state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case p_linear F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f), ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h ⊢ Polynomial.map (algebraMap (↥F⟮γ⟯) E) p = C (leadingCoeff h) * (X - C β)
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f), ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h ⊢ ∀ x ∈ roots (Polynomial.map ιEE' h), x = ιEE' β
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
intro x hx
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f), ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : x ∈ roots (Polynomial.map ιEE' h) ⊢ x = ιEE' β
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx
rw [mem_roots_map h_ne_zero] at hx
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f), ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 ⊢ x = ιEE' β
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx
specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f), ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 ⊢ ιEE' γ - ιEE' (ιFE c) * x ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f)
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
have f_root := root_left_of_root_gcd hx
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f), ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 f_root : eval₂ ιEE' x (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) = 0 ⊢ ιEE' γ - ιEE' (ιFE c) * x ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f)
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f), ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 f_root : eval₂ (RingHom.comp ιEE' ιFE) (ιEE' γ - ιEE' (ιFE c) * x) f = 0 ⊢ ιEE' γ - ιEE' (ιFE c) * x ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f)
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(ιEE' γ - ιEE' (ιFE c) * x - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c ⊢ x = ιEE' β
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx)
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(ιEE' γ - ιEE' (ιFE c) * x - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c ⊢ x ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g)
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(ιEE' γ - ιEE' (ιFE c) * x - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c ⊢ eval₂ ιEE' x (Polynomial.map ιFE (minpoly F β)) = 0
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : -(ιEE' γ - ιEE' (ιFE c) * x - ιEE' α) / (x - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c ⊢ x = ιEE' β
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx)
by_contra a
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx)
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : -(ιEE' γ - ιEE' (ιFE c) * x - ιEE' α) / (x - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c a : ¬x = ιEE' β ⊢ False
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a
apply hc
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : -(ιEE' γ - ιEE' (ιFE c) * x - ιEE' α) / (x - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c a : ¬x = ιEE' β ⊢ -(ιEE' γ - ιEE' (ιFE c) * x - ιEE' α) / (x - ιEE' β) = (RingHom.comp ιEE' ιFE) c
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : -(ιEE' γ - ιEE' (ιFE c) * x - ιEE' α) / (x - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c a : ¬x = ιEE' β ⊢ -(ιEE' γ - ιEE' (ιFE c) * x - ιEE' α) = (RingHom.comp ιEE' ιFE) c * (x - ιEE' β)
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : -(ιEE' γ - ιEE' (ιFE c) * x - ιEE' α) / (x - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c a : ¬x = ιEE' β ⊢ -((algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) α + (algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) ((algebraMap F E) c) * (algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) β - (algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) ((algebraMap F E) c) * x - (algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) α) = (algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) ((algebraMap F E) c) * (x - (algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) β)
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case p_linear F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f), ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h h_roots : ∀ x ∈ roots (Polynomial.map ιEE' h), x = ιEE' β ⊢ Polynomial.map (algebraMap (↥F⟮γ⟯) E) p = C (leadingCoeff h) * (X - C β)
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case p_linear F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f), ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h h_roots : ∀ x ∈ roots (Polynomial.map ιEE' h), x = ιEE' β ⊢ Polynomial.map (algebraMap (↥F⟮γ⟯) E) p = h
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f), ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h h_roots : ∀ x ∈ roots (Polynomial.map ιEE' h), x = ιEE' β ⊢ Polynomial.map (algebraMap (↥F⟮γ⟯) E) p = EuclideanDomain.gcd ?p_linear.p_linear_1 ?p_linear.p_linear_2
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) ·
dsimp only
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) ·
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f), ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h h_roots : ∀ x ∈ roots (Polynomial.map ιEE' h), x = ιEE' β ⊢ Polynomial.map (algebraMap (↥F⟮α + c • β⟯) E) (EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮α + c • β⟯) (minpoly F α)) (C (AdjoinSimple.gen F (α + c • β)) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮α + c • β⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮α + c • β⟯) (minpoly F β))) = EuclideanDomain.gcd ?p_linear.p_linear_1 ?p_linear.p_linear_2
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f), ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h h_roots : ∀ x ∈ roots (Polynomial.map ιEE' h), x = ιEE' β ⊢ EuclideanDomain.gcd (Polynomial.map (algebraMap (↥F⟮γ⟯) E) (comp (Polynomial.map (algebraMap F ↥F⟮α + c • β⟯) (minpoly F α)) (C (AdjoinSimple.gen F (α + c • β)) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮α + c • β⟯) } * X))) (Polynomial.map (algebraMap (↥F⟮γ⟯) E) (Polynomial.map (algebraMap F ↥F⟮α + c • β⟯) (minpoly F β))) = h
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm ·
simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm ·
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f), ∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : (↥F⟮γ⟯)[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f) (C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F ↥F⟮γ⟯) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h h_roots : ∀ x ∈ roots (Polynomial.map ιEE' h), x = ιEE' β ⊢ EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F E) (minpoly F α)) (C α + C (c • β) - C ((algebraMap (↥F⟮α + c • β⟯) E) { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮α + c • β⟯) }) * X)) (Polynomial.map (algebraMap F E) (minpoly F β)) = EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F E) (minpoly F α)) (C α + C (c • β) - C ((algebraMap F E) c) * X)) (Polynomial.map (algebraMap F E) (minpoly F β))
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
congr
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X]
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) ⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ ⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case intro.intro.intro F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y ⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
use α + x • β
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y ⊢ F⟮α, β⟯ = F⟮α + x • β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β
apply le_antisymm
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y ⊢ F⟮α, β⟯ ≤ F⟮α + x • β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm ·
rw [adjoin_le_iff]
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm ·
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y ⊢ {α, β} ≤ ↑F⟮α + x • β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff]
have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff]
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ ⊢ {α, β} ≤ ↑F⟮α + x • β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ ⊢ {α, β} ≤ ↑F⟮α + x • β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
simp only [← heq] at αyβ_in_K
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ αyβ_in_K : α + y • β ∈ F⟮α + x • β⟯ ⊢ {α, β} ≤ ↑F⟮α + x • β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K
have β_in_K := sub_mem αxβ_in_K αyβ_in_K
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ αyβ_in_K : α + y • β ∈ F⟮α + x • β⟯ β_in_K : α + x • β - (α + y • β) ∈ F⟮α + x • β⟯ ⊢ {α, β} ≤ ↑F⟮α + x • β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K
rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ αyβ_in_K : α + y • β ∈ F⟮α + x • β⟯ β_in_K : α + x • β - (α + y • β) ∈ F⟮α + x • β⟯ ⊢ α + x • β - (α + y • β) = (x - y) • β
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by
rw [sub_smul]
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ αyβ_in_K : α + y • β ∈ F⟮α + x • β⟯ β_in_K : α + x • β - (α + y • β) ∈ F⟮α + x • β⟯ ⊢ α + x • β - (α + y • β) = x • β - y • β
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul];
abel1
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul];
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ αyβ_in_K : α + y • β ∈ F⟮α + x • β⟯ β_in_K : (x - y) • β ∈ F⟮α + x • β⟯ ⊢ {α, β} ≤ ↑F⟮α + x • β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ αyβ_in_K : α + y • β ∈ F⟮α + x • β⟯ β_in_K : (x - y)⁻¹ • (x - y) • β ∈ F⟮α + x • β⟯ ⊢ {α, β} ≤ ↑F⟮α + x • β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹)
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ αyβ_in_K : α + y • β ∈ F⟮α + x • β⟯ β_in_K : β ∈ F⟮α + x • β⟯ ⊢ {α, β} ≤ ↑F⟮α + x • β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ αyβ_in_K : α + y • β ∈ F⟮α + x • β⟯ β_in_K : β ∈ F⟮α + x • β⟯ ⊢ α ∈ F⟮α + x • β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by
convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.e'_4 F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ αyβ_in_K : α + y • β ∈ F⟮α + x • β⟯ β_in_K : β ∈ F⟮α + x • β⟯ ⊢ α + x • β - ?m.561975 • β = α F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ αyβ_in_K : α + y • β ∈ F⟮α + x • β⟯ β_in_K : β ∈ F⟮α + x • β⟯ ⊢ F
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
apply add_sub_cancel
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K)
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ αyβ_in_K : α + y • β ∈ F⟮α + x • β⟯ β_in_K : β ∈ F⟮α + x • β⟯ α_in_K : α ∈ F⟮α + x • β⟯ ⊢ {α, β} ≤ ↑F⟮α + x • β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel
rintro x (rfl | rfl)
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a.inl F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) x✝ y : F hneq : x✝ ≠ y x : E f : F → IntermediateField F E := fun x_1 => F⟮x + x_1 • β⟯ heq : f x✝ = f y αxβ_in_K : x + x✝ • β ∈ F⟮x + x✝ • β⟯ αyβ_in_K : x + y • β ∈ F⟮x + x✝ • β⟯ β_in_K : β ∈ F⟮x + x✝ • β⟯ α_in_K : x ∈ F⟮x + x✝ • β⟯ ⊢ x ∈ ↑F⟮x + x✝ • β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;>
assumption
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;>
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a.inr F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) x✝ y : F hneq : x✝ ≠ y x : E f : F → IntermediateField F E := fun x_1 => F⟮α + x_1 • x⟯ heq : f x✝ = f y αxβ_in_K : α + x✝ • x ∈ F⟮α + x✝ • x⟯ αyβ_in_K : α + y • x ∈ F⟮α + x✝ • x⟯ β_in_K : x ∈ F⟮α + x✝ • x⟯ α_in_K : α ∈ F⟮α + x✝ • x⟯ ⊢ x ∈ ↑F⟮α + x✝ • x⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;>
assumption
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;>
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y ⊢ F⟮α + x • β⟯ ≤ F⟮α, β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption ·
rw [adjoin_simple_le_iff]
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption ·
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y ⊢ α + x • β ∈ F⟮α, β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff]
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y α_in_Fαβ : α ∈ F⟮α, β⟯ ⊢ α + x • β ∈ F⟮α, β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) f : F → IntermediateField F E := fun x => F⟮α + x • β⟯ x y : F hneq : x ≠ y heq : f x = f y α_in_Fαβ : α ∈ F⟮α, β⟯ β_in_Fαβ : β ∈ F⟮α, β⟯ ⊢ α + x • β ∈ F⟮α, β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
Mathlib.FieldTheory.PrimitiveElement.181_0.R5HND7n71i1v1rZ
private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E ⊢ ∃ α, F⟮α⟯ = ⊤
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by
Mathlib.FieldTheory.PrimitiveElement.214_0.R5HND7n71i1v1rZ
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤
Mathlib_FieldTheory_PrimitiveElement
case inl F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) ⊢ ∃ α, F⟮α⟯ = ⊤
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) ·
let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) ·
Mathlib.FieldTheory.PrimitiveElement.214_0.R5HND7n71i1v1rZ
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤
Mathlib_FieldTheory_PrimitiveElement
case inl F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K ⊢ ∃ α, F⟮α⟯ = ⊤
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
have base : P ⊥ := ⟨0, adjoin_zero⟩
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
Mathlib.FieldTheory.PrimitiveElement.214_0.R5HND7n71i1v1rZ
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤
Mathlib_FieldTheory_PrimitiveElement
case inl F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ ⊢ ∃ α, F⟮α⟯ = ⊤
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩
Mathlib.FieldTheory.PrimitiveElement.214_0.R5HND7n71i1v1rZ
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ ⊢ ∀ (K : IntermediateField F E) (x : E), P K → P (restrictScalars F (↥K)⟮x⟯)
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
intro K β hK
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by
Mathlib.FieldTheory.PrimitiveElement.214_0.R5HND7n71i1v1rZ
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ K : IntermediateField F E β : E hK : P K ⊢ P (restrictScalars F (↥K)⟮β⟯)
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK
cases' hK with α hK
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK
Mathlib.FieldTheory.PrimitiveElement.214_0.R5HND7n71i1v1rZ
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤
Mathlib_FieldTheory_PrimitiveElement
case intro F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ K : IntermediateField F E β α : E hK : F⟮α⟯ = K ⊢ P (restrictScalars F (↥K)⟮β⟯)
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK
Mathlib.FieldTheory.PrimitiveElement.214_0.R5HND7n71i1v1rZ
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤
Mathlib_FieldTheory_PrimitiveElement
case intro F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ K : IntermediateField F E β α : E hK : F⟮α⟯ = K ⊢ P F⟮α, β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple]
Mathlib.FieldTheory.PrimitiveElement.214_0.R5HND7n71i1v1rZ
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤
Mathlib_FieldTheory_PrimitiveElement
case intro F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ K : IntermediateField F E β α : E hK : F⟮α⟯ = K this : Infinite F ⊢ P F⟮α, β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf
Mathlib.FieldTheory.PrimitiveElement.214_0.R5HND7n71i1v1rZ
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤
Mathlib_FieldTheory_PrimitiveElement
case intro.intro F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ K : IntermediateField F E β α : E hK : F⟮α⟯ = K this : Infinite F γ : E hγ : F⟮α, β⟯ = F⟮γ⟯ ⊢ P F⟮α, β⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ
Mathlib.FieldTheory.PrimitiveElement.214_0.R5HND7n71i1v1rZ
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤
Mathlib_FieldTheory_PrimitiveElement
case inl F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ ih : ∀ (K : IntermediateField F E) (x : E), P K → P (restrictScalars F (↥K)⟮x⟯) ⊢ ∃ α, F⟮α⟯ = ⊤
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩
exact induction_on_adjoin P base ih ⊤
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩
Mathlib.FieldTheory.PrimitiveElement.214_0.R5HND7n71i1v1rZ
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤
Mathlib_FieldTheory_PrimitiveElement
case inr.intro F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_finite : Fintype F ⊢ ∃ α, F⟮α⟯ = ⊤
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ ·
exact exists_primitive_element_of_finite_bot F E
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ ·
Mathlib.FieldTheory.PrimitiveElement.214_0.R5HND7n71i1v1rZ
/-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
wlog hmn : m < n
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case inr F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ this : ∀ (F : Type u_1) (E : Type u_2) [inst : Field F] [inst_1 : Field E] [inst_2 : Algebra F E] {α : E} {m n : ℕ}, m ≠ n → F⟮α ^ m⟯ = F⟮α ^ n⟯ → m < n → IsAlgebraic F α hmn : ¬m < n ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n ·
exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n ·
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
by_cases hm : m = 0
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn)
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case pos F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : m = 0 ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 ·
rw [hm] at heq hmn
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 ·
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case pos F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ 0⟯ = F⟮α ^ n⟯ hmn : 0 < n hm : m = 0 ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn
simp only [pow_zero, adjoin_one] at heq
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case pos F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n hmn : 0 < n hm : m = 0 heq : ⊥ = F⟮α ^ n⟯ ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq
obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case pos.intro F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n hmn : 0 < n hm : m = 0 heq : ⊥ = F⟮α ^ n⟯ y : F h : (algebraMap F E) y = α ^ n ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n))
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case pos.intro F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n hmn : 0 < n hm : m = 0 heq : ⊥ = F⟮α ^ n⟯ y : F h : (algebraMap F E) y = α ^ n ⊢ (aeval α) (X ^ n - C y) = 0
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case neg F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : ¬m = 0 ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
replace hm : 0 < m := Nat.pos_of_ne_zero hm
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self]
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case neg F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm
obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case neg.intro.intro F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m = (aeval (α ^ n)) r / (aeval (α ^ n)) s ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
by_cases hzero : aeval (α ^ n) s = 0
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m))
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case pos F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m = (aeval (α ^ n)) r / (aeval (α ^ n)) s hzero : (aeval (α ^ n)) s = 0 ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 ·
simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 ·
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case pos F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] hzero : (aeval (α ^ n)) s = 0 h : α = 0 ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
exact h.symm ▸ isAlgebraic_zero
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case neg F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m = (aeval (α ^ n)) r / (aeval (α ^ n)) s hzero : ¬(aeval (α ^ n)) s = 0 ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero ·
rw [eq_div_iff hzero, ← sub_eq_zero] at h
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero ·
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case neg F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : ¬(aeval (α ^ n)) s = 0 ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h
replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : ¬(aeval (α ^ n)) s = 0 ⊢ s ≠ 0
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by
rintro rfl
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r : F[X] h : α ^ m * (aeval (α ^ n)) 0 - (aeval (α ^ n)) r = 0 hzero : ¬(aeval (α ^ n)) 0 = 0 ⊢ False
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl;
simp only [map_zero, not_true_eq_false] at hzero
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl;
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case neg F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : s ≠ 0 ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
let f : F[X] := X ^ m * expand F n s - expand F n r
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case neg F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : s ≠ 0 f : F[X] := X ^ m * (expand F n) s - (expand F n) r ⊢ IsAlgebraic F α
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r
refine ⟨f, ?_, ?_⟩
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case neg.refine_1 F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : s ≠ 0 f : F[X] := X ^ m * (expand F n) s - (expand F n) r ⊢ f ≠ 0
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ ·
have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ ·
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : s ≠ 0 f : F[X] := X ^ m * (expand F n) s - (expand F n) r ⊢ coeff f (n * natDegree s + m) ≠ 0
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by
have hn : 0 < n := by linarith only [hm, hmn]
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : s ≠ 0 f : F[X] := X ^ m * (expand F n) s - (expand F n) r ⊢ 0 < n
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by
linarith only [hm, hmn]
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : s ≠ 0 f : F[X] := X ^ m * (expand F n) s - (expand F n) r hn : 0 < n ⊢ coeff f (n * natDegree s + m) ≠ 0
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn]
have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn]
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : s ≠ 0 f : F[X] := X ^ m * (expand F n) s - (expand F n) r hn : 0 < n ⊢ ¬n ∣ n * natDegree s + m
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by
rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : s ≠ 0 f : F[X] := X ^ m * (expand F n) s - (expand F n) r hn : 0 < n ⊢ ¬n ∣ m
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
exact Nat.not_dvd_of_pos_of_lt hm hmn
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)]
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : s ≠ 0 f : F[X] := X ^ m * (expand F n) s - (expand F n) r hn : 0 < n hndvd : ¬n ∣ n * natDegree s + m ⊢ coeff f (n * natDegree s + m) ≠ 0
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn
simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero]
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : s ≠ 0 f : F[X] := X ^ m * (expand F n) s - (expand F n) r hn : 0 < n hndvd : ¬n ∣ n * natDegree s + m ⊢ leadingCoeff s ≠ 0
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero]
exact leadingCoeff_ne_zero.2 hzero
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero]
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case neg.refine_1 F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : s ≠ 0 f : F[X] := X ^ m * (expand F n) s - (expand F n) r this : coeff f (n * natDegree s + m) ≠ 0 ⊢ f ≠ 0
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero
intro h
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case neg.refine_1 F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h✝ : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : s ≠ 0 f : F[X] := X ^ m * (expand F n) s - (expand F n) r this : coeff f (n * natDegree s + m) ≠ 0 h : f = 0 ⊢ False
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h
simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
case neg.refine_2 F✝ : Type u_1 E✝ : Type u_2 inst✝⁵ : Field F✝ inst✝⁴ : Field E✝ inst✝³ : Algebra F✝ E✝ F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Field E inst✝ : Algebra F E α : E m n : ℕ hneq : m ≠ n heq : F⟮α ^ m⟯ = F⟮α ^ n⟯ hmn : m < n hm : 0 < m r s : F[X] h : α ^ m * (aeval (α ^ n)) s - (aeval (α ^ n)) r = 0 hzero : s ≠ 0 f : F[X] := X ^ m * (expand F n) s - (expand F n) r ⊢ (aeval α) f = 0
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this ·
simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h]
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this ·
Mathlib.FieldTheory.PrimitiveElement.247_0.R5HND7n71i1v1rZ
theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) ⊢ FiniteDimensional F E
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this · simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h] theorem isAlgebraic_of_finite_intermediateField [Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦ have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯ isAlgebraic_of_adjoin_eq_adjoin F E hneq heq theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by
let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by
Mathlib.FieldTheory.PrimitiveElement.283_0.R5HND7n71i1v1rZ
theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) IF : Type u_2 := { K // ∃ x, K = F⟮x⟯ } ⊢ FiniteDimensional F E
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this · simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h] theorem isAlgebraic_of_finite_intermediateField [Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦ have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯ isAlgebraic_of_adjoin_eq_adjoin F E hneq heq theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral
theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ }
Mathlib.FieldTheory.PrimitiveElement.283_0.R5HND7n71i1v1rZ
theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) IF : Type u_2 := { K // ∃ x, K = F⟮x⟯ } this : ∀ (K : IF), FiniteDimensional F ↥↑K ⊢ FiniteDimensional F E
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this · simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h] theorem isAlgebraic_of_finite_intermediateField [Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦ have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯ isAlgebraic_of_adjoin_eq_adjoin F E hneq heq theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral
have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral
Mathlib.FieldTheory.PrimitiveElement.283_0.R5HND7n71i1v1rZ
theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) IF : Type u_2 := { K // ∃ x, K = F⟮x⟯ } this : ∀ (K : IF), FiniteDimensional F ↥↑K hfin : FiniteDimensional F ↥(⨆ i, ↑i) ⊢ FiniteDimensional F E
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this · simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h] theorem isAlgebraic_of_finite_intermediateField [Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦ have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯ isAlgebraic_of_adjoin_eq_adjoin F E hneq heq theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦ le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1)
Mathlib.FieldTheory.PrimitiveElement.283_0.R5HND7n71i1v1rZ
theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) IF : Type u_2 := { K // ∃ x, K = F⟮x⟯ } this : ∀ (K : IF), FiniteDimensional F ↥↑K hfin : FiniteDimensional F ↥(⨆ i, ↑i) htop : ⨆ K, ↑K = ⊤ ⊢ FiniteDimensional F E
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this · simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h] theorem isAlgebraic_of_finite_intermediateField [Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦ have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯ isAlgebraic_of_adjoin_eq_adjoin F E hneq heq theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1) have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦ le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
rw [htop] at hfin
theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1) have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦ le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x
Mathlib.FieldTheory.PrimitiveElement.283_0.R5HND7n71i1v1rZ
theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) IF : Type u_2 := { K // ∃ x, K = F⟮x⟯ } this : ∀ (K : IF), FiniteDimensional F ↥↑K hfin : FiniteDimensional F ↥⊤ htop : ⨆ K, ↑K = ⊤ ⊢ FiniteDimensional F E
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this · simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h] theorem isAlgebraic_of_finite_intermediateField [Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦ have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯ isAlgebraic_of_adjoin_eq_adjoin F E hneq heq theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1) have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦ le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x rw [htop] at hfin
exact topEquiv.toLinearEquiv.finiteDimensional
theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1) have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦ le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x rw [htop] at hfin
Mathlib.FieldTheory.PrimitiveElement.283_0.R5HND7n71i1v1rZ
theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) K : IntermediateField F E ⊢ ∃ α, F⟮α⟯ = K
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this · simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h] theorem isAlgebraic_of_finite_intermediateField [Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦ have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯ isAlgebraic_of_adjoin_eq_adjoin F E hneq heq theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1) have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦ le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x rw [htop] at hfin exact topEquiv.toLinearEquiv.finiteDimensional theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
haveI := finiteDimensional_of_finite_intermediateField F E
theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by
Mathlib.FieldTheory.PrimitiveElement.294_0.R5HND7n71i1v1rZ
theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) K : IntermediateField F E this : FiniteDimensional F E ⊢ ∃ α, F⟮α⟯ = K
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this · simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h] theorem isAlgebraic_of_finite_intermediateField [Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦ have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯ isAlgebraic_of_adjoin_eq_adjoin F E hneq heq theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1) have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦ le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x rw [htop] at hfin exact topEquiv.toLinearEquiv.finiteDimensional theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by haveI := finiteDimensional_of_finite_intermediateField F E
rcases finite_or_infinite F with (_ | _)
theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by haveI := finiteDimensional_of_finite_intermediateField F E
Mathlib.FieldTheory.PrimitiveElement.294_0.R5HND7n71i1v1rZ
theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K
Mathlib_FieldTheory_PrimitiveElement
case inl F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) K : IntermediateField F E this : FiniteDimensional F E h✝ : Finite F ⊢ ∃ α, F⟮α⟯ = K
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this · simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h] theorem isAlgebraic_of_finite_intermediateField [Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦ have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯ isAlgebraic_of_adjoin_eq_adjoin F E hneq heq theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1) have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦ le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x rw [htop] at hfin exact topEquiv.toLinearEquiv.finiteDimensional theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by haveI := finiteDimensional_of_finite_intermediateField F E rcases finite_or_infinite F with (_ | _) ·
obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by haveI := finiteDimensional_of_finite_intermediateField F E rcases finite_or_infinite F with (_ | _) ·
Mathlib.FieldTheory.PrimitiveElement.294_0.R5HND7n71i1v1rZ
theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K
Mathlib_FieldTheory_PrimitiveElement
case inl.intro F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) K : IntermediateField F E this : FiniteDimensional F E h✝ : Finite F α : ↥K h : F⟮α⟯ = ⊤ ⊢ ∃ α, F⟮α⟯ = K
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this · simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h] theorem isAlgebraic_of_finite_intermediateField [Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦ have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯ isAlgebraic_of_adjoin_eq_adjoin F E hneq heq theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1) have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦ le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x rw [htop] at hfin exact topEquiv.toLinearEquiv.finiteDimensional theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by haveI := finiteDimensional_of_finite_intermediateField F E rcases finite_or_infinite F with (_ | _) · obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩
theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by haveI := finiteDimensional_of_finite_intermediateField F E rcases finite_or_infinite F with (_ | _) · obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K
Mathlib.FieldTheory.PrimitiveElement.294_0.R5HND7n71i1v1rZ
theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K
Mathlib_FieldTheory_PrimitiveElement
F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) K : IntermediateField F E this : FiniteDimensional F E h✝ : Finite F α : ↥K h : F⟮α⟯ = ⊤ ⊢ F⟮↑α⟯ = K
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this · simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h] theorem isAlgebraic_of_finite_intermediateField [Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦ have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯ isAlgebraic_of_adjoin_eq_adjoin F E hneq heq theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1) have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦ le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x rw [htop] at hfin exact topEquiv.toLinearEquiv.finiteDimensional theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by haveI := finiteDimensional_of_finite_intermediateField F E rcases finite_or_infinite F with (_ | _) · obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K exact ⟨α, by
simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h
theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by haveI := finiteDimensional_of_finite_intermediateField F E rcases finite_or_infinite F with (_ | _) · obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K exact ⟨α, by
Mathlib.FieldTheory.PrimitiveElement.294_0.R5HND7n71i1v1rZ
theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K
Mathlib_FieldTheory_PrimitiveElement
case inr F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) K : IntermediateField F E this : FiniteDimensional F E h✝ : Infinite F ⊢ ∃ α, F⟮α⟯ = K
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this · simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h] theorem isAlgebraic_of_finite_intermediateField [Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦ have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯ isAlgebraic_of_adjoin_eq_adjoin F E hneq heq theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1) have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦ le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x rw [htop] at hfin exact topEquiv.toLinearEquiv.finiteDimensional theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by haveI := finiteDimensional_of_finite_intermediateField F E rcases finite_or_infinite F with (_ | _) · obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩ ·
apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by haveI := finiteDimensional_of_finite_intermediateField F E rcases finite_or_infinite F with (_ | _) · obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩ ·
Mathlib.FieldTheory.PrimitiveElement.294_0.R5HND7n71i1v1rZ
theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K
Mathlib_FieldTheory_PrimitiveElement
case inr.ih F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite (IntermediateField F E) K : IntermediateField F E this : FiniteDimensional F E h✝ : Infinite F ⊢ ∀ (K : IntermediateField F E) (x : E), (∃ α, F⟮α⟯ = K) → ∃ α, F⟮α⟯ = restrictScalars F (↥K)⟮x⟯
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure import Mathlib.FieldTheory.NormalClosure import Mathlib.RingTheory.IntegralDomain #align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87" /-! # Primitive Element Theorem In this file we prove the primitive element theorem. ## Main results - `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e. there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. - `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a primitive element if and only if there exist only finitely many intermediate fields between `E` and `F`. ## Implementation notes In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`: it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this requires more unfolding without much obvious benefit. ## Tags primitive element, separable field extension, separable extension, intermediate field, adjoin, exists_adjoin_simple_eq_top -/ noncomputable section open scoped Classical Polynomial open FiniteDimensional Polynomial IntermediateField namespace Field section PrimitiveElementFinite variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E] /-! ### Primitive element theorem for finite fields -/ /-- **Primitive element theorem** assuming E is finite. -/ theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _ use α apply eq_top_iff.mpr rintro x - by_cases hx : x = 0 · rw [hx] exact F⟮α.val⟯.zero_mem · obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) simp only at hn rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n #align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top /-- Primitive element theorem for finite dimensional extension of a finite field. -/ theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] : ∃ α : E, F⟮α⟯ = ⊤ := haveI : Finite E := finite_of_finite F E exists_primitive_element_of_finite_top F E #align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot end PrimitiveElementFinite /-! ### Primitive element theorem for infinite fields -/ section PrimitiveElementInf variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E) theorem primitive_element_inf_aux_exists_c (f g : F[X]) : ∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by let sf := (f.map ϕ).roots let sg := (g.map ϕ).roots let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc push_neg at hc exact ⟨c, hc⟩ #align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c variable (F) variable [Algebra F E] /-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/ theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by have hα := IsSeparable.isIntegral F α have hβ := IsSeparable.isIntegral F β let f := minpoly F α let g := minpoly F β let ιFE := algebraMap F E let ιEE' := algebraMap E (SplittingField (g.map ιFE)) obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g let γ := α + c • β suffices β_in_Fγ : β ∈ F⟮γ⟯ · use γ apply le_antisymm · rw [adjoin_le_iff] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) · have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] rw [finale] exact Subtype.mem (-p.coeff 0 / p.coeff 1) have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) · dsimp only convert (gcd_map (algebraMap F⟮γ⟯ E)).symm · simp only [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq, Polynomial.map_sub, map_C, AdjoinSimple.algebraMap_gen, map_add, Polynomial.map_mul, map_X] congr #align field.primitive_element_inf_aux Field.primitive_element_inf_aux -- If `F` is infinite and `E/F` has only finitely many intermediate fields, then for any -- `α` and `β` in `E`, `F⟮α, β⟯` is generated by a single element. -- Marked as private since it's a special case of -- `exists_primitive_element_of_finite_intermediateField`. private theorem primitive_element_inf_aux_of_finite_intermediateField [Finite (IntermediateField F E)] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by let f : F → IntermediateField F E := fun x ↦ F⟮α + x • β⟯ obtain ⟨x, y, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite f use α + x • β apply le_antisymm · rw [adjoin_le_iff] have αxβ_in_K : α + x • β ∈ F⟮α + x • β⟯ := mem_adjoin_simple_self F _ have αyβ_in_K : α + y • β ∈ F⟮α + y • β⟯ := mem_adjoin_simple_self F _ simp only [← heq] at αyβ_in_K have β_in_K := sub_mem αxβ_in_K αyβ_in_K rw [show (α + x • β) - (α + y • β) = (x - y) • β by rw [sub_smul]; abel1] at β_in_K replace β_in_K := smul_mem _ β_in_K (x := (x - y)⁻¹) rw [smul_smul, inv_mul_eq_div, div_self (sub_ne_zero.2 hneq), one_smul] at β_in_K have α_in_K : α ∈ F⟮α + x • β⟯ := by convert ← sub_mem αxβ_in_K (smul_mem _ β_in_K) apply add_sub_cancel rintro x (rfl | rfl) <;> assumption · rw [adjoin_simple_le_iff] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β}) have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl) exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) end PrimitiveElementInf variable (F E : Type*) [Field F] [Field E] variable [Algebra F E] section SeparableAssumption variable [FiniteDimensional F E] [IsSeparable F E] /-- **Primitive element theorem**: a finite separable field extension `E` of `F` has a primitive element, i.e. there is an `α ∈ E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`. -/ theorem exists_primitive_element : ∃ α : E, F⟮α⟯ = ⊤ := by rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) · let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K have base : P ⊥ := ⟨0, adjoin_zero⟩ have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ exact induction_on_adjoin P base ih ⊤ · exact exists_primitive_element_of_finite_bot F E #align field.exists_primitive_element Field.exists_primitive_element /-- Alternative phrasing of primitive element theorem: a finite separable field extension has a basis `1, α, α^2, ..., α^n`. See also `exists_primitive_element`. -/ noncomputable def powerBasisOfFiniteOfSeparable : PowerBasis F E := let α := (exists_primitive_element F E).choose let pb := adjoin.powerBasis (IsSeparable.isIntegral F α) have e : F⟮α⟯ = ⊤ := (exists_primitive_element F E).choose_spec pb.map ((IntermediateField.equivOfEq e).trans IntermediateField.topEquiv) #align field.power_basis_of_finite_of_separable Field.powerBasisOfFiniteOfSeparable end SeparableAssumption section FiniteIntermediateField -- TODO: show a more generalized result: [F⟮α⟯ : F⟮α ^ m⟯] = m if m > 0 and α transcendental. theorem isAlgebraic_of_adjoin_eq_adjoin {α : E} {m n : ℕ} (hneq : m ≠ n) (heq : F⟮α ^ m⟯ = F⟮α ^ n⟯) : IsAlgebraic F α := by wlog hmn : m < n · exact this F E hneq.symm heq.symm (hneq.lt_or_lt.resolve_left hmn) by_cases hm : m = 0 · rw [hm] at heq hmn simp only [pow_zero, adjoin_one] at heq obtain ⟨y, h⟩ := mem_bot.1 (heq.symm ▸ mem_adjoin_simple_self F (α ^ n)) refine ⟨X ^ n - C y, X_pow_sub_C_ne_zero hmn y, ?_⟩ simp only [map_sub, map_pow, aeval_X, aeval_C, h, sub_self] replace hm : 0 < m := Nat.pos_of_ne_zero hm obtain ⟨r, s, h⟩ := (mem_adjoin_simple_iff F _).1 (heq ▸ mem_adjoin_simple_self F (α ^ m)) by_cases hzero : aeval (α ^ n) s = 0 · simp only [hzero, div_zero, pow_eq_zero_iff hm] at h exact h.symm ▸ isAlgebraic_zero · rw [eq_div_iff hzero, ← sub_eq_zero] at h replace hzero : s ≠ 0 := by rintro rfl; simp only [map_zero, not_true_eq_false] at hzero let f : F[X] := X ^ m * expand F n s - expand F n r refine ⟨f, ?_, ?_⟩ · have : f.coeff (n * s.natDegree + m) ≠ 0 := by have hn : 0 < n := by linarith only [hm, hmn] have hndvd : ¬ n ∣ n * s.natDegree + m := by rw [← Nat.dvd_add_iff_right (n.dvd_mul_right s.natDegree)] exact Nat.not_dvd_of_pos_of_lt hm hmn simp only [coeff_sub, coeff_X_pow_mul, s.coeff_expand_mul' hn, coeff_natDegree, coeff_expand hn r, hndvd, ite_false, sub_zero] exact leadingCoeff_ne_zero.2 hzero intro h simp only [h, coeff_zero, ne_eq, not_true_eq_false] at this · simp only [map_sub, map_mul, map_pow, aeval_X, expand_aeval, h] theorem isAlgebraic_of_finite_intermediateField [Finite (IntermediateField F E)] : Algebra.IsAlgebraic F E := fun α ↦ have ⟨_m, _n, hneq, heq⟩ := Finite.exists_ne_map_eq_of_infinite fun n ↦ F⟮α ^ n⟯ isAlgebraic_of_adjoin_eq_adjoin F E hneq heq theorem finiteDimensional_of_finite_intermediateField [Finite (IntermediateField F E)] : FiniteDimensional F E := by let IF := { K : IntermediateField F E // ∃ x, K = F⟮x⟯ } haveI : ∀ K : IF, FiniteDimensional F K.1 := fun ⟨_, x, rfl⟩ ↦ adjoin.finiteDimensional (isAlgebraic_of_finite_intermediateField F E x).isIntegral have hfin := finiteDimensional_iSup_of_finite (t := fun K : IF ↦ K.1) have htop : ⨆ K : IF, K.1 = ⊤ := le_top.antisymm fun x _ ↦ le_iSup (fun K : IF ↦ K.1) ⟨F⟮x⟯, x, rfl⟩ <| mem_adjoin_simple_self F x rw [htop] at hfin exact topEquiv.toLinearEquiv.finiteDimensional theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by haveI := finiteDimensional_of_finite_intermediateField F E rcases finite_or_infinite F with (_ | _) · obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩ · apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
rintro K β ⟨α, rfl⟩
theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K := by haveI := finiteDimensional_of_finite_intermediateField F E rcases finite_or_infinite F with (_ | _) · obtain ⟨α, h⟩ := exists_primitive_element_of_finite_bot F K exact ⟨α, by simpa only [lift_adjoin_simple, lift_top] using congr_arg lift h⟩ · apply induction_on_adjoin (fun K ↦ ∃ α : E, F⟮α⟯ = K) ⟨0, adjoin_zero⟩
Mathlib.FieldTheory.PrimitiveElement.294_0.R5HND7n71i1v1rZ
theorem exists_primitive_element_of_finite_intermediateField [Finite (IntermediateField F E)] (K : IntermediateField F E) : ∃ α : E, F⟮α⟯ = K
Mathlib_FieldTheory_PrimitiveElement