state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case refine'_2 R : Type u S : Type v inst✝¹ : Ring R inst✝ : Ring S I : Ideal R f : R →+* S hf : Function.Surjective ⇑f K J : Ideal S hJ : J ∈ {J | K ≤ J ∧ IsMaximal J} ⊢ sInf {J | comap f K ≤ J ∧ IsMaximal J} ≤ comap f J
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
Mathlib.RingTheory.JacobsonIdeal.209_0.Lz0MgLQMj1bGzuN
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson
Mathlib_RingTheory_JacobsonIdeal
case refine'_2 R : Type u S : Type v inst✝¹ : Ring R inst✝ : Ring S I : Ideal R f : R →+* S hf : Function.Surjective ⇑f K J : Ideal S hJ : J ∈ {J | K ≤ J ∧ IsMaximal J} this : IsMaximal J ⊢ sInf {J | comap f K ≤ J ∧ IsMaximal J} ≤ comap f J
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right
Mathlib.RingTheory.JacobsonIdeal.209_0.Lz0MgLQMj1bGzuN
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝¹ : Ring R inst✝ : Ring S I✝ I J : Ideal R ⊢ I ≤ J → jacobson I ≤ jacobson J
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
@[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
Mathlib.RingTheory.JacobsonIdeal.230_0.Lz0MgLQMj1bGzuN
@[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝¹ : Ring R inst✝ : Ring S I✝ I J : Ideal R h : I ≤ J x : R hx : x ∈ jacobson I ⊢ x ∈ jacobson J
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx
erw [mem_sInf] at hx ⊢
@[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx
Mathlib.RingTheory.JacobsonIdeal.230_0.Lz0MgLQMj1bGzuN
@[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝¹ : Ring R inst✝ : Ring S I✝ I J : Ideal R h : I ≤ J x : R hx : ∀ ⦃I_1 : Ideal R⦄, I_1 ∈ {J | I ≤ J ∧ IsMaximal J} → x ∈ I_1 ⊢ ∀ ⦃I : Ideal R⦄, I ∈ {J_1 | J ≤ J_1 ∧ IsMaximal J_1} → x ∈ I
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
@[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢
Mathlib.RingTheory.JacobsonIdeal.230_0.Lz0MgLQMj1bGzuN
@[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R r : R h : r - 1 ∈ jacobson ⊥ ⊢ IsUnit r
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by
Mathlib.RingTheory.JacobsonIdeal.251_0.Lz0MgLQMj1bGzuN
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r
Mathlib_RingTheory_JacobsonIdeal
case intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R r : R h : r - 1 ∈ jacobson ⊥ s : R hs : s * r - 1 ∈ ⊥ ⊢ IsUnit r
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
Mathlib.RingTheory.JacobsonIdeal.251_0.Lz0MgLQMj1bGzuN
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r
Mathlib_RingTheory_JacobsonIdeal
case intro R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R r : R h : r - 1 ∈ jacobson ⊥ s : R hs : r * s = 1 ⊢ IsUnit r
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs
Mathlib.RingTheory.JacobsonIdeal.251_0.Lz0MgLQMj1bGzuN
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R x : R hx : x ∈ jacobson ⊥ y z : R hz : z * y * x + z - 1 ∈ ⊥ ⊢ (x * y + 1) * z = 1
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by
rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by
Mathlib.RingTheory.JacobsonIdeal.258_0.Lz0MgLQMj1bGzuN
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1)
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R x : R h : ∀ (y : R), IsUnit (x * y + 1) y b : R hb : (x * y + 1) * b = 1 ⊢ b * y * x + b - (x * y + 1) * b = 0
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by
ring
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by
Mathlib.RingTheory.JacobsonIdeal.258_0.Lz0MgLQMj1bGzuN
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1)
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R ⊢ jacobson I = I ↔ jacobson ⊥ = ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) ⊢ jacobson I = I ↔ jacobson ⊥ = ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
Mathlib_RingTheory_JacobsonIdeal
case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) ⊢ jacobson I = I → jacobson ⊥ = ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor ·
intro h
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor ·
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
Mathlib_RingTheory_JacobsonIdeal
case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) h : jacobson I = I ⊢ jacobson ⊥ = ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
Mathlib_RingTheory_JacobsonIdeal
case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) h : map (Quotient.mk I) (jacobson I) = map (Quotient.mk I) I ⊢ jacobson ⊥ = ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
Mathlib_RingTheory_JacobsonIdeal
case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) h : jacobson (map (Quotient.mk I) I) = map (Quotient.mk I) I ⊢ jacobson ⊥ = ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
Mathlib_RingTheory_JacobsonIdeal
case mpr R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) ⊢ jacobson ⊥ = ⊥ → jacobson I = I
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h ·
intro h
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h ·
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
Mathlib_RingTheory_JacobsonIdeal
case mpr R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) h : jacobson ⊥ = ⊥ ⊢ jacobson I = I
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
Mathlib_RingTheory_JacobsonIdeal
case mpr R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) h : comap (Quotient.mk I) (jacobson ⊥) = comap (Quotient.mk I) ⊥ ⊢ jacobson I = I
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
Mathlib_RingTheory_JacobsonIdeal
case mpr R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) h : jacobson (RingHom.ker (Quotient.mk I)) = RingHom.ker (Quotient.mk I) ⊢ jacobson I = I
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R ⊢ radical I = jacobson I ↔ radical ⊥ = jacobson ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) ⊢ radical I = jacobson I ↔ radical ⊥ = jacobson ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
Mathlib_RingTheory_JacobsonIdeal
case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) ⊢ radical I = jacobson I → radical ⊥ = jacobson ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor ·
intro h
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor ·
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
Mathlib_RingTheory_JacobsonIdeal
case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) h : radical I = jacobson I ⊢ radical ⊥ = jacobson ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
Mathlib_RingTheory_JacobsonIdeal
case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) h : radical I = jacobson I this : map (Quotient.mk I) (radical I) = map (Quotient.mk I) (jacobson I) ⊢ radical ⊥ = jacobson ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
Mathlib_RingTheory_JacobsonIdeal
case mp R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) h : radical I = jacobson I this : radical (map (Quotient.mk I) I) = jacobson (map (Quotient.mk I) I) ⊢ radical ⊥ = jacobson ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
Mathlib_RingTheory_JacobsonIdeal
case mpr R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) ⊢ radical ⊥ = jacobson ⊥ → radical I = jacobson I
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this ·
intro h
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this ·
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
Mathlib_RingTheory_JacobsonIdeal
case mpr R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) h : radical ⊥ = jacobson ⊥ ⊢ radical I = jacobson I
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
Mathlib_RingTheory_JacobsonIdeal
case mpr R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) h : radical ⊥ = jacobson ⊥ this : comap (Quotient.mk I) (radical ⊥) = comap (Quotient.mk I) (jacobson ⊥) ⊢ radical I = jacobson I
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
Mathlib_RingTheory_JacobsonIdeal
case mpr R : Type u S : Type v inst✝¹ : CommRing R inst✝ : CommRing S I : Ideal R hf : Function.Surjective ⇑(Quotient.mk I) h : radical ⊥ = jacobson ⊥ this : radical (RingHom.ker (Quotient.mk I)) = jacobson (RingHom.ker (Quotient.mk I)) ⊢ radical I = jacobson I
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R ⊢ jacobson ⊥ ≤ sInf (map C '' {J | IsMaximal J})
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J ⊢ jacobson ⊥ ≤ J
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j ⊢ jacobson ⊥ ≤ J
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j ⊢ jacobson J = J
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j t : jacobson ⊥ = ⊥ ⊢ jacobson J = J
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j t : jacobson ⊥ = ⊥ ⊢ jacobson ⊥ = ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j t : map (RingEquiv.toRingHom (polynomialQuotientEquivQuotientPolynomial j)) (jacobson ⊥) = map (RingEquiv.toRingHom (polynomialQuotientEquivQuotientPolynomial j)) ⊥ ⊢ jacobson ⊥ = ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j t : map (RingEquiv.toRingHom (polynomialQuotientEquivQuotientPolynomial j)) (jacobson ⊥) = map (RingEquiv.toRingHom (polynomialQuotientEquivQuotientPolynomial j)) ⊥ ⊢ Function.Bijective ⇑(RingEquiv.toRingHom (polynomialQuotientEquivQuotientPolynomial j))
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j ⊢ jacobson ⊥ = ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j f : (R ⧸ j)[X] hf : f ∈ jacobson ⊥ ⊢ f ∈ ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j f : (R ⧸ j)[X] hf : f ∈ jacobson ⊥ hX : X = 0 ⊢ False
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j f : (R ⧸ j)[X] hf : f ∈ jacobson ⊥ hX : (fun f => coeff f 1) X = (fun f => coeff f 1) 0 ⊢ False
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j f : (R ⧸ j)[X] hf : f ∈ jacobson ⊥ hX : 1 = 0 ⊢ False
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j f : (R ⧸ j)[X] hf : f ∈ jacobson ⊥ r1 : X ≠ 0 ⊢ f ∈ ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j f : (R ⧸ j)[X] hf : f ∈ jacobson ⊥ r1 : X ≠ 0 r2 : f * X + 1 = C (coeff (f * X + 1) 0) ⊢ f ∈ ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j f : (R ⧸ j)[X] hf : f ∈ jacobson ⊥ r1 : X ≠ 0 r2 : f * X + 1 = C 1 ⊢ f ∈ ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X)) simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
erw [add_left_eq_self] at r2
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X)) simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R J : Ideal R[X] j : Ideal R hj : j ∈ {J | IsMaximal J} ∧ map C j = J this : IsMaximal j f : (R ⧸ j)[X] hf : f ∈ jacobson ⊥ r1 : X ≠ 0 r2 : f * X = 0 ⊢ f ∈ ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X)) simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2 erw [add_left_eq_self] at r2
simpa using (mul_eq_zero.mp r2).resolve_right r1
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X)) simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2 erw [add_left_eq_self] at r2
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R h : jacobson ⊥ = ⊥ ⊢ jacobson ⊥ = ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X)) simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2 erw [add_left_eq_self] at r2 simpa using (mul_eq_zero.mp r2).resolve_right r1 -- Porting note: this is golfed to much -- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)] -- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X)) #align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥ := by
refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥ := by
Mathlib.RingTheory.JacobsonIdeal.346_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R h : jacobson ⊥ = ⊥ ⊢ sInf (map C '' {J | IsMaximal J}) ≤ ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X)) simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2 erw [add_left_eq_self] at r2 simpa using (mul_eq_zero.mp r2).resolve_right r1 -- Porting note: this is golfed to much -- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)] -- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X)) #align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥ := by refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n => Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥ := by refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
Mathlib.RingTheory.JacobsonIdeal.346_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R h : jacobson ⊥ = ⊥ f : R[X] hf : f ∈ sInf (map C '' {J | IsMaximal J}) n : ℕ ⊢ coeff f n = 0
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X)) simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2 erw [add_left_eq_self] at r2 simpa using (mul_eq_zero.mp r2).resolve_right r1 -- Porting note: this is golfed to much -- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)] -- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X)) #align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥ := by refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _) refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n => Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm
suffices f.coeff n ∈ Ideal.jacobson ⊥ by rwa [h, Submodule.mem_bot] at this
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥ := by refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _) refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n => Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm
Mathlib.RingTheory.JacobsonIdeal.346_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R h : jacobson ⊥ = ⊥ f : R[X] hf : f ∈ sInf (map C '' {J | IsMaximal J}) n : ℕ this : coeff f n ∈ jacobson ⊥ ⊢ coeff f n = 0
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X)) simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2 erw [add_left_eq_self] at r2 simpa using (mul_eq_zero.mp r2).resolve_right r1 -- Porting note: this is golfed to much -- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)] -- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X)) #align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥ := by refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _) refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n => Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm suffices f.coeff n ∈ Ideal.jacobson ⊥ by
rwa [h, Submodule.mem_bot] at this
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥ := by refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _) refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n => Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm suffices f.coeff n ∈ Ideal.jacobson ⊥ by
Mathlib.RingTheory.JacobsonIdeal.346_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R h : jacobson ⊥ = ⊥ f : R[X] hf : f ∈ sInf (map C '' {J | IsMaximal J}) n : ℕ ⊢ coeff f n ∈ jacobson ⊥
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X)) simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2 erw [add_left_eq_self] at r2 simpa using (mul_eq_zero.mp r2).resolve_right r1 -- Porting note: this is golfed to much -- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)] -- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X)) #align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥ := by refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _) refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n => Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm suffices f.coeff n ∈ Ideal.jacobson ⊥ by rwa [h, Submodule.mem_bot] at this
exact mem_sInf.2 fun j hj => (mem_map_C_iff.1 ((mem_sInf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥ := by refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _) refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n => Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm suffices f.coeff n ∈ Ideal.jacobson ⊥ by rwa [h, Submodule.mem_bot] at this
Mathlib.RingTheory.JacobsonIdeal.346_0.Lz0MgLQMj1bGzuN
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R I : Ideal R hi : IsLocal I x : R h : I ⊔ span {x} = ⊤ p : R hpi : p ∈ I q : R hq : q ∈ span {x} hpq : p + q = 1 r : R hr : q = x * r ⊢ r * x - 1 ∈ I
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X)) simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2 erw [add_left_eq_self] at r2 simpa using (mul_eq_zero.mp r2).resolve_right r1 -- Porting note: this is golfed to much -- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)] -- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X)) #align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥ := by refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _) refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n => Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm suffices f.coeff n ∈ Ideal.jacobson ⊥ by rwa [h, Submodule.mem_bot] at this exact mem_sInf.2 fun j hj => (mem_map_C_iff.1 ((mem_sInf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n #align ideal.jacobson_bot_polynomial_of_jacobson_bot Ideal.jacobson_bot_polynomial_of_jacobson_bot end Polynomial section IsLocal variable [CommRing R] /-- An ideal `I` is local iff its Jacobson radical is maximal. -/ class IsLocal (I : Ideal R) : Prop where /-- A ring `R` is local if and only if its jacobson radical is maximal -/ out : IsMaximal (jacobson I) #align ideal.is_local Ideal.IsLocal theorem isLocal_iff {I : Ideal R} : IsLocal I ↔ IsMaximal (jacobson I) := ⟨fun h => h.1, fun h => ⟨h⟩⟩ #align ideal.is_local_iff Ideal.isLocal_iff theorem isLocal_of_isMaximal_radical {I : Ideal R} (hi : IsMaximal (radical I)) : IsLocal I := ⟨have : radical I = jacobson I := le_antisymm (le_sInf fun _ ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him) (sInf_le ⟨le_radical, hi⟩) show IsMaximal (jacobson I) from this ▸ hi⟩ #align ideal.is_local_of_is_maximal_radical Ideal.isLocal_of_isMaximal_radical theorem IsLocal.le_jacobson {I J : Ideal R} (hi : IsLocal I) (hij : I ≤ J) (hj : J ≠ ⊤) : J ≤ jacobson I := let ⟨_, hm, hjm⟩ := exists_le_maximal J hj le_trans hjm <| le_of_eq <| Eq.symm <| hi.1.eq_of_le hm.1.1 <| sInf_le ⟨le_trans hij hjm, hm⟩ #align ideal.is_local.le_jacobson Ideal.IsLocal.le_jacobson theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) : x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I := by_cases (fun h : I ⊔ span {x} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h) let ⟨r, hr⟩ := mem_span_singleton.1 hq Or.inr ⟨r, by
rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel]
theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) : x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I := by_cases (fun h : I ⊔ span {x} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h) let ⟨r, hr⟩ := mem_span_singleton.1 hq Or.inr ⟨r, by
Mathlib.RingTheory.JacobsonIdeal.384_0.Lz0MgLQMj1bGzuN
theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) : x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R I : Ideal R hi : IsLocal I x : R h : I ⊔ span {x} = ⊤ p : R hpi : p ∈ I q : R hq : q ∈ span {x} hpq : p + q = 1 r : R hr : q = x * r ⊢ -p ∈ I
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X)) simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2 erw [add_left_eq_self] at r2 simpa using (mul_eq_zero.mp r2).resolve_right r1 -- Porting note: this is golfed to much -- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)] -- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X)) #align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥ := by refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _) refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n => Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm suffices f.coeff n ∈ Ideal.jacobson ⊥ by rwa [h, Submodule.mem_bot] at this exact mem_sInf.2 fun j hj => (mem_map_C_iff.1 ((mem_sInf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n #align ideal.jacobson_bot_polynomial_of_jacobson_bot Ideal.jacobson_bot_polynomial_of_jacobson_bot end Polynomial section IsLocal variable [CommRing R] /-- An ideal `I` is local iff its Jacobson radical is maximal. -/ class IsLocal (I : Ideal R) : Prop where /-- A ring `R` is local if and only if its jacobson radical is maximal -/ out : IsMaximal (jacobson I) #align ideal.is_local Ideal.IsLocal theorem isLocal_iff {I : Ideal R} : IsLocal I ↔ IsMaximal (jacobson I) := ⟨fun h => h.1, fun h => ⟨h⟩⟩ #align ideal.is_local_iff Ideal.isLocal_iff theorem isLocal_of_isMaximal_radical {I : Ideal R} (hi : IsMaximal (radical I)) : IsLocal I := ⟨have : radical I = jacobson I := le_antisymm (le_sInf fun _ ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him) (sInf_le ⟨le_radical, hi⟩) show IsMaximal (jacobson I) from this ▸ hi⟩ #align ideal.is_local_of_is_maximal_radical Ideal.isLocal_of_isMaximal_radical theorem IsLocal.le_jacobson {I J : Ideal R} (hi : IsLocal I) (hij : I ≤ J) (hj : J ≠ ⊤) : J ≤ jacobson I := let ⟨_, hm, hjm⟩ := exists_le_maximal J hj le_trans hjm <| le_of_eq <| Eq.symm <| hi.1.eq_of_le hm.1.1 <| sInf_le ⟨le_trans hij hjm, hm⟩ #align ideal.is_local.le_jacobson Ideal.IsLocal.le_jacobson theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) : x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I := by_cases (fun h : I ⊔ span {x} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h) let ⟨r, hr⟩ := mem_span_singleton.1 hq Or.inr ⟨r, by rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel];
exact I.neg_mem hpi
theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) : x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I := by_cases (fun h : I ⊔ span {x} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h) let ⟨r, hr⟩ := mem_span_singleton.1 hq Or.inr ⟨r, by rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel];
Mathlib.RingTheory.JacobsonIdeal.384_0.Lz0MgLQMj1bGzuN
theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) : x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R I : Ideal R hi : IsMaximal (radical I) this : radical I = jacobson I x y : R hxy : x * y ∈ I x✝ : ∃ y_1, y_1 * y - 1 ∈ I z : R hz : z * y - 1 ∈ I ⊢ x ∈ I
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X)) simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2 erw [add_left_eq_self] at r2 simpa using (mul_eq_zero.mp r2).resolve_right r1 -- Porting note: this is golfed to much -- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)] -- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X)) #align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥ := by refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _) refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n => Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm suffices f.coeff n ∈ Ideal.jacobson ⊥ by rwa [h, Submodule.mem_bot] at this exact mem_sInf.2 fun j hj => (mem_map_C_iff.1 ((mem_sInf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n #align ideal.jacobson_bot_polynomial_of_jacobson_bot Ideal.jacobson_bot_polynomial_of_jacobson_bot end Polynomial section IsLocal variable [CommRing R] /-- An ideal `I` is local iff its Jacobson radical is maximal. -/ class IsLocal (I : Ideal R) : Prop where /-- A ring `R` is local if and only if its jacobson radical is maximal -/ out : IsMaximal (jacobson I) #align ideal.is_local Ideal.IsLocal theorem isLocal_iff {I : Ideal R} : IsLocal I ↔ IsMaximal (jacobson I) := ⟨fun h => h.1, fun h => ⟨h⟩⟩ #align ideal.is_local_iff Ideal.isLocal_iff theorem isLocal_of_isMaximal_radical {I : Ideal R} (hi : IsMaximal (radical I)) : IsLocal I := ⟨have : radical I = jacobson I := le_antisymm (le_sInf fun _ ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him) (sInf_le ⟨le_radical, hi⟩) show IsMaximal (jacobson I) from this ▸ hi⟩ #align ideal.is_local_of_is_maximal_radical Ideal.isLocal_of_isMaximal_radical theorem IsLocal.le_jacobson {I J : Ideal R} (hi : IsLocal I) (hij : I ≤ J) (hj : J ≠ ⊤) : J ≤ jacobson I := let ⟨_, hm, hjm⟩ := exists_le_maximal J hj le_trans hjm <| le_of_eq <| Eq.symm <| hi.1.eq_of_le hm.1.1 <| sInf_le ⟨le_trans hij hjm, hm⟩ #align ideal.is_local.le_jacobson Ideal.IsLocal.le_jacobson theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) : x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I := by_cases (fun h : I ⊔ span {x} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h) let ⟨r, hr⟩ := mem_span_singleton.1 hq Or.inr ⟨r, by rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel]; exact I.neg_mem hpi⟩) fun h : I ⊔ span {x} ≠ ⊤ => Or.inl <| le_trans le_sup_right (hi.le_jacobson le_sup_left h) <| mem_span_singleton.2 <| dvd_refl x #align ideal.is_local.mem_jacobson_or_exists_inv Ideal.IsLocal.mem_jacobson_or_exists_inv end IsLocal theorem isPrimary_of_isMaximal_radical [CommRing R] {I : Ideal R} (hi : IsMaximal (radical I)) : IsPrimary I := have : radical I = jacobson I := le_antisymm (le_sInf fun M ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him) (sInf_le ⟨le_radical, hi⟩) ⟨ne_top_of_lt <| lt_of_le_of_lt le_radical (lt_top_iff_ne_top.2 hi.1.1), fun {x y} hxy => ((isLocal_of_isMaximal_radical hi).mem_jacobson_or_exists_inv y).symm.imp (fun ⟨z, hz⟩ => by
rw [← mul_one x, ← sub_sub_cancel (z * y) 1, mul_sub, mul_left_comm]
theorem isPrimary_of_isMaximal_radical [CommRing R] {I : Ideal R} (hi : IsMaximal (radical I)) : IsPrimary I := have : radical I = jacobson I := le_antisymm (le_sInf fun M ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him) (sInf_le ⟨le_radical, hi⟩) ⟨ne_top_of_lt <| lt_of_le_of_lt le_radical (lt_top_iff_ne_top.2 hi.1.1), fun {x y} hxy => ((isLocal_of_isMaximal_radical hi).mem_jacobson_or_exists_inv y).symm.imp (fun ⟨z, hz⟩ => by
Mathlib.RingTheory.JacobsonIdeal.398_0.Lz0MgLQMj1bGzuN
theorem isPrimary_of_isMaximal_radical [CommRing R] {I : Ideal R} (hi : IsMaximal (radical I)) : IsPrimary I
Mathlib_RingTheory_JacobsonIdeal
R : Type u S : Type v inst✝ : CommRing R I : Ideal R hi : IsMaximal (radical I) this : radical I = jacobson I x y : R hxy : x * y ∈ I x✝ : ∃ y_1, y_1 * y - 1 ∈ I z : R hz : z * y - 1 ∈ I ⊢ z * (x * y) - x * (z * y - 1) ∈ I
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Polynomial.Quotient #align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff" /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universe u v namespace Ideal variable {R : Type u} {S : Type v} open Polynomial section Jacobson section Ring variable [Ring R] [Ring S] {I : Ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : Ideal R) : Ideal R := sInf { J : Ideal R | I ≤ J ∧ IsMaximal J } #align ideal.jacobson Ideal.jacobson theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx #align ideal.le_jacobson Ideal.le_jacobson @[simp] theorem jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson #align ideal.jacobson_idem Ideal.jacobson_idem @[simp] theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ := eq_top_iff.2 le_jacobson #align ideal.jacobson_top Ideal.jacobson_top @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨fun H => by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <| lt_top_iff_ne_top.2 hm.ne_top) H, fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩ #align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson) #align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I := le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson #align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) := ⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ => H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ #align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨fun hx y => by_cases (fun hxy : I ⊔ span {y * x + 1} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) let ⟨r, hr⟩ := mem_span_singleton'.1 hq ⟨r, by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel] exact I.neg_mem hpi⟩) fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm), fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm => let ⟨y, i, hi, df⟩ := hm.exists_inv hxm let ⟨z, hz⟩ := hx (-y) hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by -- Porting note : supply `mul_add_one` with explicit variables rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub, sub_add_cancel] exact M.mul_mem_left _ hi) <| him hz⟩ #align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := by cases' mem_jacobson_iff.1 h 1 with s hs use s simpa [mul_sub] using hs #align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_sInf_maximal : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩ rintro ⟨M, hM, hInf⟩ refine le_antisymm (fun x hx => ?_) le_jacobson rw [hInf, mem_sInf] intro I hI cases' hM I hI with is_max is_top · exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩ · exact is_top.symm ▸ Submodule.mem_top #align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal theorem eq_jacobson_iff_sInf_maximal' : I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M := eq_jacobson_iff_sInf_maximal.trans ⟨fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ K hK => Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)), hM.2⟩⟩, fun h => let ⟨M, hM⟩ := h ⟨M, ⟨fun J hJ => Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩, hM.2⟩⟩⟩ #align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal' /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ theorem eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by constructor · intro h x hx erw [← h, mem_sInf] at hx push_neg at hx exact hx · refine fun h => le_antisymm (fun x hx => ?_) le_jacobson contrapose hx erw [mem_sInf] push_neg exact h x hx #align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) : RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by intro h unfold Ideal.jacobson -- porting note : dot notation for `RingHom.ker` does not work have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J := fun J hJ => le_trans h hJ.left refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_) · refine' sInf_le_sInf fun J hJ => ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩ haveI : J.IsMaximal := hJ.right exact comap_isMaximal_of_surjective f hf · refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _ rw [← hJ.2] cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax · exact htop.symm ▸ Set.mem_insert ⊤ _ · exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ #align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) : map f I.jacobson = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) #align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective theorem comap_jacobson {f : R →+* S} {K : Ideal S} : comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) := Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm #align ideal.comap_jacobson Ideal.comap_jacobson theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} : comap f K.jacobson = (comap f K).jacobson := by unfold Ideal.jacobson refine' le_antisymm _ _ · refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_ rw [comap_sInf', sInf_eq_iInf] refine' iInf_le_iInf_of_subset fun J hJ => _ have : comap f (map f J) = J := Trans.trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left) cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax · exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩ · exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ · rw [comap_sInf] refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _ haveI : J.IsMaximal := hJ.right refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩ #align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective @[mono] theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by intro h x hx erw [mem_sInf] at hx ⊢ exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩ #align ideal.jacobson_mono Ideal.jacobson_mono end Ring section CommRing variable [CommRing R] [CommRing S] {I : Ideal R} theorem radical_le_jacobson : radical I ≤ jacobson I := le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩ #align ideal.radical_le_jacobson Ideal.radical_le_jacobson theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical := radical_le_jacobson.trans h.le #align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) : IsUnit r := by cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs rw [mem_bot, sub_eq_zero, mul_comm] at hs exact isUnit_of_mul_eq_one _ _ hs #align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) := ⟨fun hx y => let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y isUnit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, fun h => mem_jacobson_iff.mpr fun y => let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y) ⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩ #align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ -- Porting note : changed `Quotient.mk'` to `` theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h simpa using h · intro h replace h := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h simpa using h #align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ -- Porting note : changed `Quotient.mk'` to `` theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I constructor · intro h have := congr_arg (map (Ideal.Quotient.mk I)) h rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this simpa using this · intro h have := congr_arg (comap (Ideal.Quotient.mk I)) h rw [comap_radical, comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this simpa using this #align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I))) (sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩)) (jacobson_mono le_radical) #align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson end CommRing end Jacobson section Polynomial open Polynomial variable [CommRing R] theorem jacobson_bot_polynomial_le_sInf_map_maximal : jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by refine' le_sInf fun J => exists_imp.2 fun j hj => _ haveI : j.IsMaximal := hj.1 refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J) suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot] replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t rwa [map_jacobson_of_bijective _, map_bot] at t exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j) refine' eq_bot_iff.2 fun f hf => _ have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by replace hX := congr_arg (fun f => coeff f 1) hX simp only [coeff_X_one, coeff_zero] at hX exact zero_ne_one hX.symm have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X)) simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2 erw [add_left_eq_self] at r2 simpa using (mul_eq_zero.mp r2).resolve_right r1 -- Porting note: this is golfed to much -- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)] -- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X)) #align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) : jacobson (⊥ : Ideal R[X]) = ⊥ := by refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _) refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n => Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm suffices f.coeff n ∈ Ideal.jacobson ⊥ by rwa [h, Submodule.mem_bot] at this exact mem_sInf.2 fun j hj => (mem_map_C_iff.1 ((mem_sInf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n #align ideal.jacobson_bot_polynomial_of_jacobson_bot Ideal.jacobson_bot_polynomial_of_jacobson_bot end Polynomial section IsLocal variable [CommRing R] /-- An ideal `I` is local iff its Jacobson radical is maximal. -/ class IsLocal (I : Ideal R) : Prop where /-- A ring `R` is local if and only if its jacobson radical is maximal -/ out : IsMaximal (jacobson I) #align ideal.is_local Ideal.IsLocal theorem isLocal_iff {I : Ideal R} : IsLocal I ↔ IsMaximal (jacobson I) := ⟨fun h => h.1, fun h => ⟨h⟩⟩ #align ideal.is_local_iff Ideal.isLocal_iff theorem isLocal_of_isMaximal_radical {I : Ideal R} (hi : IsMaximal (radical I)) : IsLocal I := ⟨have : radical I = jacobson I := le_antisymm (le_sInf fun _ ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him) (sInf_le ⟨le_radical, hi⟩) show IsMaximal (jacobson I) from this ▸ hi⟩ #align ideal.is_local_of_is_maximal_radical Ideal.isLocal_of_isMaximal_radical theorem IsLocal.le_jacobson {I J : Ideal R} (hi : IsLocal I) (hij : I ≤ J) (hj : J ≠ ⊤) : J ≤ jacobson I := let ⟨_, hm, hjm⟩ := exists_le_maximal J hj le_trans hjm <| le_of_eq <| Eq.symm <| hi.1.eq_of_le hm.1.1 <| sInf_le ⟨le_trans hij hjm, hm⟩ #align ideal.is_local.le_jacobson Ideal.IsLocal.le_jacobson theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) : x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I := by_cases (fun h : I ⊔ span {x} = ⊤ => let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h) let ⟨r, hr⟩ := mem_span_singleton.1 hq Or.inr ⟨r, by rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel]; exact I.neg_mem hpi⟩) fun h : I ⊔ span {x} ≠ ⊤ => Or.inl <| le_trans le_sup_right (hi.le_jacobson le_sup_left h) <| mem_span_singleton.2 <| dvd_refl x #align ideal.is_local.mem_jacobson_or_exists_inv Ideal.IsLocal.mem_jacobson_or_exists_inv end IsLocal theorem isPrimary_of_isMaximal_radical [CommRing R] {I : Ideal R} (hi : IsMaximal (radical I)) : IsPrimary I := have : radical I = jacobson I := le_antisymm (le_sInf fun M ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him) (sInf_le ⟨le_radical, hi⟩) ⟨ne_top_of_lt <| lt_of_le_of_lt le_radical (lt_top_iff_ne_top.2 hi.1.1), fun {x y} hxy => ((isLocal_of_isMaximal_radical hi).mem_jacobson_or_exists_inv y).symm.imp (fun ⟨z, hz⟩ => by rw [← mul_one x, ← sub_sub_cancel (z * y) 1, mul_sub, mul_left_comm]
exact I.sub_mem (I.mul_mem_left _ hxy) (I.mul_mem_left _ hz)
theorem isPrimary_of_isMaximal_radical [CommRing R] {I : Ideal R} (hi : IsMaximal (radical I)) : IsPrimary I := have : radical I = jacobson I := le_antisymm (le_sInf fun M ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him) (sInf_le ⟨le_radical, hi⟩) ⟨ne_top_of_lt <| lt_of_le_of_lt le_radical (lt_top_iff_ne_top.2 hi.1.1), fun {x y} hxy => ((isLocal_of_isMaximal_radical hi).mem_jacobson_or_exists_inv y).symm.imp (fun ⟨z, hz⟩ => by rw [← mul_one x, ← sub_sub_cancel (z * y) 1, mul_sub, mul_left_comm]
Mathlib.RingTheory.JacobsonIdeal.398_0.Lz0MgLQMj1bGzuN
theorem isPrimary_of_isMaximal_radical [CommRing R] {I : Ideal R} (hi : IsMaximal (radical I)) : IsPrimary I
Mathlib_RingTheory_JacobsonIdeal
ι : Sort u_1 f : ι → ℕ s : Set ℕ ⊢ ⨅ i, ↑(f i) ≠ ⊤ ↔ Nonempty ι
/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Data.Nat.Lattice import Mathlib.Data.ENat.Basic #align_import data.enat.lattice from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c" /-! # Extended natural numbers form a complete linear order This instance is not in `Data.ENat.Basic` to avoid dependency on `Finset`s. We also restate some lemmas about `WithTop` for `ENat` to have versions that use `Nat.cast` instead of `WithTop.some`. -/ open Set -- porting notes: was `deriving instance` but "default handlers have not been implemented yet" -- porting notes: `noncomputable` through 'Nat.instConditionallyCompleteLinearOrderBotNat' noncomputable instance : CompleteLinearOrder ENat := inferInstanceAs (CompleteLinearOrder (WithTop ℕ)) namespace ENat variable {ι : Sort*} {f : ι → ℕ} {s : Set ℕ} lemma iSup_coe_eq_top : ⨆ i, (f i : ℕ∞) = ⊤ ↔ ¬ BddAbove (range f) := WithTop.iSup_coe_eq_top lemma iSup_coe_ne_top : ⨆ i, (f i : ℕ∞) ≠ ⊤ ↔ BddAbove (range f) := iSup_coe_eq_top.not_left lemma iSup_coe_lt_top : ⨆ i, (f i : ℕ∞) < ⊤ ↔ BddAbove (range f) := WithTop.iSup_coe_lt_top lemma iInf_coe_eq_top : ⨅ i, (f i : ℕ∞) = ⊤ ↔ IsEmpty ι := WithTop.iInf_coe_eq_top lemma iInf_coe_ne_top : ⨅ i, (f i : ℕ∞) ≠ ⊤ ↔ Nonempty ι := by
rw [Ne.def, iInf_coe_eq_top, not_isEmpty_iff]
lemma iInf_coe_ne_top : ⨅ i, (f i : ℕ∞) ≠ ⊤ ↔ Nonempty ι := by
Mathlib.Data.ENat.Lattice.34_0.U3XTj6Gwuvfp15T
lemma iInf_coe_ne_top : ⨅ i, (f i : ℕ∞) ≠ ⊤ ↔ Nonempty ι
Mathlib_Data_ENat_Lattice
L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ (∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N) → FG N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
Mathlib.ModelTheory.FinitelyGenerated.45_0.mkqJR9tOk3JtWTX
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N
Mathlib_ModelTheory_FinitelyGenerated
case intro.intro L : Language M : Type u_1 inst✝ : Structure L M t' : Set M h : Set.Finite t' ⊢ FG (LowerAdjoint.toFun (closure L) t')
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩
Mathlib.ModelTheory.FinitelyGenerated.45_0.mkqJR9tOk3JtWTX
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N
Mathlib_ModelTheory_FinitelyGenerated
case intro.intro.intro L : Language M : Type u_1 inst✝ : Structure L M t : Finset M h : Set.Finite ↑t ⊢ FG (LowerAdjoint.toFun (closure L) ↑t)
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
Mathlib.ModelTheory.FinitelyGenerated.45_0.mkqJR9tOk3JtWTX
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N
Mathlib_ModelTheory_FinitelyGenerated
L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ FG N ↔ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
Mathlib.ModelTheory.FinitelyGenerated.52_0.mkqJR9tOk3JtWTX
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ (∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N) ↔ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def]
constructor
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def]
Mathlib.ModelTheory.FinitelyGenerated.52_0.mkqJR9tOk3JtWTX
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mp L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ (∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N) → ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor ·
rintro ⟨S, Sfin, hS⟩
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor ·
Mathlib.ModelTheory.FinitelyGenerated.52_0.mkqJR9tOk3JtWTX
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mp.intro.intro L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M S : Set M Sfin : Set.Finite S hS : LowerAdjoint.toFun (closure L) S = N ⊢ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩
Mathlib.ModelTheory.FinitelyGenerated.52_0.mkqJR9tOk3JtWTX
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mp.intro.intro.intro.intro L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M n : ℕ f : Fin n ↪ M Sfin : Set.Finite (range ⇑f) hS : LowerAdjoint.toFun (closure L) (range ⇑f) = N ⊢ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
Mathlib.ModelTheory.FinitelyGenerated.52_0.mkqJR9tOk3JtWTX
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mpr L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ (∃ n s, LowerAdjoint.toFun (closure L) (range s) = N) → ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ ·
rintro ⟨n, s, hs⟩
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ ·
Mathlib.ModelTheory.FinitelyGenerated.52_0.mkqJR9tOk3JtWTX
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mpr.intro.intro L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M n : ℕ s : Fin n → M hs : LowerAdjoint.toFun (closure L) (range s) = N ⊢ ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩
Mathlib.ModelTheory.FinitelyGenerated.52_0.mkqJR9tOk3JtWTX
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
L : Language M : Type u_1 inst✝ : Structure L M ⊢ LowerAdjoint.toFun (closure L) ↑∅ = ⊥
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by
rw [Finset.coe_empty, closure_empty]
theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by
Mathlib.ModelTheory.FinitelyGenerated.63_0.mkqJR9tOk3JtWTX
theorem fg_bot : (⊥ : L.Substructure M).FG
Mathlib_ModelTheory_FinitelyGenerated
L : Language M : Type u_1 inst✝ : Structure L M s : Set M hs : Set.Finite s ⊢ LowerAdjoint.toFun (closure L) ↑(Finite.toFinset hs) = LowerAdjoint.toFun (closure L) s
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by
rw [hs.coe_toFinset]
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by
Mathlib.ModelTheory.FinitelyGenerated.67_0.mkqJR9tOk3JtWTX
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s)
Mathlib_ModelTheory_FinitelyGenerated
L : Language M : Type u_1 inst✝ : Structure L M N₁ N₂ : Substructure L M hN₁ : FG N₁ hN₂ : FG N₂ t₁ : Set M ht₁ : Set.Finite t₁ ∧ LowerAdjoint.toFun (closure L) t₁ = N₁ t₂ : Set M ht₂ : Set.Finite t₂ ∧ LowerAdjoint.toFun (closure L) t₂ = N₂ ⊢ LowerAdjoint.toFun (closure L) (t₁ ∪ t₂) = N₁ ⊔ N₂
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by
rw [closure_union, ht₁.2, ht₂.2]
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by
Mathlib.ModelTheory.FinitelyGenerated.75_0.mkqJR9tOk3JtWTX
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG
Mathlib_ModelTheory_FinitelyGenerated
L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M →[L] N s : Substructure L M hs : FG s t : Set M ht : Set.Finite t ∧ LowerAdjoint.toFun (closure L) t = s ⊢ LowerAdjoint.toFun (closure L) (⇑f '' t) = Substructure.map f s
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by
rw [closure_image, ht.2]
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by
Mathlib.ModelTheory.FinitelyGenerated.81_0.mkqJR9tOk3JtWTX
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG
Mathlib_ModelTheory_FinitelyGenerated
L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M hs : FG (Substructure.map (Embedding.toHom f) s) ⊢ FG s
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG
Mathlib_ModelTheory_FinitelyGenerated
case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s ⊢ FG s
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩
rw [fg_def]
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG
Mathlib_ModelTheory_FinitelyGenerated
case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s ⊢ ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = s
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def]
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG
Mathlib_ModelTheory_FinitelyGenerated
case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s ⊢ LowerAdjoint.toFun (closure L) (⇑f ⁻¹' ↑t) = s
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG
Mathlib_ModelTheory_FinitelyGenerated
case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ⇑(Embedding.toHom f) ⊢ LowerAdjoint.toFun (closure L) (⇑f ⁻¹' ↑t) = s
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG
Mathlib_ModelTheory_FinitelyGenerated
case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ⇑(Embedding.toHom f) ⊢ Substructure.map (Embedding.toHom f) (LowerAdjoint.toFun (closure L) (⇑f ⁻¹' ↑t)) = Substructure.map (Embedding.toHom f) s
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG
Mathlib_ModelTheory_FinitelyGenerated
case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ⇑(Embedding.toHom f) ⊢ ↑t ⊆ range ⇑f
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG
Mathlib_ModelTheory_FinitelyGenerated
case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ⇑(Embedding.toHom f) x : N hx : x ∈ ↑t ⊢ x ∈ range ⇑f
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx
have h' := subset_closure (L := L) hx
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG
Mathlib_ModelTheory_FinitelyGenerated
case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ⇑(Embedding.toHom f) x : N hx : x ∈ ↑t h' : x ∈ ↑(LowerAdjoint.toFun (closure L) ↑t) ⊢ x ∈ range ⇑f
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx
rw [h] at h'
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG
Mathlib_ModelTheory_FinitelyGenerated
case intro L : Language M : Type u_1 inst✝¹ : Structure L M N : Type u_2 inst✝ : Structure L N f : M ↪[L] N s : Substructure L M t : Finset N h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s hf : Function.Injective ⇑(Embedding.toHom f) x : N hx : x ∈ ↑t h' : x ∈ ↑(Substructure.map (Embedding.toHom f) s) ⊢ x ∈ range ⇑f
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h'
exact Hom.map_le_range h'
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h'
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG
Mathlib_ModelTheory_FinitelyGenerated
L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M h : FG N ⊢ CG N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
Mathlib.ModelTheory.FinitelyGenerated.111_0.mkqJR9tOk3JtWTX
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG
Mathlib_ModelTheory_FinitelyGenerated
case intro.intro L : Language M : Type u_1 inst✝ : Structure L M s : Set M hf : Set.Finite s h : FG (LowerAdjoint.toFun (closure L) s) ⊢ CG (LowerAdjoint.toFun (closure L) s)
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h
Mathlib.ModelTheory.FinitelyGenerated.111_0.mkqJR9tOk3JtWTX
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG
Mathlib_ModelTheory_FinitelyGenerated
L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ CG N ↔ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ (∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N) ↔ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def]
constructor
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def]
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mp L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ (∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N) → ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor ·
rintro ⟨S, Scount, hS⟩
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor ·
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mp.intro.intro L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M S : Set M Scount : Set.Countable S hS : LowerAdjoint.toFun (closure L) S = N ⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mp.intro.intro.inl L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M S : Set M Scount : Set.Countable S hS : LowerAdjoint.toFun (closure L) S = N h : ↑N = ∅ ⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h ·
exact Or.intro_left _ h
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h ·
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mp.intro.intro.inr L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M S : Set M Scount : Set.Countable S hS : LowerAdjoint.toFun (closure L) S = N h : Set.Nonempty ↑N ⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h
obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mp.intro.intro.inr.intro L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M S : Set M Scount : Set.Countable S hS : LowerAdjoint.toFun (closure L) S = N h : Set.Nonempty ↑N f : ℕ → M h' : S ∪ {Set.Nonempty.some h} = range f ⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mp.intro.intro.inr.intro L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M S : Set M Scount : Set.Countable S hS : LowerAdjoint.toFun (closure L) S = N h : Set.Nonempty ↑N f : ℕ → M h' : S ∪ {Set.Nonempty.some h} = range f ⊢ LowerAdjoint.toFun (closure L) (range f) = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mp.intro.intro.inr.intro L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M S : Set M Scount : Set.Countable S hS : LowerAdjoint.toFun (closure L) S = N h : Set.Nonempty ↑N f : ℕ → M h' : S ∪ {Set.Nonempty.some h} = range f ⊢ {Set.Nonempty.some h} ⊆ ↑N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le]
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mpr L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M ⊢ (↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N) → ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem ·
intro h
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem ·
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mpr L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M h : ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N ⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem · intro h
cases' h with h h
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem · intro h
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mpr.inl L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M h : ↑N = ∅ ⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem · intro h cases' h with h h ·
refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem · intro h cases' h with h h ·
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mpr.inl L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M h : ↑N = ∅ ⊢ N ≤ LowerAdjoint.toFun (closure L) ∅
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem · intro h cases' h with h h · refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem · intro h cases' h with h h · refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mpr.inl L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M h : ↑N = ∅ ⊢ ∅ ⊆ ↑(LowerAdjoint.toFun (closure L) ∅)
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem · intro h cases' h with h h · refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩ rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem · intro h cases' h with h h · refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩ rw [← SetLike.coe_subset_coe, h]
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mpr.inr L : Language M : Type u_1 inst✝ : Structure L M N : Substructure L M h : ∃ s, LowerAdjoint.toFun (closure L) (range s) = N ⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem · intro h cases' h with h h · refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩ rw [← SetLike.coe_subset_coe, h] exact empty_subset _ ·
obtain ⟨f, rfl⟩ := h
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem · intro h cases' h with h h · refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩ rw [← SetLike.coe_subset_coe, h] exact empty_subset _ ·
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
case mpr.inr.intro L : Language M : Type u_1 inst✝ : Structure L M f : ℕ → M ⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = LowerAdjoint.toFun (closure L) (range f)
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem · intro h cases' h with h h · refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩ rw [← SetLike.coe_subset_coe, h] exact empty_subset _ · obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem · intro h cases' h with h h · refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩ rw [← SetLike.coe_subset_coe, h] exact empty_subset _ · obtain ⟨f, rfl⟩ := h
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
Mathlib_ModelTheory_FinitelyGenerated
L : Language M : Type u_1 inst✝ : Structure L M N₁ N₂ : Substructure L M hN₁ : CG N₁ hN₂ : CG N₂ t₁ : Set M ht₁ : Set.Countable t₁ ∧ LowerAdjoint.toFun (closure L) t₁ = N₁ t₂ : Set M ht₂ : Set.Countable t₂ ∧ LowerAdjoint.toFun (closure L) t₂ = N₂ ⊢ LowerAdjoint.toFun (closure L) (t₁ ∪ t₂) = N₁ ⊔ N₂
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import Mathlib.ModelTheory.Substructures #align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398" /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated. * `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated. * `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated. * `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open FirstOrder Set namespace FirstOrder namespace Language open Structure variable {L : Language} {M : Type*} [L.Structure M] namespace Substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def FG (N : L.Substructure M) : Prop := ∃ S : Finset M, closure L S = N #align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N := ⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by rintro ⟨t', h, rfl⟩ rcases Finite.exists_finset_coe h with ⟨t, rfl⟩ exact ⟨t, rfl⟩⟩ #align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} : N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by rw [fg_def] constructor · rintro ⟨S, Sfin, hS⟩ obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding exact ⟨n, f, hS⟩ · rintro ⟨n, s, hs⟩ refine' ⟨range s, finite_range s, hs⟩ #align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family theorem fg_bot : (⊥ : L.Substructure M).FG := ⟨∅, by rw [Finset.coe_empty, closure_empty]⟩ #align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) := ⟨hs.toFinset, by rw [hs.coe_toFinset]⟩ #align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) := fg_closure (finite_singleton x) #align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁ let ⟨t₂, ht₂⟩ := fg_def.1 hN₂ fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ #align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) : (s.map f).FG := let ⟨t, ht⟩ := fg_def.1 hs fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ #align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M} (hs : (s.map f.toHom).FG) : s.FG := by rcases hs with ⟨t, h⟩ rw [fg_def] refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩ have hf : Function.Injective f.toHom := f.injective refine' map_injective_of_injective hf _ rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset] intro x hx have h' := subset_closure (L := L) hx rw [h] at h' exact Hom.map_le_range h' #align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def CG (N : L.Substructure M) : Prop := ∃ S : Set M, S.Countable ∧ closure L S = N #align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N := Iff.refl _ #align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by obtain ⟨s, hf, rfl⟩ := fg_def.1 h refine' ⟨s, hf.countable, rfl⟩ #align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} : N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by rw [cg_def] constructor · rintro ⟨S, Scount, hS⟩ rcases eq_empty_or_nonempty (N : Set M) with h | h · exact Or.intro_left _ h obtain ⟨f, h'⟩ := (Scount.union (Set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr refine' Or.intro_right _ ⟨f, _⟩ rw [← h', closure_union, hS, sup_eq_left, closure_le] exact singleton_subset_iff.2 h.some_mem · intro h cases' h with h h · refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩ rw [← SetLike.coe_subset_coe, h] exact empty_subset _ · obtain ⟨f, rfl⟩ := h exact ⟨range f, countable_range _, rfl⟩ #align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family theorem cg_bot : (⊥ : L.Substructure M).CG := fg_bot.cg #align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) := ⟨s, hs, rfl⟩ #align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) := (fg_closure_singleton x).cg #align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG := let ⟨t₁, ht₁⟩ := cg_def.1 hN₁ let ⟨t₂, ht₂⟩ := cg_def.1 hN₂ cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by
rw [closure_union, ht₁.2, ht₂.2]
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG := let ⟨t₁, ht₁⟩ := cg_def.1 hN₁ let ⟨t₂, ht₂⟩ := cg_def.1 hN₂ cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by
Mathlib.ModelTheory.FinitelyGenerated.150_0.mkqJR9tOk3JtWTX
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG
Mathlib_ModelTheory_FinitelyGenerated