state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
case refine'_2
R : Type u
S : Type v
inst✝¹ : Ring R
inst✝ : Ring S
I : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
K J : Ideal S
hJ : J ∈ {J | K ≤ J ∧ IsMaximal J}
⊢ sInf {J | comap f K ≤ J ∧ IsMaximal J} ≤ comap f J
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
|
haveI : J.IsMaximal := hJ.right
|
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
|
Mathlib.RingTheory.JacobsonIdeal.209_0.Lz0MgLQMj1bGzuN
|
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson
|
Mathlib_RingTheory_JacobsonIdeal
|
case refine'_2
R : Type u
S : Type v
inst✝¹ : Ring R
inst✝ : Ring S
I : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
K J : Ideal S
hJ : J ∈ {J | K ≤ J ∧ IsMaximal J}
this : IsMaximal J
⊢ sInf {J | comap f K ≤ J ∧ IsMaximal J} ≤ comap f J
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
|
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
|
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
|
Mathlib.RingTheory.JacobsonIdeal.209_0.Lz0MgLQMj1bGzuN
|
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝¹ : Ring R
inst✝ : Ring S
I✝ I J : Ideal R
⊢ I ≤ J → jacobson I ≤ jacobson J
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
|
intro h x hx
|
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
|
Mathlib.RingTheory.JacobsonIdeal.230_0.Lz0MgLQMj1bGzuN
|
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝¹ : Ring R
inst✝ : Ring S
I✝ I J : Ideal R
h : I ≤ J
x : R
hx : x ∈ jacobson I
⊢ x ∈ jacobson J
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
|
erw [mem_sInf] at hx ⊢
|
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
|
Mathlib.RingTheory.JacobsonIdeal.230_0.Lz0MgLQMj1bGzuN
|
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝¹ : Ring R
inst✝ : Ring S
I✝ I J : Ideal R
h : I ≤ J
x : R
hx : ∀ ⦃I_1 : Ideal R⦄, I_1 ∈ {J | I ≤ J ∧ IsMaximal J} → x ∈ I_1
⊢ ∀ ⦃I : Ideal R⦄, I ∈ {J_1 | J ≤ J_1 ∧ IsMaximal J_1} → x ∈ I
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
|
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
|
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
|
Mathlib.RingTheory.JacobsonIdeal.230_0.Lz0MgLQMj1bGzuN
|
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
r : R
h : r - 1 ∈ jacobson ⊥
⊢ IsUnit r
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
|
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
|
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
|
Mathlib.RingTheory.JacobsonIdeal.251_0.Lz0MgLQMj1bGzuN
|
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r
|
Mathlib_RingTheory_JacobsonIdeal
|
case intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
r : R
h : r - 1 ∈ jacobson ⊥
s : R
hs : s * r - 1 ∈ ⊥
⊢ IsUnit r
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
|
rw [mem_bot, sub_eq_zero, mul_comm] at hs
|
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
|
Mathlib.RingTheory.JacobsonIdeal.251_0.Lz0MgLQMj1bGzuN
|
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r
|
Mathlib_RingTheory_JacobsonIdeal
|
case intro
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
r : R
h : r - 1 ∈ jacobson ⊥
s : R
hs : r * s = 1
⊢ IsUnit r
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
|
exact isUnit_of_mul_eq_one _ _ hs
|
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
|
Mathlib.RingTheory.JacobsonIdeal.251_0.Lz0MgLQMj1bGzuN
|
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
x : R
hx : x ∈ jacobson ⊥
y z : R
hz : z * y * x + z - 1 ∈ ⊥
⊢ (x * y + 1) * z = 1
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by
|
rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]
|
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by
|
Mathlib.RingTheory.JacobsonIdeal.258_0.Lz0MgLQMj1bGzuN
|
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1)
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
x : R
h : ∀ (y : R), IsUnit (x * y + 1)
y b : R
hb : (x * y + 1) * b = 1
⊢ b * y * x + b - (x * y + 1) * b = 0
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by
|
ring
|
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by
|
Mathlib.RingTheory.JacobsonIdeal.258_0.Lz0MgLQMj1bGzuN
|
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1)
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
⊢ jacobson I = I ↔ jacobson ⊥ = ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
|
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
|
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
⊢ jacobson I = I ↔ jacobson ⊥ = ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
|
constructor
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
|
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
⊢ jacobson I = I → jacobson ⊥ = ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
·
|
intro h
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
·
|
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
h : jacobson I = I
⊢ jacobson ⊥ = ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
|
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
|
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
h : map (Quotient.mk I) (jacobson I) = map (Quotient.mk I) I
⊢ jacobson ⊥ = ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
|
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
|
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
h : jacobson (map (Quotient.mk I) I) = map (Quotient.mk I) I
⊢ jacobson ⊥ = ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
|
simpa using h
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
|
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mpr
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
⊢ jacobson ⊥ = ⊥ → jacobson I = I
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
·
|
intro h
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
·
|
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mpr
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
h : jacobson ⊥ = ⊥
⊢ jacobson I = I
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
|
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
|
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mpr
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
h : comap (Quotient.mk I) (jacobson ⊥) = comap (Quotient.mk I) ⊥
⊢ jacobson I = I
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
|
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
|
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mpr
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
h : jacobson (RingHom.ker (Quotient.mk I)) = RingHom.ker (Quotient.mk I)
⊢ jacobson I = I
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
|
simpa using h
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
|
Mathlib.RingTheory.JacobsonIdeal.269_0.Lz0MgLQMj1bGzuN
|
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
⊢ radical I = jacobson I ↔ radical ⊥ = jacobson ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
|
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
|
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
⊢ radical I = jacobson I ↔ radical ⊥ = jacobson ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
|
constructor
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
|
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
⊢ radical I = jacobson I → radical ⊥ = jacobson ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
·
|
intro h
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
·
|
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
h : radical I = jacobson I
⊢ radical ⊥ = jacobson ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
|
have := congr_arg (map (Ideal.Quotient.mk I)) h
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
|
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
h : radical I = jacobson I
this : map (Quotient.mk I) (radical I) = map (Quotient.mk I) (jacobson I)
⊢ radical ⊥ = jacobson ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
|
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
|
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mp
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
h : radical I = jacobson I
this : radical (map (Quotient.mk I) I) = jacobson (map (Quotient.mk I) I)
⊢ radical ⊥ = jacobson ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
|
simpa using this
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
|
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mpr
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
⊢ radical ⊥ = jacobson ⊥ → radical I = jacobson I
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
·
|
intro h
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
·
|
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mpr
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
h : radical ⊥ = jacobson ⊥
⊢ radical I = jacobson I
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
|
have := congr_arg (comap (Ideal.Quotient.mk I)) h
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
|
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mpr
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
h : radical ⊥ = jacobson ⊥
this : comap (Quotient.mk I) (radical ⊥) = comap (Quotient.mk I) (jacobson ⊥)
⊢ radical I = jacobson I
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
|
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
|
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
case mpr
R : Type u
S : Type v
inst✝¹ : CommRing R
inst✝ : CommRing S
I : Ideal R
hf : Function.Surjective ⇑(Quotient.mk I)
h : radical ⊥ = jacobson ⊥
this : radical (RingHom.ker (Quotient.mk I)) = jacobson (RingHom.ker (Quotient.mk I))
⊢ radical I = jacobson I
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
|
simpa using this
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
|
Mathlib.RingTheory.JacobsonIdeal.286_0.Lz0MgLQMj1bGzuN
|
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
⊢ jacobson ⊥ ≤ sInf (map C '' {J | IsMaximal J})
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
|
refine' le_sInf fun J => exists_imp.2 fun j hj => _
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
⊢ jacobson ⊥ ≤ J
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
|
haveI : j.IsMaximal := hj.1
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
⊢ jacobson ⊥ ≤ J
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
|
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
⊢ jacobson J = J
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
|
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
t : jacobson ⊥ = ⊥
⊢ jacobson J = J
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
|
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
t : jacobson ⊥ = ⊥
⊢ jacobson ⊥ = ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
|
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
t :
map (RingEquiv.toRingHom (polynomialQuotientEquivQuotientPolynomial j)) (jacobson ⊥) =
map (RingEquiv.toRingHom (polynomialQuotientEquivQuotientPolynomial j)) ⊥
⊢ jacobson ⊥ = ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
|
rwa [map_jacobson_of_bijective _, map_bot] at t
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
t :
map (RingEquiv.toRingHom (polynomialQuotientEquivQuotientPolynomial j)) (jacobson ⊥) =
map (RingEquiv.toRingHom (polynomialQuotientEquivQuotientPolynomial j)) ⊥
⊢ Function.Bijective ⇑(RingEquiv.toRingHom (polynomialQuotientEquivQuotientPolynomial j))
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
|
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
⊢ jacobson ⊥ = ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
|
refine' eq_bot_iff.2 fun f hf => _
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
f : (R ⧸ j)[X]
hf : f ∈ jacobson ⊥
⊢ f ∈ ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
|
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
f : (R ⧸ j)[X]
hf : f ∈ jacobson ⊥
hX : X = 0
⊢ False
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
|
replace hX := congr_arg (fun f => coeff f 1) hX
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
f : (R ⧸ j)[X]
hf : f ∈ jacobson ⊥
hX : (fun f => coeff f 1) X = (fun f => coeff f 1) 0
⊢ False
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
|
simp only [coeff_X_one, coeff_zero] at hX
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
f : (R ⧸ j)[X]
hf : f ∈ jacobson ⊥
hX : 1 = 0
⊢ False
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
|
exact zero_ne_one hX.symm
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
f : (R ⧸ j)[X]
hf : f ∈ jacobson ⊥
r1 : X ≠ 0
⊢ f ∈ ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
|
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
f : (R ⧸ j)[X]
hf : f ∈ jacobson ⊥
r1 : X ≠ 0
r2 : f * X + 1 = C (coeff (f * X + 1) 0)
⊢ f ∈ ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
|
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
f : (R ⧸ j)[X]
hf : f ∈ jacobson ⊥
r1 : X ≠ 0
r2 : f * X + 1 = C 1
⊢ f ∈ ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
|
erw [add_left_eq_self] at r2
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
J : Ideal R[X]
j : Ideal R
hj : j ∈ {J | IsMaximal J} ∧ map C j = J
this : IsMaximal j
f : (R ⧸ j)[X]
hf : f ∈ jacobson ⊥
r1 : X ≠ 0
r2 : f * X = 0
⊢ f ∈ ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
erw [add_left_eq_self] at r2
|
simpa using (mul_eq_zero.mp r2).resolve_right r1
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
erw [add_left_eq_self] at r2
|
Mathlib.RingTheory.JacobsonIdeal.322_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal })
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
h : jacobson ⊥ = ⊥
⊢ jacobson ⊥ = ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
erw [add_left_eq_self] at r2
simpa using (mul_eq_zero.mp r2).resolve_right r1
-- Porting note: this is golfed to much
-- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)]
-- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X))
#align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥ := by
|
refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
|
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥ := by
|
Mathlib.RingTheory.JacobsonIdeal.346_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
h : jacobson ⊥ = ⊥
⊢ sInf (map C '' {J | IsMaximal J}) ≤ ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
erw [add_left_eq_self] at r2
simpa using (mul_eq_zero.mp r2).resolve_right r1
-- Porting note: this is golfed to much
-- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)]
-- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X))
#align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥ := by
refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
|
refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n =>
Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm
|
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥ := by
refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
|
Mathlib.RingTheory.JacobsonIdeal.346_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
h : jacobson ⊥ = ⊥
f : R[X]
hf : f ∈ sInf (map C '' {J | IsMaximal J})
n : ℕ
⊢ coeff f n = 0
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
erw [add_left_eq_self] at r2
simpa using (mul_eq_zero.mp r2).resolve_right r1
-- Porting note: this is golfed to much
-- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)]
-- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X))
#align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥ := by
refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n =>
Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm
|
suffices f.coeff n ∈ Ideal.jacobson ⊥ by rwa [h, Submodule.mem_bot] at this
|
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥ := by
refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n =>
Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm
|
Mathlib.RingTheory.JacobsonIdeal.346_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
h : jacobson ⊥ = ⊥
f : R[X]
hf : f ∈ sInf (map C '' {J | IsMaximal J})
n : ℕ
this : coeff f n ∈ jacobson ⊥
⊢ coeff f n = 0
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
erw [add_left_eq_self] at r2
simpa using (mul_eq_zero.mp r2).resolve_right r1
-- Porting note: this is golfed to much
-- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)]
-- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X))
#align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥ := by
refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n =>
Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm
suffices f.coeff n ∈ Ideal.jacobson ⊥ by
|
rwa [h, Submodule.mem_bot] at this
|
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥ := by
refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n =>
Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm
suffices f.coeff n ∈ Ideal.jacobson ⊥ by
|
Mathlib.RingTheory.JacobsonIdeal.346_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
h : jacobson ⊥ = ⊥
f : R[X]
hf : f ∈ sInf (map C '' {J | IsMaximal J})
n : ℕ
⊢ coeff f n ∈ jacobson ⊥
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
erw [add_left_eq_self] at r2
simpa using (mul_eq_zero.mp r2).resolve_right r1
-- Porting note: this is golfed to much
-- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)]
-- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X))
#align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥ := by
refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n =>
Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm
suffices f.coeff n ∈ Ideal.jacobson ⊥ by rwa [h, Submodule.mem_bot] at this
|
exact mem_sInf.2 fun j hj => (mem_map_C_iff.1 ((mem_sInf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n
|
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥ := by
refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n =>
Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm
suffices f.coeff n ∈ Ideal.jacobson ⊥ by rwa [h, Submodule.mem_bot] at this
|
Mathlib.RingTheory.JacobsonIdeal.346_0.Lz0MgLQMj1bGzuN
|
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
I : Ideal R
hi : IsLocal I
x : R
h : I ⊔ span {x} = ⊤
p : R
hpi : p ∈ I
q : R
hq : q ∈ span {x}
hpq : p + q = 1
r : R
hr : q = x * r
⊢ r * x - 1 ∈ I
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
erw [add_left_eq_self] at r2
simpa using (mul_eq_zero.mp r2).resolve_right r1
-- Porting note: this is golfed to much
-- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)]
-- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X))
#align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥ := by
refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n =>
Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm
suffices f.coeff n ∈ Ideal.jacobson ⊥ by rwa [h, Submodule.mem_bot] at this
exact mem_sInf.2 fun j hj => (mem_map_C_iff.1 ((mem_sInf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n
#align ideal.jacobson_bot_polynomial_of_jacobson_bot Ideal.jacobson_bot_polynomial_of_jacobson_bot
end Polynomial
section IsLocal
variable [CommRing R]
/-- An ideal `I` is local iff its Jacobson radical is maximal. -/
class IsLocal (I : Ideal R) : Prop where
/-- A ring `R` is local if and only if its jacobson radical is maximal -/
out : IsMaximal (jacobson I)
#align ideal.is_local Ideal.IsLocal
theorem isLocal_iff {I : Ideal R} : IsLocal I ↔ IsMaximal (jacobson I) :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align ideal.is_local_iff Ideal.isLocal_iff
theorem isLocal_of_isMaximal_radical {I : Ideal R} (hi : IsMaximal (radical I)) : IsLocal I :=
⟨have : radical I = jacobson I :=
le_antisymm (le_sInf fun _ ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him)
(sInf_le ⟨le_radical, hi⟩)
show IsMaximal (jacobson I) from this ▸ hi⟩
#align ideal.is_local_of_is_maximal_radical Ideal.isLocal_of_isMaximal_radical
theorem IsLocal.le_jacobson {I J : Ideal R} (hi : IsLocal I) (hij : I ≤ J) (hj : J ≠ ⊤) :
J ≤ jacobson I :=
let ⟨_, hm, hjm⟩ := exists_le_maximal J hj
le_trans hjm <| le_of_eq <| Eq.symm <| hi.1.eq_of_le hm.1.1 <| sInf_le ⟨le_trans hij hjm, hm⟩
#align ideal.is_local.le_jacobson Ideal.IsLocal.le_jacobson
theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) :
x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I :=
by_cases
(fun h : I ⊔ span {x} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
let ⟨r, hr⟩ := mem_span_singleton.1 hq
Or.inr ⟨r, by
|
rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel]
|
theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) :
x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I :=
by_cases
(fun h : I ⊔ span {x} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
let ⟨r, hr⟩ := mem_span_singleton.1 hq
Or.inr ⟨r, by
|
Mathlib.RingTheory.JacobsonIdeal.384_0.Lz0MgLQMj1bGzuN
|
theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) :
x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
I : Ideal R
hi : IsLocal I
x : R
h : I ⊔ span {x} = ⊤
p : R
hpi : p ∈ I
q : R
hq : q ∈ span {x}
hpq : p + q = 1
r : R
hr : q = x * r
⊢ -p ∈ I
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
erw [add_left_eq_self] at r2
simpa using (mul_eq_zero.mp r2).resolve_right r1
-- Porting note: this is golfed to much
-- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)]
-- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X))
#align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥ := by
refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n =>
Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm
suffices f.coeff n ∈ Ideal.jacobson ⊥ by rwa [h, Submodule.mem_bot] at this
exact mem_sInf.2 fun j hj => (mem_map_C_iff.1 ((mem_sInf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n
#align ideal.jacobson_bot_polynomial_of_jacobson_bot Ideal.jacobson_bot_polynomial_of_jacobson_bot
end Polynomial
section IsLocal
variable [CommRing R]
/-- An ideal `I` is local iff its Jacobson radical is maximal. -/
class IsLocal (I : Ideal R) : Prop where
/-- A ring `R` is local if and only if its jacobson radical is maximal -/
out : IsMaximal (jacobson I)
#align ideal.is_local Ideal.IsLocal
theorem isLocal_iff {I : Ideal R} : IsLocal I ↔ IsMaximal (jacobson I) :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align ideal.is_local_iff Ideal.isLocal_iff
theorem isLocal_of_isMaximal_radical {I : Ideal R} (hi : IsMaximal (radical I)) : IsLocal I :=
⟨have : radical I = jacobson I :=
le_antisymm (le_sInf fun _ ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him)
(sInf_le ⟨le_radical, hi⟩)
show IsMaximal (jacobson I) from this ▸ hi⟩
#align ideal.is_local_of_is_maximal_radical Ideal.isLocal_of_isMaximal_radical
theorem IsLocal.le_jacobson {I J : Ideal R} (hi : IsLocal I) (hij : I ≤ J) (hj : J ≠ ⊤) :
J ≤ jacobson I :=
let ⟨_, hm, hjm⟩ := exists_le_maximal J hj
le_trans hjm <| le_of_eq <| Eq.symm <| hi.1.eq_of_le hm.1.1 <| sInf_le ⟨le_trans hij hjm, hm⟩
#align ideal.is_local.le_jacobson Ideal.IsLocal.le_jacobson
theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) :
x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I :=
by_cases
(fun h : I ⊔ span {x} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
let ⟨r, hr⟩ := mem_span_singleton.1 hq
Or.inr ⟨r, by rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel];
|
exact I.neg_mem hpi
|
theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) :
x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I :=
by_cases
(fun h : I ⊔ span {x} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
let ⟨r, hr⟩ := mem_span_singleton.1 hq
Or.inr ⟨r, by rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel];
|
Mathlib.RingTheory.JacobsonIdeal.384_0.Lz0MgLQMj1bGzuN
|
theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) :
x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
I : Ideal R
hi : IsMaximal (radical I)
this : radical I = jacobson I
x y : R
hxy : x * y ∈ I
x✝ : ∃ y_1, y_1 * y - 1 ∈ I
z : R
hz : z * y - 1 ∈ I
⊢ x ∈ I
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
erw [add_left_eq_self] at r2
simpa using (mul_eq_zero.mp r2).resolve_right r1
-- Porting note: this is golfed to much
-- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)]
-- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X))
#align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥ := by
refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n =>
Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm
suffices f.coeff n ∈ Ideal.jacobson ⊥ by rwa [h, Submodule.mem_bot] at this
exact mem_sInf.2 fun j hj => (mem_map_C_iff.1 ((mem_sInf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n
#align ideal.jacobson_bot_polynomial_of_jacobson_bot Ideal.jacobson_bot_polynomial_of_jacobson_bot
end Polynomial
section IsLocal
variable [CommRing R]
/-- An ideal `I` is local iff its Jacobson radical is maximal. -/
class IsLocal (I : Ideal R) : Prop where
/-- A ring `R` is local if and only if its jacobson radical is maximal -/
out : IsMaximal (jacobson I)
#align ideal.is_local Ideal.IsLocal
theorem isLocal_iff {I : Ideal R} : IsLocal I ↔ IsMaximal (jacobson I) :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align ideal.is_local_iff Ideal.isLocal_iff
theorem isLocal_of_isMaximal_radical {I : Ideal R} (hi : IsMaximal (radical I)) : IsLocal I :=
⟨have : radical I = jacobson I :=
le_antisymm (le_sInf fun _ ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him)
(sInf_le ⟨le_radical, hi⟩)
show IsMaximal (jacobson I) from this ▸ hi⟩
#align ideal.is_local_of_is_maximal_radical Ideal.isLocal_of_isMaximal_radical
theorem IsLocal.le_jacobson {I J : Ideal R} (hi : IsLocal I) (hij : I ≤ J) (hj : J ≠ ⊤) :
J ≤ jacobson I :=
let ⟨_, hm, hjm⟩ := exists_le_maximal J hj
le_trans hjm <| le_of_eq <| Eq.symm <| hi.1.eq_of_le hm.1.1 <| sInf_le ⟨le_trans hij hjm, hm⟩
#align ideal.is_local.le_jacobson Ideal.IsLocal.le_jacobson
theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) :
x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I :=
by_cases
(fun h : I ⊔ span {x} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
let ⟨r, hr⟩ := mem_span_singleton.1 hq
Or.inr ⟨r, by rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel]; exact I.neg_mem hpi⟩)
fun h : I ⊔ span {x} ≠ ⊤ =>
Or.inl <|
le_trans le_sup_right (hi.le_jacobson le_sup_left h) <| mem_span_singleton.2 <| dvd_refl x
#align ideal.is_local.mem_jacobson_or_exists_inv Ideal.IsLocal.mem_jacobson_or_exists_inv
end IsLocal
theorem isPrimary_of_isMaximal_radical [CommRing R] {I : Ideal R} (hi : IsMaximal (radical I)) :
IsPrimary I :=
have : radical I = jacobson I :=
le_antisymm (le_sInf fun M ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him)
(sInf_le ⟨le_radical, hi⟩)
⟨ne_top_of_lt <| lt_of_le_of_lt le_radical (lt_top_iff_ne_top.2 hi.1.1), fun {x y} hxy =>
((isLocal_of_isMaximal_radical hi).mem_jacobson_or_exists_inv y).symm.imp
(fun ⟨z, hz⟩ => by
|
rw [← mul_one x, ← sub_sub_cancel (z * y) 1, mul_sub, mul_left_comm]
|
theorem isPrimary_of_isMaximal_radical [CommRing R] {I : Ideal R} (hi : IsMaximal (radical I)) :
IsPrimary I :=
have : radical I = jacobson I :=
le_antisymm (le_sInf fun M ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him)
(sInf_le ⟨le_radical, hi⟩)
⟨ne_top_of_lt <| lt_of_le_of_lt le_radical (lt_top_iff_ne_top.2 hi.1.1), fun {x y} hxy =>
((isLocal_of_isMaximal_radical hi).mem_jacobson_or_exists_inv y).symm.imp
(fun ⟨z, hz⟩ => by
|
Mathlib.RingTheory.JacobsonIdeal.398_0.Lz0MgLQMj1bGzuN
|
theorem isPrimary_of_isMaximal_radical [CommRing R] {I : Ideal R} (hi : IsMaximal (radical I)) :
IsPrimary I
|
Mathlib_RingTheory_JacobsonIdeal
|
R : Type u
S : Type v
inst✝ : CommRing R
I : Ideal R
hi : IsMaximal (radical I)
this : radical I = jacobson I
x y : R
hxy : x * y ∈ I
x✝ : ∃ y_1, y_1 * y - 1 ∈ I
z : R
hz : z * y - 1 ∈ I
⊢ z * (x * y) - x * (z * y - 1) ∈ I
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Polynomial.Quotient
#align_import ring_theory.jacobson_ideal from "leanprover-community/mathlib"@"da420a8c6dd5bdfb85c4ced85c34388f633bc6ff"
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `Ideal.jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `Ideal.IsLocal I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `Ideal.isLocal_of_isMaximal_radical`: if the radical of I is maximal then so is the jacobson
radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universe u v
namespace Ideal
variable {R : Type u} {S : Type v}
open Polynomial
section Jacobson
section Ring
variable [Ring R] [Ring S] {I : Ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : Ideal R) : Ideal R :=
sInf { J : Ideal R | I ≤ J ∧ IsMaximal J }
#align ideal.jacobson Ideal.jacobson
theorem le_jacobson : I ≤ jacobson I := fun _ hx => mem_sInf.mpr fun _ hJ => hJ.left hx
#align ideal.le_jacobson Ideal.le_jacobson
@[simp]
theorem jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (sInf_le_sInf fun _ hJ => ⟨sInf_le hJ, hJ.2⟩) le_jacobson
#align ideal.jacobson_idem Ideal.jacobson_idem
@[simp]
theorem jacobson_top : jacobson (⊤ : Ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
#align ideal.jacobson_top Ideal.jacobson_top
@[simp]
theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨fun H =>
by_contradiction fun hi => let ⟨M, hm, him⟩ := exists_le_maximal I hi
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M from sInf_le ⟨him, hm⟩) <|
lt_top_iff_ne_top.2 hm.ne_top) H,
fun H => eq_top_iff.2 <| le_sInf fun _ ⟨hij, _⟩ => H ▸ hij⟩
#align ideal.jacobson_eq_top_iff Ideal.jacobson_eq_top_iff
theorem jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := fun h => eq_bot_iff.mpr (h ▸ le_jacobson)
#align ideal.jacobson_eq_bot Ideal.jacobson_eq_bot
theorem jacobson_eq_self_of_isMaximal [H : IsMaximal I] : I.jacobson = I :=
le_antisymm (sInf_le ⟨le_of_eq rfl, H⟩) le_jacobson
#align ideal.jacobson_eq_self_of_is_maximal Ideal.jacobson_eq_self_of_isMaximal
instance (priority := 100) jacobson.isMaximal [H : IsMaximal I] : IsMaximal (jacobson I) :=
⟨⟨fun htop => H.1.1 (jacobson_eq_top_iff.1 htop), fun _ hJ =>
H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
#align ideal.jacobson.is_maximal Ideal.jacobson.isMaximal
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨fun hx y =>
by_cases
(fun hxy : I ⊔ span {y * x + 1} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy)
let ⟨r, hr⟩ := mem_span_singleton'.1 hq
⟨r, by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one r (y * x), hr, ← hpq, ← neg_sub, add_sub_cancel]
exact I.neg_mem hpi⟩)
fun hxy : I ⊔ span {y * x + 1} ≠ ⊤ => let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy
suffices x ∉ M from (this <| mem_sInf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim
fun hxm => hm1.1.1 <| (eq_top_iff_one _).2 <| add_sub_cancel' (y * x) 1 ▸
M.sub_mem (le_sup_right.trans hm2 <| subset_span rfl) (M.mul_mem_left _ hxm),
fun hx => mem_sInf.2 fun M ⟨him, hm⟩ => by_contradiction fun hxm =>
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm
let ⟨z, hz⟩ := hx (-y)
hm.1.1 <| (eq_top_iff_one _).2 <| sub_sub_cancel (z * -y * x + z) 1 ▸
M.sub_mem (by
-- Porting note : supply `mul_add_one` with explicit variables
rw [mul_assoc, ← mul_add_one z, neg_mul, ← sub_eq_iff_eq_add.mpr df.symm, neg_sub,
sub_add_cancel]
exact M.mul_mem_left _ hi) <| him hz⟩
#align ideal.mem_jacobson_iff Ideal.mem_jacobson_iff
theorem exists_mul_sub_mem_of_sub_one_mem_jacobson {I : Ideal R} (r : R) (h : r - 1 ∈ jacobson I) :
∃ s, s * r - 1 ∈ I := by
cases' mem_jacobson_iff.1 h 1 with s hs
use s
simpa [mul_sub] using hs
#align ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson Ideal.exists_mul_sub_mem_of_sub_one_mem_jacobson
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_sInf_maximal :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, IsMaximal J ∨ J = ⊤) ∧ I = sInf M := by
use fun hI => ⟨{ J : Ideal R | I ≤ J ∧ J.IsMaximal }, ⟨fun _ hJ => Or.inl hJ.right, hI.symm⟩⟩
rintro ⟨M, hM, hInf⟩
refine le_antisymm (fun x hx => ?_) le_jacobson
rw [hInf, mem_sInf]
intro I hI
cases' hM I hI with is_max is_top
· exact (mem_sInf.1 hx) ⟨le_sInf_iff.1 (le_of_eq hInf) I hI, is_max⟩
· exact is_top.symm ▸ Submodule.mem_top
#align ideal.eq_jacobson_iff_Inf_maximal Ideal.eq_jacobson_iff_sInf_maximal
theorem eq_jacobson_iff_sInf_maximal' :
I.jacobson = I ↔ ∃ M : Set (Ideal R), (∀ J ∈ M, ∀ (K : Ideal R), J < K → K = ⊤) ∧ I = sInf M :=
eq_jacobson_iff_sInf_maximal.trans
⟨fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ K hK =>
Or.recOn (hM.1 J hJ) (fun h => h.1.2 K hK) fun h => eq_top_iff.2 (le_of_lt (h ▸ hK)),
hM.2⟩⟩,
fun h =>
let ⟨M, hM⟩ := h
⟨M,
⟨fun J hJ =>
Or.recOn (Classical.em (J = ⊤)) (fun h => Or.inr h) fun h => Or.inl ⟨⟨h, hM.1 J hJ⟩⟩,
hM.2⟩⟩⟩
#align ideal.eq_jacobson_iff_Inf_maximal' Ideal.eq_jacobson_iff_sInf_maximal'
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
theorem eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ (x) (_ : x ∉ I), ∃ M : Ideal R, (I ≤ M ∧ M.IsMaximal) ∧ x ∉ M := by
constructor
· intro h x hx
erw [← h, mem_sInf] at hx
push_neg at hx
exact hx
· refine fun h => le_antisymm (fun x hx => ?_) le_jacobson
contrapose hx
erw [mem_sInf]
push_neg
exact h x hx
#align ideal.eq_jacobson_iff_not_mem Ideal.eq_jacobson_iff_not_mem
theorem map_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) :
RingHom.ker f ≤ I → map f I.jacobson = (map f I).jacobson := by
intro h
unfold Ideal.jacobson
-- porting note : dot notation for `RingHom.ker` does not work
have : ∀ J ∈ { J : Ideal R | I ≤ J ∧ J.IsMaximal }, RingHom.ker f ≤ J :=
fun J hJ => le_trans h hJ.left
refine Trans.trans (map_sInf hf this) (le_antisymm ?_ ?_)
· refine'
sInf_le_sInf fun J hJ =>
⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩
haveI : J.IsMaximal := hJ.right
exact comap_isMaximal_of_surjective f hf
· refine' sInf_le_sInf_of_subset_insert_top fun j hj => hj.recOn fun J hJ => _
rw [← hJ.2]
cases' map_eq_top_or_isMaximal_of_surjective f hf hJ.left.right with htop hmax
· exact htop.symm ▸ Set.mem_insert ⊤ _
· exact Set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩
#align ideal.map_jacobson_of_surjective Ideal.map_jacobson_of_surjective
theorem map_jacobson_of_bijective {f : R →+* S} (hf : Function.Bijective f) :
map f I.jacobson = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
#align ideal.map_jacobson_of_bijective Ideal.map_jacobson_of_bijective
theorem comap_jacobson {f : R →+* S} {K : Ideal S} :
comap f K.jacobson = sInf (comap f '' { J : Ideal S | K ≤ J ∧ J.IsMaximal }) :=
Trans.trans (comap_sInf' f _) sInf_eq_iInf.symm
#align ideal.comap_jacobson Ideal.comap_jacobson
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : Function.Surjective f) {K : Ideal S} :
comap f K.jacobson = (comap f K).jacobson := by
unfold Ideal.jacobson
refine' le_antisymm _ _
· refine le_trans (comap_mono (le_of_eq (Trans.trans top_inf_eq.symm sInf_insert.symm))) ?_
rw [comap_sInf', sInf_eq_iInf]
refine' iInf_le_iInf_of_subset fun J hJ => _
have : comap f (map f J) = J :=
Trans.trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩)
le_sup_left)
cases' map_eq_top_or_isMaximal_of_surjective _ hf hJ.right with htop hmax
· exact ⟨⊤, ⟨Set.mem_insert ⊤ _, htop ▸ this⟩⟩
· exact ⟨map f J, ⟨Set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩,
this⟩⟩
· rw [comap_sInf]
refine' le_iInf_iff.2 fun J => le_iInf_iff.2 fun hJ => _
haveI : J.IsMaximal := hJ.right
refine' sInf_le ⟨comap_mono hJ.left, comap_isMaximal_of_surjective _ hf⟩
#align ideal.comap_jacobson_of_surjective Ideal.comap_jacobson_of_surjective
@[mono]
theorem jacobson_mono {I J : Ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := by
intro h x hx
erw [mem_sInf] at hx ⊢
exact fun K ⟨hK, hK_max⟩ => hx ⟨Trans.trans h hK, hK_max⟩
#align ideal.jacobson_mono Ideal.jacobson_mono
end Ring
section CommRing
variable [CommRing R] [CommRing S] {I : Ideal R}
theorem radical_le_jacobson : radical I ≤ jacobson I :=
le_sInf fun _ hJ => (radical_eq_sInf I).symm ▸ sInf_le ⟨hJ.left, IsMaximal.isPrime hJ.right⟩
#align ideal.radical_le_jacobson Ideal.radical_le_jacobson
theorem isRadical_of_eq_jacobson (h : jacobson I = I) : I.IsRadical :=
radical_le_jacobson.trans h.le
#align ideal.is_radical_of_eq_jacobson Ideal.isRadical_of_eq_jacobson
theorem isUnit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : Ideal R)) :
IsUnit r := by
cases' exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs
rw [mem_bot, sub_eq_zero, mul_comm] at hs
exact isUnit_of_mul_eq_one _ _ hs
#align ideal.is_unit_of_sub_one_mem_jacobson_bot Ideal.isUnit_of_sub_one_mem_jacobson_bot
theorem mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : Ideal R) ↔ ∀ y, IsUnit (x * y + 1) :=
⟨fun hx y =>
let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y
isUnit_iff_exists_inv.2
⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩,
fun h =>
mem_jacobson_iff.mpr fun y =>
let ⟨b, hb⟩ := isUnit_iff_exists_inv.1 (h y)
⟨b, (Submodule.mem_bot R).2 (hb ▸ by ring)⟩⟩
#align ideal.mem_jacobson_bot Ideal.mem_jacobson_bot
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
-- Porting note : changed `Quotient.mk'` to ``
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : Ideal (R ⧸ I)) = ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
replace h := congr_arg (Ideal.map (Ideal.Quotient.mk I)) h
rw [map_jacobson_of_surjective hf (le_of_eq mk_ker)] at h
simpa using h
· intro h
replace h := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_jacobson_of_surjective hf, ← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at h
simpa using h
#align ideal.jacobson_eq_iff_jacobson_quotient_eq_bot Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
-- Porting note : changed `Quotient.mk'` to ``
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : Ideal (R ⧸ I)) = jacobson ⊥ := by
have hf : Function.Surjective (Ideal.Quotient.mk I) := Submodule.Quotient.mk_surjective I
constructor
· intro h
have := congr_arg (map (Ideal.Quotient.mk I)) h
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this
simpa using this
· intro h
have := congr_arg (comap (Ideal.Quotient.mk I)) h
rw [comap_radical, comap_jacobson_of_surjective hf,
← RingHom.ker_eq_comap_bot (Ideal.Quotient.mk I)] at this
simpa using this
#align ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot Ideal.radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot
theorem jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson :=
le_antisymm
(le_trans (le_of_eq (congr_arg jacobson (radical_eq_sInf I)))
(sInf_le_sInf fun _ hJ => ⟨sInf_le ⟨hJ.1, hJ.2.isPrime⟩, hJ.2⟩))
(jacobson_mono le_radical)
#align ideal.jacobson_radical_eq_jacobson Ideal.jacobson_radical_eq_jacobson
end CommRing
end Jacobson
section Polynomial
open Polynomial
variable [CommRing R]
theorem jacobson_bot_polynomial_le_sInf_map_maximal :
jacobson (⊥ : Ideal R[X]) ≤ sInf (map (C : R →+* R[X]) '' { J : Ideal R | J.IsMaximal }) := by
refine' le_sInf fun J => exists_imp.2 fun j hj => _
haveI : j.IsMaximal := hj.1
refine' Trans.trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J)
suffices t : (⊥ : Ideal (Polynomial (R ⧸ j))).jacobson = ⊥ by
rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot]
replace t := congr_arg (map (polynomialQuotientEquivQuotientPolynomial j).toRingHom) t
rwa [map_jacobson_of_bijective _, map_bot] at t
exact RingEquiv.bijective (polynomialQuotientEquivQuotientPolynomial j)
refine' eq_bot_iff.2 fun f hf => _
have r1 : (X : (R ⧸ j)[X]) ≠ 0 := fun hX => by
replace hX := congr_arg (fun f => coeff f 1) hX
simp only [coeff_X_one, coeff_zero] at hX
exact zero_ne_one hX.symm
have r2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_isUnit ((mem_jacobson_bot.1 hf) X))
simp only [coeff_add, mul_coeff_zero, coeff_X_zero, mul_zero, coeff_one_zero, zero_add] at r2
erw [add_left_eq_self] at r2
simpa using (mul_eq_zero.mp r2).resolve_right r1
-- Porting note: this is golfed to much
-- simpa [(fun hX => by simpa using congr_arg (fun f => coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)]
-- using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X))
#align ideal.jacobson_bot_polynomial_le_Inf_map_maximal Ideal.jacobson_bot_polynomial_le_sInf_map_maximal
theorem jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : Ideal R) = ⊥) :
jacobson (⊥ : Ideal R[X]) = ⊥ := by
refine' eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_sInf_map_maximal _)
refine' fun f hf => (Submodule.mem_bot R[X]).2 <| Polynomial.ext fun n =>
Trans.trans (?_ : coeff f n = 0) (coeff_zero n).symm
suffices f.coeff n ∈ Ideal.jacobson ⊥ by rwa [h, Submodule.mem_bot] at this
exact mem_sInf.2 fun j hj => (mem_map_C_iff.1 ((mem_sInf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n
#align ideal.jacobson_bot_polynomial_of_jacobson_bot Ideal.jacobson_bot_polynomial_of_jacobson_bot
end Polynomial
section IsLocal
variable [CommRing R]
/-- An ideal `I` is local iff its Jacobson radical is maximal. -/
class IsLocal (I : Ideal R) : Prop where
/-- A ring `R` is local if and only if its jacobson radical is maximal -/
out : IsMaximal (jacobson I)
#align ideal.is_local Ideal.IsLocal
theorem isLocal_iff {I : Ideal R} : IsLocal I ↔ IsMaximal (jacobson I) :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align ideal.is_local_iff Ideal.isLocal_iff
theorem isLocal_of_isMaximal_radical {I : Ideal R} (hi : IsMaximal (radical I)) : IsLocal I :=
⟨have : radical I = jacobson I :=
le_antisymm (le_sInf fun _ ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him)
(sInf_le ⟨le_radical, hi⟩)
show IsMaximal (jacobson I) from this ▸ hi⟩
#align ideal.is_local_of_is_maximal_radical Ideal.isLocal_of_isMaximal_radical
theorem IsLocal.le_jacobson {I J : Ideal R} (hi : IsLocal I) (hij : I ≤ J) (hj : J ≠ ⊤) :
J ≤ jacobson I :=
let ⟨_, hm, hjm⟩ := exists_le_maximal J hj
le_trans hjm <| le_of_eq <| Eq.symm <| hi.1.eq_of_le hm.1.1 <| sInf_le ⟨le_trans hij hjm, hm⟩
#align ideal.is_local.le_jacobson Ideal.IsLocal.le_jacobson
theorem IsLocal.mem_jacobson_or_exists_inv {I : Ideal R} (hi : IsLocal I) (x : R) :
x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I :=
by_cases
(fun h : I ⊔ span {x} = ⊤ =>
let ⟨p, hpi, q, hq, hpq⟩ := Submodule.mem_sup.1 ((eq_top_iff_one _).1 h)
let ⟨r, hr⟩ := mem_span_singleton.1 hq
Or.inr ⟨r, by rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel]; exact I.neg_mem hpi⟩)
fun h : I ⊔ span {x} ≠ ⊤ =>
Or.inl <|
le_trans le_sup_right (hi.le_jacobson le_sup_left h) <| mem_span_singleton.2 <| dvd_refl x
#align ideal.is_local.mem_jacobson_or_exists_inv Ideal.IsLocal.mem_jacobson_or_exists_inv
end IsLocal
theorem isPrimary_of_isMaximal_radical [CommRing R] {I : Ideal R} (hi : IsMaximal (radical I)) :
IsPrimary I :=
have : radical I = jacobson I :=
le_antisymm (le_sInf fun M ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him)
(sInf_le ⟨le_radical, hi⟩)
⟨ne_top_of_lt <| lt_of_le_of_lt le_radical (lt_top_iff_ne_top.2 hi.1.1), fun {x y} hxy =>
((isLocal_of_isMaximal_radical hi).mem_jacobson_or_exists_inv y).symm.imp
(fun ⟨z, hz⟩ => by
rw [← mul_one x, ← sub_sub_cancel (z * y) 1, mul_sub, mul_left_comm]
|
exact I.sub_mem (I.mul_mem_left _ hxy) (I.mul_mem_left _ hz)
|
theorem isPrimary_of_isMaximal_radical [CommRing R] {I : Ideal R} (hi : IsMaximal (radical I)) :
IsPrimary I :=
have : radical I = jacobson I :=
le_antisymm (le_sInf fun M ⟨him, hm⟩ => hm.isPrime.radical_le_iff.2 him)
(sInf_le ⟨le_radical, hi⟩)
⟨ne_top_of_lt <| lt_of_le_of_lt le_radical (lt_top_iff_ne_top.2 hi.1.1), fun {x y} hxy =>
((isLocal_of_isMaximal_radical hi).mem_jacobson_or_exists_inv y).symm.imp
(fun ⟨z, hz⟩ => by
rw [← mul_one x, ← sub_sub_cancel (z * y) 1, mul_sub, mul_left_comm]
|
Mathlib.RingTheory.JacobsonIdeal.398_0.Lz0MgLQMj1bGzuN
|
theorem isPrimary_of_isMaximal_radical [CommRing R] {I : Ideal R} (hi : IsMaximal (radical I)) :
IsPrimary I
|
Mathlib_RingTheory_JacobsonIdeal
|
ι : Sort u_1
f : ι → ℕ
s : Set ℕ
⊢ ⨅ i, ↑(f i) ≠ ⊤ ↔ Nonempty ι
|
/-
Copyright (c) 2022 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import Mathlib.Data.Nat.Lattice
import Mathlib.Data.ENat.Basic
#align_import data.enat.lattice from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# Extended natural numbers form a complete linear order
This instance is not in `Data.ENat.Basic` to avoid dependency on `Finset`s.
We also restate some lemmas about `WithTop` for `ENat` to have versions that use `Nat.cast` instead
of `WithTop.some`.
-/
open Set
-- porting notes: was `deriving instance` but "default handlers have not been implemented yet"
-- porting notes: `noncomputable` through 'Nat.instConditionallyCompleteLinearOrderBotNat'
noncomputable instance : CompleteLinearOrder ENat :=
inferInstanceAs (CompleteLinearOrder (WithTop ℕ))
namespace ENat
variable {ι : Sort*} {f : ι → ℕ} {s : Set ℕ}
lemma iSup_coe_eq_top : ⨆ i, (f i : ℕ∞) = ⊤ ↔ ¬ BddAbove (range f) := WithTop.iSup_coe_eq_top
lemma iSup_coe_ne_top : ⨆ i, (f i : ℕ∞) ≠ ⊤ ↔ BddAbove (range f) := iSup_coe_eq_top.not_left
lemma iSup_coe_lt_top : ⨆ i, (f i : ℕ∞) < ⊤ ↔ BddAbove (range f) := WithTop.iSup_coe_lt_top
lemma iInf_coe_eq_top : ⨅ i, (f i : ℕ∞) = ⊤ ↔ IsEmpty ι := WithTop.iInf_coe_eq_top
lemma iInf_coe_ne_top : ⨅ i, (f i : ℕ∞) ≠ ⊤ ↔ Nonempty ι := by
|
rw [Ne.def, iInf_coe_eq_top, not_isEmpty_iff]
|
lemma iInf_coe_ne_top : ⨅ i, (f i : ℕ∞) ≠ ⊤ ↔ Nonempty ι := by
|
Mathlib.Data.ENat.Lattice.34_0.U3XTj6Gwuvfp15T
|
lemma iInf_coe_ne_top : ⨅ i, (f i : ℕ∞) ≠ ⊤ ↔ Nonempty ι
|
Mathlib_Data_ENat_Lattice
|
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ (∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N) → FG N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
|
rintro ⟨t', h, rfl⟩
|
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
|
Mathlib.ModelTheory.FinitelyGenerated.45_0.mkqJR9tOk3JtWTX
|
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro.intro
L : Language
M : Type u_1
inst✝ : Structure L M
t' : Set M
h : Set.Finite t'
⊢ FG (LowerAdjoint.toFun (closure L) t')
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
|
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
|
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
|
Mathlib.ModelTheory.FinitelyGenerated.45_0.mkqJR9tOk3JtWTX
|
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro.intro.intro
L : Language
M : Type u_1
inst✝ : Structure L M
t : Finset M
h : Set.Finite ↑t
⊢ FG (LowerAdjoint.toFun (closure L) ↑t)
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
|
exact ⟨t, rfl⟩
|
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
|
Mathlib.ModelTheory.FinitelyGenerated.45_0.mkqJR9tOk3JtWTX
|
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ FG N ↔ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
|
rw [fg_def]
|
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
|
Mathlib.ModelTheory.FinitelyGenerated.52_0.mkqJR9tOk3JtWTX
|
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ (∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N) ↔ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
|
constructor
|
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
|
Mathlib.ModelTheory.FinitelyGenerated.52_0.mkqJR9tOk3JtWTX
|
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mp
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ (∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N) → ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
·
|
rintro ⟨S, Sfin, hS⟩
|
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
·
|
Mathlib.ModelTheory.FinitelyGenerated.52_0.mkqJR9tOk3JtWTX
|
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mp.intro.intro
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
S : Set M
Sfin : Set.Finite S
hS : LowerAdjoint.toFun (closure L) S = N
⊢ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
|
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
|
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
|
Mathlib.ModelTheory.FinitelyGenerated.52_0.mkqJR9tOk3JtWTX
|
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mp.intro.intro.intro.intro
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
n : ℕ
f : Fin n ↪ M
Sfin : Set.Finite (range ⇑f)
hS : LowerAdjoint.toFun (closure L) (range ⇑f) = N
⊢ ∃ n s, LowerAdjoint.toFun (closure L) (range s) = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
|
exact ⟨n, f, hS⟩
|
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
|
Mathlib.ModelTheory.FinitelyGenerated.52_0.mkqJR9tOk3JtWTX
|
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mpr
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ (∃ n s, LowerAdjoint.toFun (closure L) (range s) = N) → ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
·
|
rintro ⟨n, s, hs⟩
|
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
·
|
Mathlib.ModelTheory.FinitelyGenerated.52_0.mkqJR9tOk3JtWTX
|
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mpr.intro.intro
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
n : ℕ
s : Fin n → M
hs : LowerAdjoint.toFun (closure L) (range s) = N
⊢ ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
|
refine' ⟨range s, finite_range s, hs⟩
|
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
|
Mathlib.ModelTheory.FinitelyGenerated.52_0.mkqJR9tOk3JtWTX
|
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
⊢ LowerAdjoint.toFun (closure L) ↑∅ = ⊥
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by
|
rw [Finset.coe_empty, closure_empty]
|
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by
|
Mathlib.ModelTheory.FinitelyGenerated.63_0.mkqJR9tOk3JtWTX
|
theorem fg_bot : (⊥ : L.Substructure M).FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
s : Set M
hs : Set.Finite s
⊢ LowerAdjoint.toFun (closure L) ↑(Finite.toFinset hs) = LowerAdjoint.toFun (closure L) s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by
|
rw [hs.coe_toFinset]
|
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by
|
Mathlib.ModelTheory.FinitelyGenerated.67_0.mkqJR9tOk3JtWTX
|
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s)
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
N₁ N₂ : Substructure L M
hN₁ : FG N₁
hN₂ : FG N₂
t₁ : Set M
ht₁ : Set.Finite t₁ ∧ LowerAdjoint.toFun (closure L) t₁ = N₁
t₂ : Set M
ht₂ : Set.Finite t₂ ∧ LowerAdjoint.toFun (closure L) t₂ = N₂
⊢ LowerAdjoint.toFun (closure L) (t₁ ∪ t₂) = N₁ ⊔ N₂
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by
|
rw [closure_union, ht₁.2, ht₂.2]
|
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by
|
Mathlib.ModelTheory.FinitelyGenerated.75_0.mkqJR9tOk3JtWTX
|
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M →[L] N
s : Substructure L M
hs : FG s
t : Set M
ht : Set.Finite t ∧ LowerAdjoint.toFun (closure L) t = s
⊢ LowerAdjoint.toFun (closure L) (⇑f '' t) = Substructure.map f s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by
|
rw [closure_image, ht.2]
|
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by
|
Mathlib.ModelTheory.FinitelyGenerated.81_0.mkqJR9tOk3JtWTX
|
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
hs : FG (Substructure.map (Embedding.toHom f) s)
⊢ FG s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
|
rcases hs with ⟨t, h⟩
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
|
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
⊢ FG s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
|
rw [fg_def]
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
|
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
⊢ ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
|
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
|
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
⊢ LowerAdjoint.toFun (closure L) (⇑f ⁻¹' ↑t) = s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
|
have hf : Function.Injective f.toHom := f.injective
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
|
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ⇑(Embedding.toHom f)
⊢ LowerAdjoint.toFun (closure L) (⇑f ⁻¹' ↑t) = s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
|
refine' map_injective_of_injective hf _
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
|
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ⇑(Embedding.toHom f)
⊢ Substructure.map (Embedding.toHom f) (LowerAdjoint.toFun (closure L) (⇑f ⁻¹' ↑t)) =
Substructure.map (Embedding.toHom f) s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
|
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
|
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ⇑(Embedding.toHom f)
⊢ ↑t ⊆ range ⇑f
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
|
intro x hx
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
|
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ⇑(Embedding.toHom f)
x : N
hx : x ∈ ↑t
⊢ x ∈ range ⇑f
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
|
have h' := subset_closure (L := L) hx
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
|
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ⇑(Embedding.toHom f)
x : N
hx : x ∈ ↑t
h' : x ∈ ↑(LowerAdjoint.toFun (closure L) ↑t)
⊢ x ∈ range ⇑f
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
|
rw [h] at h'
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
|
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Finset N
h : LowerAdjoint.toFun (closure L) ↑t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ⇑(Embedding.toHom f)
x : N
hx : x ∈ ↑t
h' : x ∈ ↑(Substructure.map (Embedding.toHom f) s)
⊢ x ∈ range ⇑f
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
|
exact Hom.map_le_range h'
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
|
Mathlib.ModelTheory.FinitelyGenerated.87_0.mkqJR9tOk3JtWTX
|
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
h : FG N
⊢ CG N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
|
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
|
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
|
Mathlib.ModelTheory.FinitelyGenerated.111_0.mkqJR9tOk3JtWTX
|
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro.intro
L : Language
M : Type u_1
inst✝ : Structure L M
s : Set M
hf : Set.Finite s
h : FG (LowerAdjoint.toFun (closure L) s)
⊢ CG (LowerAdjoint.toFun (closure L) s)
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
|
refine' ⟨s, hf.countable, rfl⟩
|
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
|
Mathlib.ModelTheory.FinitelyGenerated.111_0.mkqJR9tOk3JtWTX
|
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ CG N ↔ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
|
rw [cg_def]
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ (∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N) ↔
↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
|
constructor
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mp
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ (∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N) →
↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
·
|
rintro ⟨S, Scount, hS⟩
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
·
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mp.intro.intro
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
S : Set M
Scount : Set.Countable S
hS : LowerAdjoint.toFun (closure L) S = N
⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
|
rcases eq_empty_or_nonempty (N : Set M) with h | h
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mp.intro.intro.inl
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
S : Set M
Scount : Set.Countable S
hS : LowerAdjoint.toFun (closure L) S = N
h : ↑N = ∅
⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
·
|
exact Or.intro_left _ h
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
·
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mp.intro.intro.inr
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
S : Set M
Scount : Set.Countable S
hS : LowerAdjoint.toFun (closure L) S = N
h : Set.Nonempty ↑N
⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
|
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mp.intro.intro.inr.intro
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
S : Set M
Scount : Set.Countable S
hS : LowerAdjoint.toFun (closure L) S = N
h : Set.Nonempty ↑N
f : ℕ → M
h' : S ∪ {Set.Nonempty.some h} = range f
⊢ ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
|
refine' Or.intro_right _ ⟨f, _⟩
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mp.intro.intro.inr.intro
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
S : Set M
Scount : Set.Countable S
hS : LowerAdjoint.toFun (closure L) S = N
h : Set.Nonempty ↑N
f : ℕ → M
h' : S ∪ {Set.Nonempty.some h} = range f
⊢ LowerAdjoint.toFun (closure L) (range f) = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
|
rw [← h', closure_union, hS, sup_eq_left, closure_le]
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mp.intro.intro.inr.intro
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
S : Set M
Scount : Set.Countable S
hS : LowerAdjoint.toFun (closure L) S = N
h : Set.Nonempty ↑N
f : ℕ → M
h' : S ∪ {Set.Nonempty.some h} = range f
⊢ {Set.Nonempty.some h} ⊆ ↑N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
|
exact singleton_subset_iff.2 h.some_mem
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mpr
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
⊢ (↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N) →
∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
·
|
intro h
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
·
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mpr
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
h : ↑N = ∅ ∨ ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
|
cases' h with h h
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mpr.inl
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
h : ↑N = ∅
⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
·
|
refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
·
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mpr.inl
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
h : ↑N = ∅
⊢ N ≤ LowerAdjoint.toFun (closure L) ∅
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
|
rw [← SetLike.coe_subset_coe, h]
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mpr.inl
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
h : ↑N = ∅
⊢ ∅ ⊆ ↑(LowerAdjoint.toFun (closure L) ∅)
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
|
exact empty_subset _
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mpr.inr
L : Language
M : Type u_1
inst✝ : Structure L M
N : Substructure L M
h : ∃ s, LowerAdjoint.toFun (closure L) (range s) = N
⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
·
|
obtain ⟨f, rfl⟩ := h
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
·
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
case mpr.inr.intro
L : Language
M : Type u_1
inst✝ : Structure L M
f : ℕ → M
⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = LowerAdjoint.toFun (closure L) (range f)
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
|
exact ⟨range f, countable_range _, rfl⟩
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
|
Mathlib.ModelTheory.FinitelyGenerated.116_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
N₁ N₂ : Substructure L M
hN₁ : CG N₁
hN₂ : CG N₂
t₁ : Set M
ht₁ : Set.Countable t₁ ∧ LowerAdjoint.toFun (closure L) t₁ = N₁
t₂ : Set M
ht₂ : Set.Countable t₂ ∧ LowerAdjoint.toFun (closure L) t₂ = N₂
⊢ LowerAdjoint.toFun (closure L) (t₁ ∪ t₂) = N₁ ⊔ N₂
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by
|
rw [closure_union, ht₁.2, ht₂.2]
|
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by
|
Mathlib.ModelTheory.FinitelyGenerated.150_0.mkqJR9tOk3JtWTX
|
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.