =>
(f { val := a, property := (_ : a ∈ insert a s) }, fun i => f { val := ↑i, property := (_ : ↑i ∈ insert a s) }))
(AddHom.toFun
{
toAddHom :=
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) },
map_smul' :=
(_ :
∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)),
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
(c • f) =
(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
f) }.toAddHom
f) =
f
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
|
apply Prod.ext
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_3.a
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f : M a × ((i : { x // x ∈ s }) → M ↑i)
⊢ ((fun f =>
(f { val := a, property := (_ : a ∈ insert a s) }, fun i =>
f { val := ↑i, property := (_ : ↑i ∈ insert a s) }))
(AddHom.toFun
{
toAddHom :=
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) },
map_smul' :=
(_ :
∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)),
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
(c • f) =
(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
f) }.toAddHom
f)).1 =
f.1
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
·
|
simp only [Or.by_cases, dif_pos]
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
·
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_3.a
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f : M a × ((i : { x // x ∈ s }) → M ↑i)
⊢ ((fun f =>
(f { val := a, property := (_ : a ∈ insert a s) }, fun i =>
f { val := ↑i, property := (_ : ↑i ∈ insert a s) }))
(AddHom.toFun
{
toAddHom :=
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) },
map_smul' :=
(_ :
∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)),
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
(c • f) =
(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
f) }.toAddHom
f)).2 =
f.2
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
·
|
ext ⟨i, his⟩
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
·
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_3.a.h.mk
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f : M a × ((i : { x // x ∈ s }) → M ↑i)
i : ι
his : i ∈ s
⊢ ((fun f =>
(f { val := a, property := (_ : a ∈ insert a s) }, fun i =>
f { val := ↑i, property := (_ : ↑i ∈ insert a s) }))
(AddHom.toFun
{
toAddHom :=
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) },
map_smul' :=
(_ :
∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)),
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
(c • f) =
(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
f) }.toAddHom
f)).2
{ val := i, property := his } =
f.2 { val := i, property := his }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
|
have : ¬i = a := by
rintro rfl
exact has his
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f : M a × ((i : { x // x ∈ s }) → M ↑i)
i : ι
his : i ∈ s
⊢ ¬i = a
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
|
rintro rfl
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
s : Finset ι
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
i : ι
his : i ∈ s
has : i ∉ s
f : M i × ((i : { x // x ∈ s }) → M ↑i)
⊢ False
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
|
exact has his
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_3.a.h.mk
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this✝ : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f : M a × ((i : { x // x ∈ s }) → M ↑i)
i : ι
his : i ∈ s
this : ¬i = a
⊢ ((fun f =>
(f { val := a, property := (_ : a ∈ insert a s) }, fun i =>
f { val := ↑i, property := (_ : ↑i ∈ insert a s) }))
(AddHom.toFun
{
toAddHom :=
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) },
map_smul' :=
(_ :
∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)),
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
(c • f) =
(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
f) }.toAddHom
f)).2
{ val := i, property := his } =
f.2 { val := i, property := his }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
|
simp only [Or.by_cases, this, not_false_iff, dif_neg]
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_4
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
⊢ Function.RightInverse
(fun f =>
(f { val := a, property := (_ : a ∈ insert a s) }, fun i => f { val := ↑i, property := (_ : ↑i ∈ insert a s) }))
{
toAddHom :=
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) },
map_smul' :=
(_ :
∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)),
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
(c • f) =
(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
f) }.toAddHom.toFun
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
·
|
intro f
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
·
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_4
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f : (i : { x // x ∈ insert a s }) → M ↑i
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) },
map_smul' :=
(_ :
∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)),
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
(c • f) =
(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
f) }.toAddHom
((fun f =>
(f { val := a, property := (_ : a ∈ insert a s) }, fun i =>
f { val := ↑i, property := (_ : ↑i ∈ insert a s) }))
f) =
f
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
|
ext ⟨i, hi⟩
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_4.h.mk
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f : (i : { x // x ∈ insert a s }) → M ↑i
i : ι
hi : i ∈ insert a s
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) },
map_smul' :=
(_ :
∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)),
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
(c • f) =
(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
f) }.toAddHom
((fun f =>
(f { val := a, property := (_ : a ∈ insert a s) }, fun i =>
f { val := ↑i, property := (_ : ↑i ∈ insert a s) }))
f)
{ val := i, property := hi } =
f { val := i, property := hi }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
|
rcases Finset.mem_insert.1 hi with (rfl | h)
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_4.h.mk.inl
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
s : Finset ι
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
i : ι
has : i ∉ s
f : (i_1 : { x // x ∈ insert i s }) → M ↑i_1
hi : i ∈ insert i s
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun f i_1 =>
Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this,
map_add' :=
(_ :
∀ (f g : M i × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i_1 =>
Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(f + g) =
(fun f i_1 =>
Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
f +
(fun f i_1 =>
Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
g) },
map_smul' :=
(_ :
∀ (c : R) (f : M i × ((i : { x // x ∈ s }) → M ↑i)),
AddHom.toFun
{
toFun := fun f i_1 =>
Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this,
map_add' :=
(_ :
∀ (f g : M i × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i_1 =>
Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(f + g) =
(fun f i_1 =>
Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
f +
(fun f i_1 =>
Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
g) }
(c • f) =
(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i_1 =>
Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this,
map_add' :=
(_ :
∀ (f g : M i × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i_1 =>
Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
(f + g) =
(fun f i_1 =>
Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
f +
(fun f i_1 =>
Or.by_cases (_ : ↑i_1 = i ∨ ↑i_1 ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : i = ↑i_1) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i_1, property := h };
this)
g) }
f) }.toAddHom
((fun f =>
(f { val := i, property := (_ : i ∈ insert i s) }, fun i_1 =>
f { val := ↑i_1, property := (_ : ↑i_1 ∈ insert i s) }))
f)
{ val := i, property := hi } =
f { val := i, property := hi }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
·
|
simp only [Or.by_cases, dif_pos]
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
·
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_4.h.mk.inr
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f : (i : { x // x ∈ insert a s }) → M ↑i
i : ι
hi : i ∈ insert a s
h : i ∈ s
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) },
map_smul' :=
(_ :
∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)),
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
(c • f) =
(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
f) }.toAddHom
((fun f =>
(f { val := a, property := (_ : a ∈ insert a s) }, fun i =>
f { val := ↑i, property := (_ : ↑i ∈ insert a s) }))
f)
{ val := i, property := hi } =
f { val := i, property := hi }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
·
|
have : ¬i = a := by
rintro rfl
exact has h
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
·
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f : (i : { x // x ∈ insert a s }) → M ↑i
i : ι
hi : i ∈ insert a s
h : i ∈ s
⊢ ¬i = a
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
|
rintro rfl
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this : DecidableEq ι
s : Finset ι
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
i : ι
h : i ∈ s
has : i ∉ s
f : (i_1 : { x // x ∈ insert i s }) → M ↑i_1
hi : i ∈ insert i s
⊢ False
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
|
exact has h
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
case on_finset.insert.refine_4.h.mk.inr
R✝ : Type u_1
M✝ : Type u_2
P : Type u_3
inst✝⁹ : Ring R✝
inst✝⁸ : AddCommGroup M✝
inst✝⁷ : AddCommGroup P
inst✝⁶ : Module R✝ M✝
inst✝⁵ : Module R✝ P
R : Type u_4
ι : Type u_5
M : ι → Type u_6
inst✝⁴ : Ring R
inst✝³ : (i : ι) → AddCommGroup (M i)
inst✝² : (i : ι) → Module R (M i)
inst✝¹ : Finite ι
inst✝ : ∀ (i : ι), IsNoetherian R (M i)
val✝ : Fintype ι
this✝ : DecidableEq ι
a : ι
s : Finset ι
has : a ∉ s
ih : IsNoetherian R ((i : { x // x ∈ s }) → M ↑i)
f : (i : { x // x ∈ insert a s }) → M ↑i
i : ι
hi : i ∈ insert a s
h : i ∈ s
this : ¬i = a
⊢ AddHom.toFun
{
toAddHom :=
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) },
map_smul' :=
(_ :
∀ (c : R) (f : M a × ((i : { x // x ∈ s }) → M ↑i)),
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
(c • f) =
(RingHom.id R) c •
AddHom.toFun
{
toFun := fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this,
map_add' :=
(_ :
∀ (f g : M a × ((i : { x // x ∈ s }) → M ↑i)),
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
(f + g) =
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
f +
(fun f i =>
Or.by_cases (_ : ↑i = a ∨ ↑i ∈ s)
(fun h =>
let_fun this := Eq.recOn (_ : a = ↑i) f.1;
this)
fun h =>
let_fun this := f.2 { val := ↑i, property := h };
this)
g) }
f) }.toAddHom
((fun f =>
(f { val := a, property := (_ : a ∈ insert a s) }, fun i =>
f { val := ↑i, property := (_ : ↑i ∈ insert a s) }))
f)
{ val := i, property := hi } =
f { val := i, property := hi }
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
|
simp only [Or.by_cases, dif_neg this, dif_pos h]
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
|
Mathlib.RingTheory.Noetherian.205_0.5UPGNrmhtW81IjE
|
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i)
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ : IsNoetherian R M
inst✝ : Module.Finite R N
⊢ IsNoetherian R (N →ₗ[R] M)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
|
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
|
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
|
Mathlib.RingTheory.Noetherian.296_0.5UPGNrmhtW81IjE
|
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M)
|
Mathlib_RingTheory_Noetherian
|
case intro.intro
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ : IsNoetherian R M
inst✝ : Module.Finite R N
n : ℕ
f : (Fin n → R) →ₗ[R] N
hf : Function.Surjective ⇑f
⊢ IsNoetherian R (N →ₗ[R] M)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
|
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
|
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
|
Mathlib.RingTheory.Noetherian.296_0.5UPGNrmhtW81IjE
|
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M)
|
Mathlib_RingTheory_Noetherian
|
case intro.intro
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ : IsNoetherian R M
inst✝ : Module.Finite R N
n : ℕ
f : (Fin n → R) →ₗ[R] N
hf : Function.Surjective ⇑f
g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.flip (LinearMap.llcomp R (Fin n → R) N M)) f
⊢ IsNoetherian R (N →ₗ[R] M)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
|
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
|
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
|
Mathlib.RingTheory.Noetherian.296_0.5UPGNrmhtW81IjE
|
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M)
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
⊢ IsNoetherian R M ↔ WellFounded fun x x_1 => x > x_1
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
|
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
|
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
|
Mathlib.RingTheory.Noetherian.312_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop)
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
this : (WellFounded fun x x_1 => x > x_1) ↔ ∀ (k : Submodule R M), CompleteLattice.IsCompactElement k
⊢ IsNoetherian R M ↔ WellFounded fun x x_1 => x > x_1
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
|
rw [this]
|
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
|
Mathlib.RingTheory.Noetherian.312_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop)
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
this : (WellFounded fun x x_1 => x > x_1) ↔ ∀ (k : Submodule R M), CompleteLattice.IsCompactElement k
⊢ IsNoetherian R M ↔ ∀ (k : Submodule R M), CompleteLattice.IsCompactElement k
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
|
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
|
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
|
Mathlib.RingTheory.Noetherian.312_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop)
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
⊢ IsNoetherian R M ↔ WellFounded fun x x_1 => x > x_1
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
|
let α := { N : Submodule R M // N.FG }
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
⊢ IsNoetherian R M ↔ WellFounded fun x x_1 => x > x_1
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
|
constructor
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
case mp
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
⊢ IsNoetherian R M → WellFounded fun x x_1 => x > x_1
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
·
|
intro H
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
·
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
case mp
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
H : IsNoetherian R M
⊢ WellFounded fun x x_1 => x > x_1
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
|
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
case mp
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
H : IsNoetherian R M
f : α ↪o Submodule R M := OrderEmbedding.subtype fun N => FG N
⊢ WellFounded fun x x_1 => x > x_1
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
|
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
case mpr
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
⊢ (WellFounded fun x x_1 => x > x_1) → IsNoetherian R M
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
·
|
intro H
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
·
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
case mpr
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
H : WellFounded fun x x_1 => x > x_1
⊢ IsNoetherian R M
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
|
constructor
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
case mpr.noetherian
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
H : WellFounded fun x x_1 => x > x_1
⊢ ∀ (s : Submodule R M), FG s
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
|
intro N
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
case mpr.noetherian
R : Type u_1
M : Type u_2
P : Type u_3
N✝ : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N✝
inst✝² : Module R N✝
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
H : WellFounded fun x x_1 => x > x_1
N : Submodule R M
⊢ FG N
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
|
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
case mpr.noetherian.intro.mk.intro
R : Type u_1
M : Type u_2
P : Type u_3
N✝ : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N✝
inst✝² : Module R N✝
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
H : WellFounded fun x x_1 => x > x_1
N N₀ : Submodule R M
h₁ : FG N₀
e : N₀ ≤ N
h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ }
⊢ FG N
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
|
convert h₁
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
case h.e'_6
R : Type u_1
M : Type u_2
P : Type u_3
N✝ : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N✝
inst✝² : Module R N✝
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
H : WellFounded fun x x_1 => x > x_1
N N₀ : Submodule R M
h₁ : FG N₀
e : N₀ ≤ N
h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ }
⊢ N = N₀
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
|
refine' (e.antisymm _).symm
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
case h.e'_6
R : Type u_1
M : Type u_2
P : Type u_3
N✝ : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N✝
inst✝² : Module R N✝
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
H : WellFounded fun x x_1 => x > x_1
N N₀ : Submodule R M
h₁ : FG N₀
e : N₀ ≤ N
h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ }
⊢ N ≤ N₀
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
|
by_contra h₃
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
case h.e'_6
R : Type u_1
M : Type u_2
P : Type u_3
N✝ : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N✝
inst✝² : Module R N✝
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
H : WellFounded fun x x_1 => x > x_1
N N₀ : Submodule R M
h₁ : FG N₀
e : N₀ ≤ N
h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ }
h₃ : ¬N ≤ N₀
⊢ False
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
|
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
case h.e'_6.intro.intro
R : Type u_1
M : Type u_2
P : Type u_3
N✝ : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N✝
inst✝² : Module R N✝
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
H : WellFounded fun x x_1 => x > x_1
N N₀ : Submodule R M
h₁ : FG N₀
e : N₀ ≤ N
h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ }
h₃ : ¬N ≤ N₀
x : M
hx₁ : x ∈ N
hx₂ : x ∉ N₀
⊢ False
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
|
apply hx₂
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
case h.e'_6.intro.intro
R : Type u_1
M : Type u_2
P : Type u_3
N✝ : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N✝
inst✝² : Module R N✝
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
H : WellFounded fun x x_1 => x > x_1
N N₀ : Submodule R M
h₁ : FG N₀
e : N₀ ≤ N
h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ }
h₃ : ¬N ≤ N₀
x : M
hx₁ : x ∈ N
hx₂ : x ∉ N₀
⊢ x ∈ N₀
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
|
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N✝ : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N✝
inst✝² : Module R N✝
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
H : WellFounded fun x x_1 => x > x_1
N N₀ : Submodule R M
h₁ : FG N₀
e : N₀ ≤ N
h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ }
h₃ : ¬N ≤ N₀
x : M
hx₁ : x ∈ N
hx₂ : x ∉ N₀
⊢ span R ↑{x} = span R {x}
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by
|
rw [Finset.coe_singleton]
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
case h.e'_6.intro.intro
R : Type u_1
M : Type u_2
P : Type u_3
N✝ : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N✝
inst✝² : Module R N✝
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
α : Type u_2 := { N // FG N }
H : WellFounded fun x x_1 => x > x_1
N N₀ : Submodule R M
h₁ : FG N₀
e : N₀ ≤ N
h₂ : ∀ x ∈ {N' | ↑N' ≤ N}, ¬x > { val := N₀, property := h₁ }
h₃ : ¬N ≤ N₀
x : M
hx₁ : x ∈ N
hx₂ : x ∉ N₀
⊢ x ∈ span R {x} ⊔ N₀
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
|
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
|
Mathlib.RingTheory.Noetherian.322_0.5UPGNrmhtW81IjE
|
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop)
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
⊢ (∀ (a : Set (Submodule R M)), Set.Nonempty a → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
|
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
|
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
|
Mathlib.RingTheory.Noetherian.356_0.5UPGNrmhtW81IjE
|
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁶ : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
inst✝³ : AddCommMonoid N
inst✝² : Module R N
inst✝¹ : AddCommMonoid P
inst✝ : Module R P
⊢ (∀ (f : ℕ →o Submodule R M), ∃ n, ∀ (m : ℕ), n ≤ m → f n = f m) ↔ IsNoetherian R M
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
Mathlib.RingTheory.Noetherian.363_0.5UPGNrmhtW81IjE
|
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
inst✝ : IsNoetherian R M
f : ℕ →o Submodule R M
⊢ EventuallyConst (⇑f) atTop
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
|
simp_rw [eventuallyConst_atTop, eq_comm]
|
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
|
Mathlib.RingTheory.Noetherian.369_0.5UPGNrmhtW81IjE
|
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁷ : Semiring R
inst✝⁶ : AddCommMonoid M
inst✝⁵ : Module R M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R N
inst✝² : AddCommMonoid P
inst✝¹ : Module R P
inst✝ : IsNoetherian R M
f : ℕ →o Submodule R M
⊢ ∃ i, ∀ (j : ℕ), i ≤ j → f i = f j
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
|
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
|
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
|
Mathlib.RingTheory.Noetherian.369_0.5UPGNrmhtW81IjE
|
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
⊢ Set.Finite s
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
|
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
⊢ (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
|
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
f : ℕ ↪ ↑s
⊢ (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
|
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
f : ℕ ↪ ↑s
⊢ ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
|
rintro n x ⟨y, _, rfl⟩
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
case intro.intro
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
f : ℕ ↪ ↑s
n y : ℕ
left✝ : y ∈ {m | m ≤ n}
⊢ (Subtype.val ∘ ⇑f) y ∈ s
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
|
exact (f y).2
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
f : ℕ ↪ ↑s
this : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s
⊢ (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
|
let coe' : s → M := (↑)
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
f : ℕ ↪ ↑s
this : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s
coe' : ↑s → M := Subtype.val
⊢ (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
|
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
f : ℕ ↪ ↑s
this : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s
coe' : ↑s → M := Subtype.val
⊢ ∀ (a b : ℕ), a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b})
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
|
intro a b
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
f : ℕ ↪ ↑s
this : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s
coe' : ↑s → M := Subtype.val
a b : ℕ
⊢ a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b})
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
|
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
f : ℕ ↪ ↑s
this : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s
coe' : ↑s → M := Subtype.val
a b : ℕ
⊢ a ≤ b ↔ ∀ x ∈ {m | m ≤ a}, x ∈ {m | m ≤ b}
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
|
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
f : ℕ ↪ ↑s
this✝ : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s
coe' : ↑s → M := Subtype.val
this : ∀ (a b : ℕ), a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b})
⊢ (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
|
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
f : ℕ ↪ ↑s
this✝ : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s
coe' : ↑s → M := Subtype.val
this : ∀ (a b : ℕ), a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b})
x y : ℕ
⊢ (fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n})) x = (fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n})) y → x = y
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
|
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
f : ℕ ↪ ↑s
this✝ : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s
coe' : ↑s → M := Subtype.val
this : ∀ (a b : ℕ), a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b})
x y : ℕ
⊢ True
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
|
trivial
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
f : ℕ ↪ ↑s
this✝ : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s
coe' : ↑s → M := Subtype.val
this : ∀ (a b : ℕ), a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b})
⊢ ∀ {a b : ℕ},
{ toFun := fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n}),
inj' :=
(_ :
∀ (x y : ℕ),
(fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n})) x = (fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n})) y →
x = y) }
a >
{ toFun := fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n}),
inj' :=
(_ :
∀ (x y : ℕ),
(fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n})) x = (fun n => span R (coe' ∘ ⇑f '' {m | m ≤ n})) y →
x = y) }
b ↔
a > b
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by
|
dsimp [GT.gt]
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
f : ℕ ↪ ↑s
this✝ : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s
coe' : ↑s → M := Subtype.val
this : ∀ (a b : ℕ), a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b})
⊢ ∀ {a b : ℕ}, span R (Subtype.val ∘ ⇑f '' {m | m ≤ b}) < span R (Subtype.val ∘ ⇑f '' {m | m ≤ a}) ↔ b < a
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt];
|
simp only [lt_iff_le_not_le, (this _ _).symm]
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt];
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : Nontrivial R
s : Set M
hs : LinearIndependent (ι := { x // x ∈ s }) R Subtype.val
hf : ¬Set.Finite s
f : ℕ ↪ ↑s
this✝ : ∀ (n : ℕ), Subtype.val ∘ ⇑f '' {m | m ≤ n} ⊆ s
coe' : ↑s → M := Subtype.val
this : ∀ (a b : ℕ), a ≤ b ↔ span R (coe' ∘ ⇑f '' {m | m ≤ a}) ≤ span R (Subtype.val ∘ ⇑f '' {m | m ≤ b})
⊢ ∀ {a b : ℕ}, True
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm];
|
tauto
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm];
|
Mathlib.RingTheory.Noetherian.395_0.5UPGNrmhtW81IjE
|
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : IsNoetherian R P
f : M →ₗ[R] N
g : N →ₗ[R] P
hf : Injective ⇑f
hg : Surjective ⇑g
h : LinearMap.range f = LinearMap.ker g
⊢ ∀ (a : Submodule R N), Submodule.map f (Submodule.comap f a) = a ⊓ LinearMap.range f
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
#align finite_of_linear_independent finite_of_linearIndependent
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N :=
isNoetherian_iff_wellFounded.2 <|
wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P)
(LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g)
(Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg)
(by
|
simp [Submodule.map_comap_eq, inf_comm]
|
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N :=
isNoetherian_iff_wellFounded.2 <|
wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P)
(LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g)
(Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg)
(by
|
Mathlib.RingTheory.Noetherian.418_0.5UPGNrmhtW81IjE
|
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁸ : Ring R
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : AddCommGroup N
inst✝⁴ : Module R N
inst✝³ : AddCommGroup P
inst✝² : Module R P
inst✝¹ : IsNoetherian R M
inst✝ : IsNoetherian R P
f : M →ₗ[R] N
g : N →ₗ[R] P
hf : Injective ⇑f
hg : Surjective ⇑g
h : LinearMap.range f = LinearMap.ker g
⊢ ∀ (a : Submodule R N), Submodule.comap g (Submodule.map g a) = a ⊔ LinearMap.range f
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
#align finite_of_linear_independent finite_of_linearIndependent
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N :=
isNoetherian_iff_wellFounded.2 <|
wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P)
(LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g)
(Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg)
(by simp [Submodule.map_comap_eq, inf_comm]) (by
|
simp [Submodule.comap_map_eq, h]
|
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N :=
isNoetherian_iff_wellFounded.2 <|
wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P)
(LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g)
(Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg)
(by simp [Submodule.map_comap_eq, inf_comm]) (by
|
Mathlib.RingTheory.Noetherian.418_0.5UPGNrmhtW81IjE
|
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
inst✝ : IsNoetherian R M
f : M →ₗ[R] M
⊢ ∀ᶠ (n : ℕ) in atTop, Disjoint (ker (f ^ n)) (range (f ^ n))
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
#align finite_of_linear_independent finite_of_linearIndependent
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N :=
isNoetherian_iff_wellFounded.2 <|
wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P)
(LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g)
(Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg)
(by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h])
#align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
|
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
|
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
|
Mathlib_RingTheory_Noetherian
|
case intro
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
inst✝ : IsNoetherian R M
f : M →ₗ[R] M
n : ℕ
hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m)
⊢ ∀ᶠ (n : ℕ) in atTop, Disjoint (ker (f ^ n)) (range (f ^ n))
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
#align finite_of_linear_independent finite_of_linearIndependent
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N :=
isNoetherian_iff_wellFounded.2 <|
wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P)
(LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g)
(Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg)
(by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h])
#align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
|
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
|
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
|
Mathlib_RingTheory_Noetherian
|
case intro
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
inst✝ : IsNoetherian R M
f : M →ₗ[R] M
n : ℕ
hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m)
m : ℕ
hm : m ≥ n
⊢ ker (f ^ m) ⊓ range (f ^ m) = ⊥
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
#align finite_of_linear_independent finite_of_linearIndependent
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N :=
isNoetherian_iff_wellFounded.2 <|
wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P)
(LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g)
(Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg)
(by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h])
#align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
|
rw [← hn _ hm, Submodule.eq_bot_iff]
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
|
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
|
Mathlib_RingTheory_Noetherian
|
case intro
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
inst✝ : IsNoetherian R M
f : M →ₗ[R] M
n : ℕ
hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m)
m : ℕ
hm : m ≥ n
⊢ ∀ x ∈ ker (f ^ n) ⊓ range (f ^ m), x = 0
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
#align finite_of_linear_independent finite_of_linearIndependent
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N :=
isNoetherian_iff_wellFounded.2 <|
wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P)
(LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g)
(Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg)
(by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h])
#align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
rw [← hn _ hm, Submodule.eq_bot_iff]
|
rintro - ⟨hx, ⟨x, rfl⟩⟩
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
rw [← hn _ hm, Submodule.eq_bot_iff]
|
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
|
Mathlib_RingTheory_Noetherian
|
case intro.intro.intro
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
inst✝ : IsNoetherian R M
f : M →ₗ[R] M
n : ℕ
hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m)
m : ℕ
hm : m ≥ n
x : M
hx : (f ^ m) x ∈ ↑(ker (f ^ n))
⊢ (f ^ m) x = 0
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
#align finite_of_linear_independent finite_of_linearIndependent
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N :=
isNoetherian_iff_wellFounded.2 <|
wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P)
(LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g)
(Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg)
(by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h])
#align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
rw [← hn _ hm, Submodule.eq_bot_iff]
rintro - ⟨hx, ⟨x, rfl⟩⟩
|
apply LinearMap.pow_map_zero_of_le hm
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
rw [← hn _ hm, Submodule.eq_bot_iff]
rintro - ⟨hx, ⟨x, rfl⟩⟩
|
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
|
Mathlib_RingTheory_Noetherian
|
case intro.intro.intro
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
inst✝ : IsNoetherian R M
f : M →ₗ[R] M
n : ℕ
hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m)
m : ℕ
hm : m ≥ n
x : M
hx : (f ^ m) x ∈ ↑(ker (f ^ n))
⊢ (f ^ n) x = 0
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
#align finite_of_linear_independent finite_of_linearIndependent
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N :=
isNoetherian_iff_wellFounded.2 <|
wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P)
(LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g)
(Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg)
(by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h])
#align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
rw [← hn _ hm, Submodule.eq_bot_iff]
rintro - ⟨hx, ⟨x, rfl⟩⟩
apply LinearMap.pow_map_zero_of_le hm
|
replace hx : x ∈ LinearMap.ker (f ^ (n + m)) := by
simpa [f.pow_apply n, f.pow_apply m, ← f.pow_apply (n + m), ← iterate_add_apply] using hx
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
rw [← hn _ hm, Submodule.eq_bot_iff]
rintro - ⟨hx, ⟨x, rfl⟩⟩
apply LinearMap.pow_map_zero_of_le hm
|
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
inst✝ : IsNoetherian R M
f : M →ₗ[R] M
n : ℕ
hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m)
m : ℕ
hm : m ≥ n
x : M
hx : (f ^ m) x ∈ ↑(ker (f ^ n))
⊢ x ∈ ker (f ^ (n + m))
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
#align finite_of_linear_independent finite_of_linearIndependent
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N :=
isNoetherian_iff_wellFounded.2 <|
wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P)
(LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g)
(Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg)
(by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h])
#align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
rw [← hn _ hm, Submodule.eq_bot_iff]
rintro - ⟨hx, ⟨x, rfl⟩⟩
apply LinearMap.pow_map_zero_of_le hm
replace hx : x ∈ LinearMap.ker (f ^ (n + m)) := by
|
simpa [f.pow_apply n, f.pow_apply m, ← f.pow_apply (n + m), ← iterate_add_apply] using hx
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
rw [← hn _ hm, Submodule.eq_bot_iff]
rintro - ⟨hx, ⟨x, rfl⟩⟩
apply LinearMap.pow_map_zero_of_le hm
replace hx : x ∈ LinearMap.ker (f ^ (n + m)) := by
|
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
|
Mathlib_RingTheory_Noetherian
|
case intro.intro.intro
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
inst✝ : IsNoetherian R M
f : M →ₗ[R] M
n : ℕ
hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m)
m : ℕ
hm : m ≥ n
x : M
hx : x ∈ ker (f ^ (n + m))
⊢ (f ^ n) x = 0
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
#align finite_of_linear_independent finite_of_linearIndependent
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N :=
isNoetherian_iff_wellFounded.2 <|
wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P)
(LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g)
(Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg)
(by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h])
#align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
rw [← hn _ hm, Submodule.eq_bot_iff]
rintro - ⟨hx, ⟨x, rfl⟩⟩
apply LinearMap.pow_map_zero_of_le hm
replace hx : x ∈ LinearMap.ker (f ^ (n + m)) := by
simpa [f.pow_apply n, f.pow_apply m, ← f.pow_apply (n + m), ← iterate_add_apply] using hx
|
rwa [← hn _ (n.le_add_right m)] at hx
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
rw [← hn _ hm, Submodule.eq_bot_iff]
rintro - ⟨hx, ⟨x, rfl⟩⟩
apply LinearMap.pow_map_zero_of_le hm
replace hx : x ∈ LinearMap.ker (f ^ (n + m)) := by
simpa [f.pow_apply n, f.pow_apply m, ← f.pow_apply (n + m), ← iterate_add_apply] using hx
|
Mathlib.RingTheory.Noetherian.431_0.5UPGNrmhtW81IjE
|
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n))
|
Mathlib_RingTheory_Noetherian
|
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
inst✝ : IsNoetherian R M
f : M →ₗ[R] M
⊢ ∀ᶠ (n : ℕ) in atTop, ⨆ m, ker (f ^ m) = ker (f ^ n)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
#align finite_of_linear_independent finite_of_linearIndependent
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N :=
isNoetherian_iff_wellFounded.2 <|
wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P)
(LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g)
(Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg)
(by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h])
#align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
rw [← hn _ hm, Submodule.eq_bot_iff]
rintro - ⟨hx, ⟨x, rfl⟩⟩
apply LinearMap.pow_map_zero_of_le hm
replace hx : x ∈ LinearMap.ker (f ^ (n + m)) := by
simpa [f.pow_apply n, f.pow_apply m, ← f.pow_apply (n + m), ← iterate_add_apply] using hx
rwa [← hn _ (n.le_add_right m)] at hx
#align is_noetherian.exists_endomorphism_iterate_ker_inf_range_eq_bot LinearMap.eventually_disjoint_ker_pow_range_pow
lemma LinearMap.eventually_iSup_ker_pow_eq (f : M →ₗ[R] M) :
∀ᶠ n in atTop, ⨆ m, LinearMap.ker (f ^ m) = LinearMap.ker (f ^ n) := by
|
obtain ⟨n, hn : ∀ m, n ≤ m → ker (f ^ n) = ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
|
lemma LinearMap.eventually_iSup_ker_pow_eq (f : M →ₗ[R] M) :
∀ᶠ n in atTop, ⨆ m, LinearMap.ker (f ^ m) = LinearMap.ker (f ^ n) := by
|
Mathlib.RingTheory.Noetherian.446_0.5UPGNrmhtW81IjE
|
lemma LinearMap.eventually_iSup_ker_pow_eq (f : M →ₗ[R] M) :
∀ᶠ n in atTop, ⨆ m, LinearMap.ker (f ^ m) = LinearMap.ker (f ^ n)
|
Mathlib_RingTheory_Noetherian
|
case intro
R : Type u_1
M : Type u_2
P : Type u_3
N : Type w
inst✝⁷ : Ring R
inst✝⁶ : AddCommGroup M
inst✝⁵ : Module R M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R N
inst✝² : AddCommGroup P
inst✝¹ : Module R P
inst✝ : IsNoetherian R M
f : M →ₗ[R] M
n : ℕ
hn : ∀ (m : ℕ), n ≤ m → ker (f ^ n) = ker (f ^ m)
⊢ ∀ᶠ (n : ℕ) in atTop, ⨆ m, ker (f ^ m) = ker (f ^ n)
|
/-
Copyright (c) 2018 Mario Carneiro, Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kevin Buzzard
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.Ring.Idempotents
import Mathlib.GroupTheory.Finiteness
import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.Order.CompactlyGenerated
import Mathlib.Order.Filter.EventuallyConst
import Mathlib.Order.OrderIsoNat
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Nilpotent
#align_import ring_theory.noetherian from "leanprover-community/mathlib"@"210657c4ea4a4a7b234392f70a3a2a83346dfa90"
/-!
# Noetherian rings and modules
The following are equivalent for a module M over a ring R:
1. Every increasing chain of submodules M₁ ⊆ M₂ ⊆ M₃ ⊆ ⋯ eventually stabilises.
2. Every submodule is finitely generated.
A module satisfying these equivalent conditions is said to be a *Noetherian* R-module.
A ring is a *Noetherian ring* if it is Noetherian as a module over itself.
(Note that we do not assume yet that our rings are commutative,
so perhaps this should be called "left Noetherian".
To avoid cumbersome names once we specialize to the commutative case,
we don't make this explicit in the declaration names.)
## Main definitions
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`.
* `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module. It is a class,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
## Main statements
* `isNoetherian_iff_wellFounded` is the theorem that an R-module M is Noetherian iff
`>` is well-founded on `Submodule R M`.
Note that the Hilbert basis theorem, that if a commutative ring R is Noetherian then so is R[X],
is proved in `RingTheory.Polynomial`.
## References
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald]
* [samuel1967]
## Tags
Noetherian, noetherian, Noetherian ring, Noetherian module, noetherian ring, noetherian module
-/
open Set Filter BigOperators Pointwise
/-- `IsNoetherian R M` is the proposition that `M` is a Noetherian `R`-module,
implemented as the predicate that all `R`-submodules of `M` are finitely generated.
-/
-- Porting note: should this be renamed to `Noetherian`?
class IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop where
noetherian : ∀ s : Submodule R M, s.FG
#align is_noetherian IsNoetherian
attribute [inherit_doc IsNoetherian] IsNoetherian.noetherian
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid P]
variable [Module R M] [Module R P]
open IsNoetherian
/-- An R-module is Noetherian iff all its submodules are finitely-generated. -/
theorem isNoetherian_def : IsNoetherian R M ↔ ∀ s : Submodule R M, s.FG :=
⟨fun h => h.noetherian, IsNoetherian.mk⟩
#align is_noetherian_def isNoetherian_def
theorem isNoetherian_submodule {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, s ≤ N → s.FG := by
refine ⟨fun ⟨hn⟩ => fun s hs =>
have : s ≤ LinearMap.range N.subtype := N.range_subtype.symm ▸ hs
Submodule.map_comap_eq_self this ▸ (hn _).map _,
fun h => ⟨fun s => ?_⟩⟩
have f := (Submodule.equivMapOfInjective N.subtype Subtype.val_injective s).symm
have h₁ := h (s.map N.subtype) (Submodule.map_subtype_le N s)
have h₂ : (⊤ : Submodule R (s.map N.subtype)).map f = ⊤ := by simp
have h₃ := ((Submodule.fg_top _).2 h₁).map (↑f : _ →ₗ[R] s)
exact (Submodule.fg_top _).1 (h₂ ▸ h₃)
#align is_noetherian_submodule isNoetherian_submodule
theorem isNoetherian_submodule_left {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (N ⊓ s).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_left, fun H _ hs => inf_of_le_right hs ▸ H _⟩
#align is_noetherian_submodule_left isNoetherian_submodule_left
theorem isNoetherian_submodule_right {N : Submodule R M} :
IsNoetherian R N ↔ ∀ s : Submodule R M, (s ⊓ N).FG :=
isNoetherian_submodule.trans ⟨fun H _ => H _ inf_le_right, fun H _ hs => inf_of_le_left hs ▸ H _⟩
#align is_noetherian_submodule_right isNoetherian_submodule_right
instance isNoetherian_submodule' [IsNoetherian R M] (N : Submodule R M) : IsNoetherian R N :=
isNoetherian_submodule.2 fun _ _ => IsNoetherian.noetherian _
#align is_noetherian_submodule' isNoetherian_submodule'
theorem isNoetherian_of_le {s t : Submodule R M} [ht : IsNoetherian R t] (h : s ≤ t) :
IsNoetherian R s :=
isNoetherian_submodule.mpr fun _ hs' => isNoetherian_submodule.mp ht _ (le_trans hs' h)
#align is_noetherian_of_le isNoetherian_of_le
variable (M)
theorem isNoetherian_of_surjective (f : M →ₗ[R] P) (hf : LinearMap.range f = ⊤) [IsNoetherian R M] :
IsNoetherian R P :=
⟨fun s =>
have : (s.comap f).map f = s := Submodule.map_comap_eq_self <| hf.symm ▸ le_top
this ▸ (noetherian _).map _⟩
#align is_noetherian_of_surjective isNoetherian_of_surjective
variable {M}
theorem isNoetherian_of_linearEquiv (f : M ≃ₗ[R] P) [IsNoetherian R M] : IsNoetherian R P :=
isNoetherian_of_surjective _ f.toLinearMap f.range
#align is_noetherian_of_linear_equiv isNoetherian_of_linearEquiv
theorem isNoetherian_top_iff : IsNoetherian R (⊤ : Submodule R M) ↔ IsNoetherian R M := by
constructor <;> intro h
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)
· exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm
#align is_noetherian_top_iff isNoetherian_top_iff
theorem isNoetherian_of_injective [IsNoetherian R P] (f : M →ₗ[R] P) (hf : Function.Injective f) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f hf).symm
#align is_noetherian_of_injective isNoetherian_of_injective
theorem fg_of_injective [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : Function.Injective f) : N.FG :=
haveI := isNoetherian_of_injective f hf
IsNoetherian.noetherian N
#align fg_of_injective fg_of_injective
end
namespace Module
variable {R M N : Type*}
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
variable (R M)
-- see Note [lower instance priority]
instance (priority := 100) IsNoetherian.finite [IsNoetherian R M] : Finite R M :=
⟨IsNoetherian.noetherian ⊤⟩
#align module.is_noetherian.finite Module.IsNoetherian.finite
variable {R M}
theorem Finite.of_injective [IsNoetherian R N] (f : M →ₗ[R] N) (hf : Function.Injective f) :
Finite R M :=
⟨fg_of_injective f hf⟩
#align module.finite.of_injective Module.Finite.of_injective
end Module
section
variable {R : Type*} {M : Type*} {P : Type*}
variable [Ring R] [AddCommGroup M] [AddCommGroup P]
variable [Module R M] [Module R P]
open IsNoetherian
theorem isNoetherian_of_ker_bot [IsNoetherian R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ⊥) :
IsNoetherian R M :=
isNoetherian_of_linearEquiv (LinearEquiv.ofInjective f <| LinearMap.ker_eq_bot.mp hf).symm
#align is_noetherian_of_ker_bot isNoetherian_of_ker_bot
theorem fg_of_ker_bot [IsNoetherian R P] {N : Submodule R M} (f : M →ₗ[R] P)
(hf : LinearMap.ker f = ⊥) : N.FG :=
haveI := isNoetherian_of_ker_bot f hf
IsNoetherian.noetherian N
#align fg_of_ker_bot fg_of_ker_bot
instance isNoetherian_prod [IsNoetherian R M] [IsNoetherian R P] : IsNoetherian R (M × P) :=
⟨fun s =>
Submodule.fg_of_fg_map_of_fg_inf_ker (LinearMap.snd R M P) (noetherian _) <|
have : s ⊓ LinearMap.ker (LinearMap.snd R M P) ≤ LinearMap.range (LinearMap.inl R M P) :=
fun x ⟨_, hx2⟩ => ⟨x.1, Prod.ext rfl <| Eq.symm <| LinearMap.mem_ker.1 hx2⟩
Submodule.map_comap_eq_self this ▸ (noetherian _).map _⟩
#align is_noetherian_prod isNoetherian_prod
instance isNoetherian_pi {R ι : Type*} {M : ι → Type*}
[Ring R] [∀ i, AddCommGroup (M i)] [∀ i, Module R (M i)] [Finite ι]
[∀ i, IsNoetherian R (M i)] : IsNoetherian R (∀ i, M i) := by
cases nonempty_fintype ι
haveI := Classical.decEq ι
suffices on_finset : ∀ s : Finset ι, IsNoetherian R (∀ i : s, M i)
· let coe_e := Equiv.subtypeUnivEquiv <| @Finset.mem_univ ι _
letI : IsNoetherian R (∀ i : Finset.univ, M (coe_e i)) := on_finset Finset.univ
exact isNoetherian_of_linearEquiv (LinearEquiv.piCongrLeft R M coe_e)
intro s
induction' s using Finset.induction with a s has ih
· exact ⟨fun s => by
have : s = ⊥ := by simp only [eq_iff_true_of_subsingleton]
rw [this]
apply Submodule.fg_bot⟩
refine
@isNoetherian_of_linearEquiv R (M a × ((i : s) → M i)) _ _ _ _ _ _ ?_ <|
@isNoetherian_prod R (M a) _ _ _ _ _ _ _ ih
refine
{ toFun := fun f i =>
(Finset.mem_insert.1 i.2).by_cases
(fun h : i.1 = a => show M i.1 from Eq.recOn h.symm f.1)
(fun h : i.1 ∈ s => show M i.1 from f.2 ⟨i.1, h⟩),
invFun := fun f =>
(f ⟨a, Finset.mem_insert_self _ _⟩, fun i => f ⟨i.1, Finset.mem_insert_of_mem i.2⟩),
map_add' := ?_,
map_smul' := ?_
left_inv := ?_,
right_inv := ?_ }
· intro f g
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· change _ = _ + _
simp only [dif_pos]
rfl
· change _ = _ + _
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
rfl
· intro c f
ext i
unfold Or.by_cases
cases' i with i hi
rcases Finset.mem_insert.1 hi with (rfl | h)
· dsimp
simp only [dif_pos]
· dsimp
have : ¬i = a := by
rintro rfl
exact has h
simp only [dif_neg this, dif_pos h]
· intro f
apply Prod.ext
· simp only [Or.by_cases, dif_pos]
· ext ⟨i, his⟩
have : ¬i = a := by
rintro rfl
exact has his
simp only [Or.by_cases, this, not_false_iff, dif_neg]
· intro f
ext ⟨i, hi⟩
rcases Finset.mem_insert.1 hi with (rfl | h)
· simp only [Or.by_cases, dif_pos]
· have : ¬i = a := by
rintro rfl
exact has h
simp only [Or.by_cases, dif_neg this, dif_pos h]
#align is_noetherian_pi isNoetherian_pi
/-- A version of `isNoetherian_pi` for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/
instance isNoetherian_pi' {R ι M : Type*} [Ring R] [AddCommGroup M] [Module R M] [Finite ι]
[IsNoetherian R M] : IsNoetherian R (ι → M) :=
isNoetherian_pi
#align is_noetherian_pi' isNoetherian_pi'
end
section CommRing
variable (R M N : Type*) [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
[IsNoetherian R M] [Module.Finite R N]
instance isNoetherian_linearMap_pi {ι : Type*} [Finite ι] : IsNoetherian R ((ι → R) →ₗ[R] M) :=
let _i : Fintype ι := Fintype.ofFinite ι; isNoetherian_of_linearEquiv (Module.piEquiv ι R M)
instance isNoetherian_linearMap : IsNoetherian R (N →ₗ[R] M) := by
obtain ⟨n, f, hf⟩ := Module.Finite.exists_fin' R N
let g : (N →ₗ[R] M) →ₗ[R] (Fin n → R) →ₗ[R] M := (LinearMap.llcomp R (Fin n → R) N M).flip f
exact isNoetherian_of_injective g hf.injective_linearMapComp_right
end CommRing
open IsNoetherian Submodule Function
section
universe w
variable {R M P : Type*} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N]
[Module R N] [AddCommMonoid P] [Module R P]
theorem isNoetherian_iff_wellFounded :
IsNoetherian R M ↔ WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) := by
have := (CompleteLattice.wellFounded_characterisations <| Submodule R M).out 0 3
-- Porting note: inlining this makes rw complain about it being a metavariable
rw [this]
exact
⟨fun ⟨h⟩ => fun k => (fg_iff_compact k).mp (h k), fun h =>
⟨fun k => (fg_iff_compact k).mpr (h k)⟩⟩
#align is_noetherian_iff_well_founded isNoetherian_iff_wellFounded
theorem isNoetherian_iff_fg_wellFounded :
IsNoetherian R M ↔
WellFounded
((· > ·) : { N : Submodule R M // N.FG } → { N : Submodule R M // N.FG } → Prop) := by
let α := { N : Submodule R M // N.FG }
constructor
· intro H
let f : α ↪o Submodule R M := OrderEmbedding.subtype _
exact OrderEmbedding.wellFounded f.dual (isNoetherian_iff_wellFounded.mp H)
· intro H
constructor
intro N
obtain ⟨⟨N₀, h₁⟩, e : N₀ ≤ N, h₂⟩ :=
WellFounded.has_min H { N' : α | N'.1 ≤ N } ⟨⟨⊥, Submodule.fg_bot⟩, @bot_le _ _ _ N⟩
convert h₁
refine' (e.antisymm _).symm
by_contra h₃
obtain ⟨x, hx₁ : x ∈ N, hx₂ : x ∉ N₀⟩ := Set.not_subset.mp h₃
apply hx₂
rw [eq_of_le_of_not_lt (le_sup_right : N₀ ≤ _) (h₂
⟨_, Submodule.FG.sup ⟨{x}, by rw [Finset.coe_singleton]⟩ h₁⟩ <|
sup_le ((Submodule.span_singleton_le_iff_mem _ _).mpr hx₁) e)]
exact (le_sup_left : (R ∙ x) ≤ _) (Submodule.mem_span_singleton_self _)
#align is_noetherian_iff_fg_well_founded isNoetherian_iff_fg_wellFounded
variable (R M)
theorem wellFounded_submodule_gt (R M) [Semiring R] [AddCommMonoid M] [Module R M] :
∀ [IsNoetherian R M], WellFounded ((· > ·) : Submodule R M → Submodule R M → Prop) :=
isNoetherian_iff_wellFounded.mp ‹_›
#align well_founded_submodule_gt wellFounded_submodule_gt
variable {R M}
/-- A module is Noetherian iff every nonempty set of submodules has a maximal submodule among them.
-/
theorem set_has_maximal_iff_noetherian :
(∀ a : Set <| Submodule R M, a.Nonempty → ∃ M' ∈ a, ∀ I ∈ a, ¬M' < I) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.wellFounded_iff_has_min]
#align set_has_maximal_iff_noetherian set_has_maximal_iff_noetherian
/-- A module is Noetherian iff every increasing chain of submodules stabilizes. -/
theorem monotone_stabilizes_iff_noetherian :
(∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
#align monotone_stabilizes_iff_noetherian monotone_stabilizes_iff_noetherian
theorem eventuallyConst_of_isNoetherian [IsNoetherian R M] (f : ℕ →o Submodule R M) :
atTop.EventuallyConst f := by
simp_rw [eventuallyConst_atTop, eq_comm]
exact (monotone_stabilizes_iff_noetherian.mpr inferInstance) f
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
theorem IsNoetherian.induction [IsNoetherian R M] {P : Submodule R M → Prop}
(hgt : ∀ I, (∀ J > I, P J) → P I) (I : Submodule R M) : P I :=
WellFounded.recursion (wellFounded_submodule_gt R M) I hgt
#align is_noetherian.induction IsNoetherian.induction
end
section
universe w
variable {R M P : Type*} {N : Type w} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N]
[Module R N] [AddCommGroup P] [Module R P] [IsNoetherian R M]
lemma Submodule.finite_ne_bot_of_independent {ι : Type*} {N : ι → Submodule R M}
(h : CompleteLattice.Independent N) :
Set.Finite {i | N i ≠ ⊥} :=
CompleteLattice.WellFounded.finite_ne_bot_of_independent
(isNoetherian_iff_wellFounded.mp inferInstance) h
theorem finite_of_linearIndependent [Nontrivial R] {s : Set M}
(hs : LinearIndependent R ((↑) : s → M)) : s.Finite := by
refine'
by_contradiction fun hf =>
(RelEmbedding.wellFounded_iff_no_descending_seq.1 (wellFounded_submodule_gt R M)).elim' _
have f : ℕ ↪ s := Set.Infinite.natEmbedding s hf
have : ∀ n, (↑) ∘ f '' { m | m ≤ n } ⊆ s := by
rintro n x ⟨y, _, rfl⟩
exact (f y).2
let coe' : s → M := (↑)
have : ∀ a b : ℕ, a ≤ b ↔
span R (coe' ∘ f '' { m | m ≤ a }) ≤ span R ((↑) ∘ f '' { m | m ≤ b }) := by
intro a b
rw [span_le_span_iff hs (this a) (this b),
Set.image_subset_image_iff (Subtype.coe_injective.comp f.injective), Set.subset_def]
exact ⟨fun hab x (hxa : x ≤ a) => le_trans hxa hab, fun hx => hx a (le_refl a)⟩
exact
⟨⟨fun n => span R (coe' ∘ f '' { m | m ≤ n }), fun x y => by
rw [le_antisymm_iff, (this x y).symm, (this y x).symm, ← le_antisymm_iff, imp_self]
trivial⟩,
by dsimp [GT.gt]; simp only [lt_iff_le_not_le, (this _ _).symm]; tauto⟩
#align finite_of_linear_independent finite_of_linearIndependent
/-- If the first and final modules in a short exact sequence are Noetherian,
then the middle module is also Noetherian. -/
theorem isNoetherian_of_range_eq_ker [IsNoetherian R P] (f : M →ₗ[R] N)
(g : N →ₗ[R] P) (hf : Function.Injective f) (hg : Function.Surjective g)
(h : LinearMap.range f = LinearMap.ker g) :
IsNoetherian R N :=
isNoetherian_iff_wellFounded.2 <|
wellFounded_gt_exact_sequence (wellFounded_submodule_gt R M) (wellFounded_submodule_gt R P)
(LinearMap.range f) (Submodule.map f) (Submodule.comap f) (Submodule.comap g)
(Submodule.map g) (Submodule.gciMapComap hf) (Submodule.giMapComap hg)
(by simp [Submodule.map_comap_eq, inf_comm]) (by simp [Submodule.comap_map_eq, h])
#align is_noetherian_of_range_eq_ker isNoetherian_of_range_eq_ker
/-- For an endomorphism of a Noetherian module, any sufficiently large iterate has disjoint kernel
and range. -/
theorem LinearMap.eventually_disjoint_ker_pow_range_pow (f : M →ₗ[R] M) :
∀ᶠ n in atTop, Disjoint (LinearMap.ker (f ^ n)) (LinearMap.range (f ^ n)) := by
obtain ⟨n, hn : ∀ m, n ≤ m → LinearMap.ker (f ^ n) = LinearMap.ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
refine eventually_atTop.mpr ⟨n, fun m hm ↦ disjoint_iff.mpr ?_⟩
rw [← hn _ hm, Submodule.eq_bot_iff]
rintro - ⟨hx, ⟨x, rfl⟩⟩
apply LinearMap.pow_map_zero_of_le hm
replace hx : x ∈ LinearMap.ker (f ^ (n + m)) := by
simpa [f.pow_apply n, f.pow_apply m, ← f.pow_apply (n + m), ← iterate_add_apply] using hx
rwa [← hn _ (n.le_add_right m)] at hx
#align is_noetherian.exists_endomorphism_iterate_ker_inf_range_eq_bot LinearMap.eventually_disjoint_ker_pow_range_pow
lemma LinearMap.eventually_iSup_ker_pow_eq (f : M →ₗ[R] M) :
∀ᶠ n in atTop, ⨆ m, LinearMap.ker (f ^ m) = LinearMap.ker (f ^ n) := by
obtain ⟨n, hn : ∀ m, n ≤ m → ker (f ^ n) = ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
|
refine eventually_atTop.mpr ⟨n, fun m hm ↦ ?_⟩
|
lemma LinearMap.eventually_iSup_ker_pow_eq (f : M →ₗ[R] M) :
∀ᶠ n in atTop, ⨆ m, LinearMap.ker (f ^ m) = LinearMap.ker (f ^ n) := by
obtain ⟨n, hn : ∀ m, n ≤ m → ker (f ^ n) = ker (f ^ m)⟩ :=
monotone_stabilizes_iff_noetherian.mpr inferInstance f.iterateKer
|
Mathlib.RingTheory.Noetherian.446_0.5UPGNrmhtW81IjE
|
lemma LinearMap.eventually_iSup_ker_pow_eq (f : M →ₗ[R] M) :
∀ᶠ n in atTop, ⨆ m, LinearMap.ker (f ^ m) = LinearMap.ker (f ^ n)
|
Mathlib_RingTheory_Noetherian
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.