state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M →[L] N
s : Substructure L M
hs : CG s
t : Set M
ht : Set.Countable t ∧ LowerAdjoint.toFun (closure L) t = s
⊢ LowerAdjoint.toFun (closure L) (⇑f '' t) = Substructure.map f s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by
|
rw [closure_image, ht.2]
|
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by
|
Mathlib.ModelTheory.FinitelyGenerated.156_0.mkqJR9tOk3JtWTX
|
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
hs : CG (Substructure.map (Embedding.toHom f) s)
⊢ CG s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
|
rcases hs with ⟨t, h1, h2⟩
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
|
Mathlib.ModelTheory.FinitelyGenerated.162_0.mkqJR9tOk3JtWTX
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
⊢ CG s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
|
rw [cg_def]
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
|
Mathlib.ModelTheory.FinitelyGenerated.162_0.mkqJR9tOk3JtWTX
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
⊢ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
|
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
|
Mathlib.ModelTheory.FinitelyGenerated.162_0.mkqJR9tOk3JtWTX
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
⊢ LowerAdjoint.toFun (closure L) (⇑f ⁻¹' t) = s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
|
have hf : Function.Injective f.toHom := f.injective
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
|
Mathlib.ModelTheory.FinitelyGenerated.162_0.mkqJR9tOk3JtWTX
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ⇑(Embedding.toHom f)
⊢ LowerAdjoint.toFun (closure L) (⇑f ⁻¹' t) = s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
|
refine' map_injective_of_injective hf _
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
|
Mathlib.ModelTheory.FinitelyGenerated.162_0.mkqJR9tOk3JtWTX
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ⇑(Embedding.toHom f)
⊢ Substructure.map (Embedding.toHom f) (LowerAdjoint.toFun (closure L) (⇑f ⁻¹' t)) =
Substructure.map (Embedding.toHom f) s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
|
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
|
Mathlib.ModelTheory.FinitelyGenerated.162_0.mkqJR9tOk3JtWTX
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ⇑(Embedding.toHom f)
⊢ t ⊆ range ⇑f
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
|
intro x hx
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
|
Mathlib.ModelTheory.FinitelyGenerated.162_0.mkqJR9tOk3JtWTX
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ⇑(Embedding.toHom f)
x : N
hx : x ∈ t
⊢ x ∈ range ⇑f
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
|
have h' := subset_closure (L := L) hx
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
|
Mathlib.ModelTheory.FinitelyGenerated.162_0.mkqJR9tOk3JtWTX
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ⇑(Embedding.toHom f)
x : N
hx : x ∈ t
h' : x ∈ ↑(LowerAdjoint.toFun (closure L) t)
⊢ x ∈ range ⇑f
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
|
rw [h2] at h'
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
|
Mathlib.ModelTheory.FinitelyGenerated.162_0.mkqJR9tOk3JtWTX
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
f : M ↪[L] N
s : Substructure L M
t : Set N
h1 : Set.Countable t
h2 : LowerAdjoint.toFun (closure L) t = Substructure.map (Embedding.toHom f) s
hf : Function.Injective ⇑(Embedding.toHom f)
x : N
hx : x ∈ t
h' : x ∈ ↑(Substructure.map (Embedding.toHom f) s)
⊢ x ∈ range ⇑f
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
|
exact Hom.map_le_range h'
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
|
Mathlib.ModelTheory.FinitelyGenerated.162_0.mkqJR9tOk3JtWTX
|
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
inst✝ : Countable ((l : ℕ) × Functions L l)
s : Substructure L M
⊢ CG s ↔ Countable ↥s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
|
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
|
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
|
Mathlib.ModelTheory.FinitelyGenerated.176_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
inst✝ : Countable ((l : ℕ) × Functions L l)
s : Substructure L M
⊢ CG s → Countable ↥s
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
|
rintro ⟨s, h, rfl⟩
|
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
|
Mathlib.ModelTheory.FinitelyGenerated.176_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s
|
Mathlib_ModelTheory_FinitelyGenerated
|
case intro.intro
L : Language
M : Type u_1
inst✝¹ : Structure L M
inst✝ : Countable ((l : ℕ) × Functions L l)
s : Set M
h : Set.Countable s
⊢ Countable ↥(LowerAdjoint.toFun (closure L) s)
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
|
exact h.substructure_closure L
|
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
|
Mathlib.ModelTheory.FinitelyGenerated.176_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
⊢ FG L M ↔ ∃ S, Set.Finite S ∧ LowerAdjoint.toFun (closure L) S = ⊤
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
|
rw [fg_def, Substructure.fg_def]
|
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
|
Mathlib.ModelTheory.FinitelyGenerated.209_0.mkqJR9tOk3JtWTX
|
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M)
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : FG L M
f : M →[L] N
⊢ Substructure.FG (Hom.range f)
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
|
rw [Hom.range_eq_map]
|
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
|
Mathlib.ModelTheory.FinitelyGenerated.214_0.mkqJR9tOk3JtWTX
|
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : FG L M
f : M →[L] N
⊢ Substructure.FG (map f ⊤)
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
|
exact (fg_def.1 h).map f
|
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
|
Mathlib.ModelTheory.FinitelyGenerated.214_0.mkqJR9tOk3JtWTX
|
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : FG L M
f : M →[L] N
hs : Function.Surjective ⇑f
⊢ FG L N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
|
rw [← Hom.range_eq_top] at hs
|
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
|
Mathlib.ModelTheory.FinitelyGenerated.219_0.mkqJR9tOk3JtWTX
|
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : FG L M
f : M →[L] N
hs : Hom.range f = ⊤
⊢ FG L N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
|
rw [fg_def, ← hs]
|
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
|
Mathlib.ModelTheory.FinitelyGenerated.219_0.mkqJR9tOk3JtWTX
|
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : FG L M
f : M →[L] N
hs : Hom.range f = ⊤
⊢ Substructure.FG (Hom.range f)
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
|
exact h.range f
|
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
|
Mathlib.ModelTheory.FinitelyGenerated.219_0.mkqJR9tOk3JtWTX
|
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
⊢ CG L M ↔ ∃ S, Set.Countable S ∧ LowerAdjoint.toFun (closure L) S = ⊤
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
|
rw [cg_def, Substructure.cg_def]
|
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
|
Mathlib.ModelTheory.FinitelyGenerated.230_0.mkqJR9tOk3JtWTX
|
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M)
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : CG L M
f : M →[L] N
⊢ Substructure.CG (Hom.range f)
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
|
rw [Hom.range_eq_map]
|
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
|
Mathlib.ModelTheory.FinitelyGenerated.235_0.mkqJR9tOk3JtWTX
|
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : CG L M
f : M →[L] N
⊢ Substructure.CG (map f ⊤)
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
|
exact (cg_def.1 h).map f
|
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
|
Mathlib.ModelTheory.FinitelyGenerated.235_0.mkqJR9tOk3JtWTX
|
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : CG L M
f : M →[L] N
hs : Function.Surjective ⇑f
⊢ CG L N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
|
rw [← Hom.range_eq_top] at hs
|
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
|
Mathlib.ModelTheory.FinitelyGenerated.240_0.mkqJR9tOk3JtWTX
|
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : CG L M
f : M →[L] N
hs : Hom.range f = ⊤
⊢ CG L N
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
|
rw [cg_def, ← hs]
|
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
|
Mathlib.ModelTheory.FinitelyGenerated.240_0.mkqJR9tOk3JtWTX
|
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
N : Type u_2
inst✝ : Structure L N
h : CG L M
f : M →[L] N
hs : Hom.range f = ⊤
⊢ Substructure.CG (Hom.range f)
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
|
exact h.range f
|
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
|
Mathlib.ModelTheory.FinitelyGenerated.240_0.mkqJR9tOk3JtWTX
|
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝¹ : Structure L M
inst✝ : Countable ((l : ℕ) × Functions L l)
⊢ CG L M ↔ Countable M
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
|
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
|
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
|
Mathlib.ModelTheory.FinitelyGenerated.247_0.mkqJR9tOk3JtWTX
|
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
⊢ FG S ↔ Structure.FG L ↥S
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
#align first_order.language.Structure.cg_iff_countable FirstOrder.Language.Structure.cg_iff_countable
theorem FG.cg (h : FG L M) : CG L M :=
cg_def.2 (fg_def.1 h).cg
#align first_order.language.Structure.fg.cg FirstOrder.Language.Structure.FG.cg
instance (priority := 100) cg_of_fg [h : FG L M] : CG L M :=
h.cg
#align first_order.language.Structure.cg_of_fg FirstOrder.Language.Structure.cg_of_fg
end Structure
theorem Equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.FG L M ↔ Structure.FG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.fg_iff FirstOrder.Language.Equiv.fg_iff
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
|
rw [Structure.fg_def]
|
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
|
Mathlib.ModelTheory.FinitelyGenerated.267_0.mkqJR9tOk3JtWTX
|
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
⊢ FG S ↔ FG ⊤
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
#align first_order.language.Structure.cg_iff_countable FirstOrder.Language.Structure.cg_iff_countable
theorem FG.cg (h : FG L M) : CG L M :=
cg_def.2 (fg_def.1 h).cg
#align first_order.language.Structure.fg.cg FirstOrder.Language.Structure.FG.cg
instance (priority := 100) cg_of_fg [h : FG L M] : CG L M :=
h.cg
#align first_order.language.Structure.cg_of_fg FirstOrder.Language.Structure.cg_of_fg
end Structure
theorem Equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.FG L M ↔ Structure.FG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.fg_iff FirstOrder.Language.Equiv.fg_iff
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
|
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
|
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
|
Mathlib.ModelTheory.FinitelyGenerated.267_0.mkqJR9tOk3JtWTX
|
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S
|
Mathlib_ModelTheory_FinitelyGenerated
|
case refine'_1
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h : FG S
⊢ FG (map (Embedding.toHom (subtype S)) ⊤)
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
#align first_order.language.Structure.cg_iff_countable FirstOrder.Language.Structure.cg_iff_countable
theorem FG.cg (h : FG L M) : CG L M :=
cg_def.2 (fg_def.1 h).cg
#align first_order.language.Structure.fg.cg FirstOrder.Language.Structure.FG.cg
instance (priority := 100) cg_of_fg [h : FG L M] : CG L M :=
h.cg
#align first_order.language.Structure.cg_of_fg FirstOrder.Language.Structure.cg_of_fg
end Structure
theorem Equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.FG L M ↔ Structure.FG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.fg_iff FirstOrder.Language.Equiv.fg_iff
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
·
|
rw [← Hom.range_eq_map, range_subtype]
|
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
·
|
Mathlib.ModelTheory.FinitelyGenerated.267_0.mkqJR9tOk3JtWTX
|
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S
|
Mathlib_ModelTheory_FinitelyGenerated
|
case refine'_1
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h : FG S
⊢ FG S
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
#align first_order.language.Structure.cg_iff_countable FirstOrder.Language.Structure.cg_iff_countable
theorem FG.cg (h : FG L M) : CG L M :=
cg_def.2 (fg_def.1 h).cg
#align first_order.language.Structure.fg.cg FirstOrder.Language.Structure.FG.cg
instance (priority := 100) cg_of_fg [h : FG L M] : CG L M :=
h.cg
#align first_order.language.Structure.cg_of_fg FirstOrder.Language.Structure.cg_of_fg
end Structure
theorem Equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.FG L M ↔ Structure.FG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.fg_iff FirstOrder.Language.Equiv.fg_iff
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
|
exact h
|
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
|
Mathlib.ModelTheory.FinitelyGenerated.267_0.mkqJR9tOk3JtWTX
|
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S
|
Mathlib_ModelTheory_FinitelyGenerated
|
case refine'_2
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h : FG ⊤
⊢ FG S
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
#align first_order.language.Structure.cg_iff_countable FirstOrder.Language.Structure.cg_iff_countable
theorem FG.cg (h : FG L M) : CG L M :=
cg_def.2 (fg_def.1 h).cg
#align first_order.language.Structure.fg.cg FirstOrder.Language.Structure.FG.cg
instance (priority := 100) cg_of_fg [h : FG L M] : CG L M :=
h.cg
#align first_order.language.Structure.cg_of_fg FirstOrder.Language.Structure.cg_of_fg
end Structure
theorem Equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.FG L M ↔ Structure.FG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.fg_iff FirstOrder.Language.Equiv.fg_iff
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
·
|
have h := h.map S.subtype.toHom
|
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
·
|
Mathlib.ModelTheory.FinitelyGenerated.267_0.mkqJR9tOk3JtWTX
|
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S
|
Mathlib_ModelTheory_FinitelyGenerated
|
case refine'_2
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h✝ : FG ⊤
h : FG (map (Embedding.toHom (subtype S)) ⊤)
⊢ FG S
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
#align first_order.language.Structure.cg_iff_countable FirstOrder.Language.Structure.cg_iff_countable
theorem FG.cg (h : FG L M) : CG L M :=
cg_def.2 (fg_def.1 h).cg
#align first_order.language.Structure.fg.cg FirstOrder.Language.Structure.FG.cg
instance (priority := 100) cg_of_fg [h : FG L M] : CG L M :=
h.cg
#align first_order.language.Structure.cg_of_fg FirstOrder.Language.Structure.cg_of_fg
end Structure
theorem Equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.FG L M ↔ Structure.FG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.fg_iff FirstOrder.Language.Equiv.fg_iff
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
|
rw [← Hom.range_eq_map, range_subtype] at h
|
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
|
Mathlib.ModelTheory.FinitelyGenerated.267_0.mkqJR9tOk3JtWTX
|
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S
|
Mathlib_ModelTheory_FinitelyGenerated
|
case refine'_2
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h✝ : FG ⊤
h : FG S
⊢ FG S
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
#align first_order.language.Structure.cg_iff_countable FirstOrder.Language.Structure.cg_iff_countable
theorem FG.cg (h : FG L M) : CG L M :=
cg_def.2 (fg_def.1 h).cg
#align first_order.language.Structure.fg.cg FirstOrder.Language.Structure.FG.cg
instance (priority := 100) cg_of_fg [h : FG L M] : CG L M :=
h.cg
#align first_order.language.Structure.cg_of_fg FirstOrder.Language.Structure.cg_of_fg
end Structure
theorem Equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.FG L M ↔ Structure.FG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.fg_iff FirstOrder.Language.Equiv.fg_iff
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
rw [← Hom.range_eq_map, range_subtype] at h
|
exact h
|
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
rw [← Hom.range_eq_map, range_subtype] at h
|
Mathlib.ModelTheory.FinitelyGenerated.267_0.mkqJR9tOk3JtWTX
|
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
⊢ CG S ↔ Structure.CG L ↥S
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
#align first_order.language.Structure.cg_iff_countable FirstOrder.Language.Structure.cg_iff_countable
theorem FG.cg (h : FG L M) : CG L M :=
cg_def.2 (fg_def.1 h).cg
#align first_order.language.Structure.fg.cg FirstOrder.Language.Structure.FG.cg
instance (priority := 100) cg_of_fg [h : FG L M] : CG L M :=
h.cg
#align first_order.language.Structure.cg_of_fg FirstOrder.Language.Structure.cg_of_fg
end Structure
theorem Equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.FG L M ↔ Structure.FG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.fg_iff FirstOrder.Language.Equiv.fg_iff
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
rw [← Hom.range_eq_map, range_subtype] at h
exact h
set_option linter.uppercaseLean3 false in
#align first_order.language.substructure.fg_iff_Structure_fg FirstOrder.Language.Substructure.fg_iff_structure_fg
theorem Equiv.cg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.CG L M ↔ Structure.CG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.cg_iff FirstOrder.Language.Equiv.cg_iff
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S := by
|
rw [Structure.cg_def]
|
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S := by
|
Mathlib.ModelTheory.FinitelyGenerated.284_0.mkqJR9tOk3JtWTX
|
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S
|
Mathlib_ModelTheory_FinitelyGenerated
|
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
⊢ CG S ↔ CG ⊤
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
#align first_order.language.Structure.cg_iff_countable FirstOrder.Language.Structure.cg_iff_countable
theorem FG.cg (h : FG L M) : CG L M :=
cg_def.2 (fg_def.1 h).cg
#align first_order.language.Structure.fg.cg FirstOrder.Language.Structure.FG.cg
instance (priority := 100) cg_of_fg [h : FG L M] : CG L M :=
h.cg
#align first_order.language.Structure.cg_of_fg FirstOrder.Language.Structure.cg_of_fg
end Structure
theorem Equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.FG L M ↔ Structure.FG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.fg_iff FirstOrder.Language.Equiv.fg_iff
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
rw [← Hom.range_eq_map, range_subtype] at h
exact h
set_option linter.uppercaseLean3 false in
#align first_order.language.substructure.fg_iff_Structure_fg FirstOrder.Language.Substructure.fg_iff_structure_fg
theorem Equiv.cg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.CG L M ↔ Structure.CG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.cg_iff FirstOrder.Language.Equiv.cg_iff
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S := by
rw [Structure.cg_def]
|
refine' ⟨fun h => CG.of_map_embedding S.subtype _, fun h => _⟩
|
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S := by
rw [Structure.cg_def]
|
Mathlib.ModelTheory.FinitelyGenerated.284_0.mkqJR9tOk3JtWTX
|
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S
|
Mathlib_ModelTheory_FinitelyGenerated
|
case refine'_1
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h : CG S
⊢ CG (map (Embedding.toHom (subtype S)) ⊤)
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
#align first_order.language.Structure.cg_iff_countable FirstOrder.Language.Structure.cg_iff_countable
theorem FG.cg (h : FG L M) : CG L M :=
cg_def.2 (fg_def.1 h).cg
#align first_order.language.Structure.fg.cg FirstOrder.Language.Structure.FG.cg
instance (priority := 100) cg_of_fg [h : FG L M] : CG L M :=
h.cg
#align first_order.language.Structure.cg_of_fg FirstOrder.Language.Structure.cg_of_fg
end Structure
theorem Equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.FG L M ↔ Structure.FG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.fg_iff FirstOrder.Language.Equiv.fg_iff
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
rw [← Hom.range_eq_map, range_subtype] at h
exact h
set_option linter.uppercaseLean3 false in
#align first_order.language.substructure.fg_iff_Structure_fg FirstOrder.Language.Substructure.fg_iff_structure_fg
theorem Equiv.cg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.CG L M ↔ Structure.CG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.cg_iff FirstOrder.Language.Equiv.cg_iff
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S := by
rw [Structure.cg_def]
refine' ⟨fun h => CG.of_map_embedding S.subtype _, fun h => _⟩
·
|
rw [← Hom.range_eq_map, range_subtype]
|
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S := by
rw [Structure.cg_def]
refine' ⟨fun h => CG.of_map_embedding S.subtype _, fun h => _⟩
·
|
Mathlib.ModelTheory.FinitelyGenerated.284_0.mkqJR9tOk3JtWTX
|
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S
|
Mathlib_ModelTheory_FinitelyGenerated
|
case refine'_1
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h : CG S
⊢ CG S
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
#align first_order.language.Structure.cg_iff_countable FirstOrder.Language.Structure.cg_iff_countable
theorem FG.cg (h : FG L M) : CG L M :=
cg_def.2 (fg_def.1 h).cg
#align first_order.language.Structure.fg.cg FirstOrder.Language.Structure.FG.cg
instance (priority := 100) cg_of_fg [h : FG L M] : CG L M :=
h.cg
#align first_order.language.Structure.cg_of_fg FirstOrder.Language.Structure.cg_of_fg
end Structure
theorem Equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.FG L M ↔ Structure.FG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.fg_iff FirstOrder.Language.Equiv.fg_iff
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
rw [← Hom.range_eq_map, range_subtype] at h
exact h
set_option linter.uppercaseLean3 false in
#align first_order.language.substructure.fg_iff_Structure_fg FirstOrder.Language.Substructure.fg_iff_structure_fg
theorem Equiv.cg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.CG L M ↔ Structure.CG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.cg_iff FirstOrder.Language.Equiv.cg_iff
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S := by
rw [Structure.cg_def]
refine' ⟨fun h => CG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
|
exact h
|
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S := by
rw [Structure.cg_def]
refine' ⟨fun h => CG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
|
Mathlib.ModelTheory.FinitelyGenerated.284_0.mkqJR9tOk3JtWTX
|
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S
|
Mathlib_ModelTheory_FinitelyGenerated
|
case refine'_2
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h : CG ⊤
⊢ CG S
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
#align first_order.language.Structure.cg_iff_countable FirstOrder.Language.Structure.cg_iff_countable
theorem FG.cg (h : FG L M) : CG L M :=
cg_def.2 (fg_def.1 h).cg
#align first_order.language.Structure.fg.cg FirstOrder.Language.Structure.FG.cg
instance (priority := 100) cg_of_fg [h : FG L M] : CG L M :=
h.cg
#align first_order.language.Structure.cg_of_fg FirstOrder.Language.Structure.cg_of_fg
end Structure
theorem Equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.FG L M ↔ Structure.FG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.fg_iff FirstOrder.Language.Equiv.fg_iff
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
rw [← Hom.range_eq_map, range_subtype] at h
exact h
set_option linter.uppercaseLean3 false in
#align first_order.language.substructure.fg_iff_Structure_fg FirstOrder.Language.Substructure.fg_iff_structure_fg
theorem Equiv.cg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.CG L M ↔ Structure.CG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.cg_iff FirstOrder.Language.Equiv.cg_iff
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S := by
rw [Structure.cg_def]
refine' ⟨fun h => CG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
·
|
have h := h.map S.subtype.toHom
|
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S := by
rw [Structure.cg_def]
refine' ⟨fun h => CG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
·
|
Mathlib.ModelTheory.FinitelyGenerated.284_0.mkqJR9tOk3JtWTX
|
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S
|
Mathlib_ModelTheory_FinitelyGenerated
|
case refine'_2
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h✝ : CG ⊤
h : CG (map (Embedding.toHom (subtype S)) ⊤)
⊢ CG S
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
#align first_order.language.Structure.cg_iff_countable FirstOrder.Language.Structure.cg_iff_countable
theorem FG.cg (h : FG L M) : CG L M :=
cg_def.2 (fg_def.1 h).cg
#align first_order.language.Structure.fg.cg FirstOrder.Language.Structure.FG.cg
instance (priority := 100) cg_of_fg [h : FG L M] : CG L M :=
h.cg
#align first_order.language.Structure.cg_of_fg FirstOrder.Language.Structure.cg_of_fg
end Structure
theorem Equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.FG L M ↔ Structure.FG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.fg_iff FirstOrder.Language.Equiv.fg_iff
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
rw [← Hom.range_eq_map, range_subtype] at h
exact h
set_option linter.uppercaseLean3 false in
#align first_order.language.substructure.fg_iff_Structure_fg FirstOrder.Language.Substructure.fg_iff_structure_fg
theorem Equiv.cg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.CG L M ↔ Structure.CG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.cg_iff FirstOrder.Language.Equiv.cg_iff
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S := by
rw [Structure.cg_def]
refine' ⟨fun h => CG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
|
rw [← Hom.range_eq_map, range_subtype] at h
|
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S := by
rw [Structure.cg_def]
refine' ⟨fun h => CG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
|
Mathlib.ModelTheory.FinitelyGenerated.284_0.mkqJR9tOk3JtWTX
|
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S
|
Mathlib_ModelTheory_FinitelyGenerated
|
case refine'_2
L : Language
M : Type u_1
inst✝ : Structure L M
S : Substructure L M
h✝ : CG ⊤
h : CG S
⊢ CG S
|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.ModelTheory.Substructures
#align_import model_theory.finitely_generated from "leanprover-community/mathlib"@"0602c59878ff3d5f71dea69c2d32ccf2e93e5398"
/-!
# Finitely Generated First-Order Structures
This file defines what it means for a first-order (sub)structure to be finitely or countably
generated, similarly to other finitely-generated objects in the algebra library.
## Main Definitions
* `FirstOrder.Language.Substructure.FG` indicates that a substructure is finitely generated.
* `FirstOrder.Language.Structure.FG` indicates that a structure is finitely generated.
* `FirstOrder.Language.Substructure.CG` indicates that a substructure is countably generated.
* `FirstOrder.Language.Structure.CG` indicates that a structure is countably generated.
## TODO
Develop a more unified definition of finite generation using the theory of closure operators, or use
this definition of finite generation to define the others.
-/
open FirstOrder Set
namespace FirstOrder
namespace Language
open Structure
variable {L : Language} {M : Type*} [L.Structure M]
namespace Substructure
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/
def FG (N : L.Substructure M) : Prop :=
∃ S : Finset M, closure L S = N
#align first_order.language.substructure.fg FirstOrder.Language.Substructure.FG
theorem fg_def {N : L.Substructure M} : N.FG ↔ ∃ S : Set M, S.Finite ∧ closure L S = N :=
⟨fun ⟨t, h⟩ => ⟨_, Finset.finite_toSet t, h⟩, by
rintro ⟨t', h, rfl⟩
rcases Finite.exists_finset_coe h with ⟨t, rfl⟩
exact ⟨t, rfl⟩⟩
#align first_order.language.substructure.fg_def FirstOrder.Language.Substructure.fg_def
theorem fg_iff_exists_fin_generating_family {N : L.Substructure M} :
N.FG ↔ ∃ (n : ℕ) (s : Fin n → M), closure L (range s) = N := by
rw [fg_def]
constructor
· rintro ⟨S, Sfin, hS⟩
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding
exact ⟨n, f, hS⟩
· rintro ⟨n, s, hs⟩
refine' ⟨range s, finite_range s, hs⟩
#align first_order.language.substructure.fg_iff_exists_fin_generating_family FirstOrder.Language.Substructure.fg_iff_exists_fin_generating_family
theorem fg_bot : (⊥ : L.Substructure M).FG :=
⟨∅, by rw [Finset.coe_empty, closure_empty]⟩
#align first_order.language.substructure.fg_bot FirstOrder.Language.Substructure.fg_bot
theorem fg_closure {s : Set M} (hs : s.Finite) : FG (closure L s) :=
⟨hs.toFinset, by rw [hs.coe_toFinset]⟩
#align first_order.language.substructure.fg_closure FirstOrder.Language.Substructure.fg_closure
theorem fg_closure_singleton (x : M) : FG (closure L ({x} : Set M)) :=
fg_closure (finite_singleton x)
#align first_order.language.substructure.fg_closure_singleton FirstOrder.Language.Substructure.fg_closure_singleton
theorem FG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) : (N₁ ⊔ N₂).FG :=
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁
let ⟨t₂, ht₂⟩ := fg_def.1 hN₂
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.fg.sup FirstOrder.Language.Substructure.FG.sup
theorem FG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.FG) :
(s.map f).FG :=
let ⟨t, ht⟩ := fg_def.1 hs
fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.fg.map FirstOrder.Language.Substructure.FG.map
theorem FG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).FG) : s.FG := by
rcases hs with ⟨t, h⟩
rw [fg_def]
refine' ⟨f ⁻¹' t, t.finite_toSet.preimage (f.injective.injOn _), _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.fg.of_map_embedding FirstOrder.Language.Substructure.FG.of_map_embedding
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`.
-/
def CG (N : L.Substructure M) : Prop :=
∃ S : Set M, S.Countable ∧ closure L S = N
#align first_order.language.substructure.cg FirstOrder.Language.Substructure.CG
theorem cg_def {N : L.Substructure M} : N.CG ↔ ∃ S : Set M, S.Countable ∧ closure L S = N :=
Iff.refl _
#align first_order.language.substructure.cg_def FirstOrder.Language.Substructure.cg_def
theorem FG.cg {N : L.Substructure M} (h : N.FG) : N.CG := by
obtain ⟨s, hf, rfl⟩ := fg_def.1 h
refine' ⟨s, hf.countable, rfl⟩
#align first_order.language.substructure.fg.cg FirstOrder.Language.Substructure.FG.cg
theorem cg_iff_empty_or_exists_nat_generating_family {N : L.Substructure M} :
N.CG ↔ N = (∅ : Set M) ∨ ∃ s : ℕ → M, closure L (range s) = N := by
rw [cg_def]
constructor
· rintro ⟨S, Scount, hS⟩
rcases eq_empty_or_nonempty (N : Set M) with h | h
· exact Or.intro_left _ h
obtain ⟨f, h'⟩ :=
(Scount.union (Set.countable_singleton h.some)).exists_eq_range
(singleton_nonempty h.some).inr
refine' Or.intro_right _ ⟨f, _⟩
rw [← h', closure_union, hS, sup_eq_left, closure_le]
exact singleton_subset_iff.2 h.some_mem
· intro h
cases' h with h h
· refine' ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩
rw [← SetLike.coe_subset_coe, h]
exact empty_subset _
· obtain ⟨f, rfl⟩ := h
exact ⟨range f, countable_range _, rfl⟩
#align first_order.language.substructure.cg_iff_empty_or_exists_nat_generating_family FirstOrder.Language.Substructure.cg_iff_empty_or_exists_nat_generating_family
theorem cg_bot : (⊥ : L.Substructure M).CG :=
fg_bot.cg
#align first_order.language.substructure.cg_bot FirstOrder.Language.Substructure.cg_bot
theorem cg_closure {s : Set M} (hs : s.Countable) : CG (closure L s) :=
⟨s, hs, rfl⟩
#align first_order.language.substructure.cg_closure FirstOrder.Language.Substructure.cg_closure
theorem cg_closure_singleton (x : M) : CG (closure L ({x} : Set M)) :=
(fg_closure_singleton x).cg
#align first_order.language.substructure.cg_closure_singleton FirstOrder.Language.Substructure.cg_closure_singleton
theorem CG.sup {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) : (N₁ ⊔ N₂).CG :=
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁
let ⟨t₂, ht₂⟩ := cg_def.1 hN₂
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩
#align first_order.language.substructure.cg.sup FirstOrder.Language.Substructure.CG.sup
theorem CG.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.Substructure M} (hs : s.CG) :
(s.map f).CG :=
let ⟨t, ht⟩ := cg_def.1 hs
cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩
#align first_order.language.substructure.cg.map FirstOrder.Language.Substructure.CG.map
theorem CG.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.Substructure M}
(hs : (s.map f.toHom).CG) : s.CG := by
rcases hs with ⟨t, h1, h2⟩
rw [cg_def]
refine' ⟨f ⁻¹' t, h1.preimage f.injective, _⟩
have hf : Function.Injective f.toHom := f.injective
refine' map_injective_of_injective hf _
rw [← h2, map_closure, Embedding.coe_toHom, image_preimage_eq_of_subset]
intro x hx
have h' := subset_closure (L := L) hx
rw [h2] at h'
exact Hom.map_le_range h'
#align first_order.language.substructure.cg.of_map_embedding FirstOrder.Language.Substructure.CG.of_map_embedding
theorem cg_iff_countable [Countable (Σl, L.Functions l)] {s : L.Substructure M} :
s.CG ↔ Countable s := by
refine' ⟨_, fun h => ⟨s, h.to_set, s.closure_eq⟩⟩
rintro ⟨s, h, rfl⟩
exact h.substructure_closure L
#align first_order.language.substructure.cg_iff_countable FirstOrder.Language.Substructure.cg_iff_countable
end Substructure
open Substructure
namespace Structure
set_option linter.uppercaseLean3 false
variable (L) (M)
/-- A structure is finitely generated if it is the closure of a finite subset. -/
class FG : Prop where
out : (⊤ : L.Substructure M).FG
#align first_order.language.Structure.fg FirstOrder.Language.Structure.FG
/-- A structure is countably generated if it is the closure of a countable subset. -/
class CG : Prop where
out : (⊤ : L.Substructure M).CG
#align first_order.language.Structure.cg FirstOrder.Language.Structure.CG
variable {L M}
theorem fg_def : FG L M ↔ (⊤ : L.Substructure M).FG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.fg_def FirstOrder.Language.Structure.fg_def
/-- An equivalent expression of `Structure.FG` in terms of `Set.Finite` instead of `Finset`. -/
theorem fg_iff : FG L M ↔ ∃ S : Set M, S.Finite ∧ closure L S = (⊤ : L.Substructure M) := by
rw [fg_def, Substructure.fg_def]
#align first_order.language.Structure.fg_iff FirstOrder.Language.Structure.fg_iff
theorem FG.range {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N) : f.range.FG := by
rw [Hom.range_eq_map]
exact (fg_def.1 h).map f
#align first_order.language.Structure.fg.range FirstOrder.Language.Structure.FG.range
theorem FG.map_of_surjective {N : Type*} [L.Structure N] (h : FG L M) (f : M →[L] N)
(hs : Function.Surjective f) : FG L N := by
rw [← Hom.range_eq_top] at hs
rw [fg_def, ← hs]
exact h.range f
#align first_order.language.Structure.fg.map_of_surjective FirstOrder.Language.Structure.FG.map_of_surjective
theorem cg_def : CG L M ↔ (⊤ : L.Substructure M).CG :=
⟨fun h => h.1, fun h => ⟨h⟩⟩
#align first_order.language.Structure.cg_def FirstOrder.Language.Structure.cg_def
/-- An equivalent expression of `Structure.cg`. -/
theorem cg_iff : CG L M ↔ ∃ S : Set M, S.Countable ∧ closure L S = (⊤ : L.Substructure M) := by
rw [cg_def, Substructure.cg_def]
#align first_order.language.Structure.cg_iff FirstOrder.Language.Structure.cg_iff
theorem CG.range {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N) : f.range.CG := by
rw [Hom.range_eq_map]
exact (cg_def.1 h).map f
#align first_order.language.Structure.cg.range FirstOrder.Language.Structure.CG.range
theorem CG.map_of_surjective {N : Type*} [L.Structure N] (h : CG L M) (f : M →[L] N)
(hs : Function.Surjective f) : CG L N := by
rw [← Hom.range_eq_top] at hs
rw [cg_def, ← hs]
exact h.range f
#align first_order.language.Structure.cg.map_of_surjective FirstOrder.Language.Structure.CG.map_of_surjective
theorem cg_iff_countable [Countable (Σl, L.Functions l)] : CG L M ↔ Countable M := by
rw [cg_def, Substructure.cg_iff_countable, topEquiv.toEquiv.countable_iff]
#align first_order.language.Structure.cg_iff_countable FirstOrder.Language.Structure.cg_iff_countable
theorem FG.cg (h : FG L M) : CG L M :=
cg_def.2 (fg_def.1 h).cg
#align first_order.language.Structure.fg.cg FirstOrder.Language.Structure.FG.cg
instance (priority := 100) cg_of_fg [h : FG L M] : CG L M :=
h.cg
#align first_order.language.Structure.cg_of_fg FirstOrder.Language.Structure.cg_of_fg
end Structure
theorem Equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.FG L M ↔ Structure.FG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.fg_iff FirstOrder.Language.Equiv.fg_iff
theorem Substructure.fg_iff_structure_fg (S : L.Substructure M) : S.FG ↔ Structure.FG L S := by
rw [Structure.fg_def]
refine' ⟨fun h => FG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
rw [← Hom.range_eq_map, range_subtype] at h
exact h
set_option linter.uppercaseLean3 false in
#align first_order.language.substructure.fg_iff_Structure_fg FirstOrder.Language.Substructure.fg_iff_structure_fg
theorem Equiv.cg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) :
Structure.CG L M ↔ Structure.CG L N :=
⟨fun h => h.map_of_surjective f.toHom f.toEquiv.surjective, fun h =>
h.map_of_surjective f.symm.toHom f.toEquiv.symm.surjective⟩
#align first_order.language.equiv.cg_iff FirstOrder.Language.Equiv.cg_iff
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S := by
rw [Structure.cg_def]
refine' ⟨fun h => CG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
rw [← Hom.range_eq_map, range_subtype] at h
|
exact h
|
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S := by
rw [Structure.cg_def]
refine' ⟨fun h => CG.of_map_embedding S.subtype _, fun h => _⟩
· rw [← Hom.range_eq_map, range_subtype]
exact h
· have h := h.map S.subtype.toHom
rw [← Hom.range_eq_map, range_subtype] at h
|
Mathlib.ModelTheory.FinitelyGenerated.284_0.mkqJR9tOk3JtWTX
|
theorem Substructure.cg_iff_structure_cg (S : L.Substructure M) : S.CG ↔ Structure.CG L S
|
Mathlib_ModelTheory_FinitelyGenerated
|
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
⊢ ∃ α, F⟮α⟯ = ⊤
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
|
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
|
Mathlib.FieldTheory.PrimitiveElement.56_0.R5HND7n71i1v1rZ
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
⊢ ∃ α, F⟮α⟯ = ⊤
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
|
use α
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
|
Mathlib.FieldTheory.PrimitiveElement.56_0.R5HND7n71i1v1rZ
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤
|
Mathlib_FieldTheory_PrimitiveElement
|
case h
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
⊢ F⟮↑α⟯ = ⊤
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
|
apply eq_top_iff.mpr
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
|
Mathlib.FieldTheory.PrimitiveElement.56_0.R5HND7n71i1v1rZ
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤
|
Mathlib_FieldTheory_PrimitiveElement
|
case h
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
⊢ ⊤ ≤ F⟮↑α⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
|
rintro x -
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
|
Mathlib.FieldTheory.PrimitiveElement.56_0.R5HND7n71i1v1rZ
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤
|
Mathlib_FieldTheory_PrimitiveElement
|
case h
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
⊢ x ∈ F⟮↑α⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
|
by_cases hx : x = 0
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
|
Mathlib.FieldTheory.PrimitiveElement.56_0.R5HND7n71i1v1rZ
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤
|
Mathlib_FieldTheory_PrimitiveElement
|
case pos
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : x = 0
⊢ x ∈ F⟮↑α⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
·
|
rw [hx]
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
·
|
Mathlib.FieldTheory.PrimitiveElement.56_0.R5HND7n71i1v1rZ
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤
|
Mathlib_FieldTheory_PrimitiveElement
|
case pos
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : x = 0
⊢ 0 ∈ F⟮↑α⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
|
exact F⟮α.val⟯.zero_mem
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
|
Mathlib.FieldTheory.PrimitiveElement.56_0.R5HND7n71i1v1rZ
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤
|
Mathlib_FieldTheory_PrimitiveElement
|
case neg
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : ¬x = 0
⊢ x ∈ F⟮↑α⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
·
|
obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
·
|
Mathlib.FieldTheory.PrimitiveElement.56_0.R5HND7n71i1v1rZ
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤
|
Mathlib_FieldTheory_PrimitiveElement
|
case neg.intro
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : ¬x = 0
n : ℤ
hn : (fun x => α ^ x) n = Units.mk0 x hx
⊢ x ∈ F⟮↑α⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
|
simp only at hn
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
|
Mathlib.FieldTheory.PrimitiveElement.56_0.R5HND7n71i1v1rZ
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤
|
Mathlib_FieldTheory_PrimitiveElement
|
case neg.intro
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : ¬x = 0
n : ℤ
hn : α ^ n = Units.mk0 x hx
⊢ x ∈ F⟮↑α⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
|
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
|
Mathlib.FieldTheory.PrimitiveElement.56_0.R5HND7n71i1v1rZ
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : ¬x = 0
n : ℤ
hn : α ^ n = Units.mk0 x hx
⊢ x = ↑α ^ n
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by
|
norm_cast
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by
|
Mathlib.FieldTheory.PrimitiveElement.56_0.R5HND7n71i1v1rZ
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : ¬x = 0
n : ℤ
hn : α ^ n = Units.mk0 x hx
⊢ x = ↑(α ^ n)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast;
|
rw [hn, Units.val_mk0]
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast;
|
Mathlib.FieldTheory.PrimitiveElement.56_0.R5HND7n71i1v1rZ
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤
|
Mathlib_FieldTheory_PrimitiveElement
|
case neg.intro
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : ¬x = 0
n : ℤ
hn : α ^ n = Units.mk0 x hx
⊢ ↑α ^ n ∈ F⟮↑α⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
|
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
|
Mathlib.FieldTheory.PrimitiveElement.56_0.R5HND7n71i1v1rZ
|
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
⊢ ∃ c, ∀ α' ∈ roots (Polynomial.map ϕ f), ∀ β' ∈ roots (Polynomial.map ϕ g), -(α' - α) / (β' - β) ≠ ϕ c
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
|
let sf := (f.map ϕ).roots
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
|
Mathlib.FieldTheory.PrimitiveElement.87_0.R5HND7n71i1v1rZ
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
sf : Multiset E := roots (Polynomial.map ϕ f)
⊢ ∃ c, ∀ α' ∈ roots (Polynomial.map ϕ f), ∀ β' ∈ roots (Polynomial.map ϕ g), -(α' - α) / (β' - β) ≠ ϕ c
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
|
let sg := (g.map ϕ).roots
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
|
Mathlib.FieldTheory.PrimitiveElement.87_0.R5HND7n71i1v1rZ
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
sf : Multiset E := roots (Polynomial.map ϕ f)
sg : Multiset E := roots (Polynomial.map ϕ g)
⊢ ∃ c, ∀ α' ∈ roots (Polynomial.map ϕ f), ∀ β' ∈ roots (Polynomial.map ϕ g), -(α' - α) / (β' - β) ≠ ϕ c
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
|
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
|
Mathlib.FieldTheory.PrimitiveElement.87_0.R5HND7n71i1v1rZ
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
sf : Multiset E := roots (Polynomial.map ϕ f)
sg : Multiset E := roots (Polynomial.map ϕ g)
s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg)
⊢ ∃ c, ∀ α' ∈ roots (Polynomial.map ϕ f), ∀ β' ∈ roots (Polynomial.map ϕ g), -(α' - α) / (β' - β) ≠ ϕ c
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
|
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
|
Mathlib.FieldTheory.PrimitiveElement.87_0.R5HND7n71i1v1rZ
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
sf : Multiset E := roots (Polynomial.map ϕ f)
sg : Multiset E := roots (Polynomial.map ϕ g)
s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg)
s' : Finset F := Finset.preimage s ⇑ϕ (_ : ∀ x ∈ ⇑ϕ ⁻¹' ↑s, ∀ y ∈ ⇑ϕ ⁻¹' ↑s, ϕ x = ϕ y → x = y)
⊢ ∃ c, ∀ α' ∈ roots (Polynomial.map ϕ f), ∀ β' ∈ roots (Polynomial.map ϕ g), -(α' - α) / (β' - β) ≠ ϕ c
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
|
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
|
Mathlib.FieldTheory.PrimitiveElement.87_0.R5HND7n71i1v1rZ
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
sf : Multiset E := roots (Polynomial.map ϕ f)
sg : Multiset E := roots (Polynomial.map ϕ g)
s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg)
s' : Finset F := Finset.preimage s ⇑ϕ (_ : ∀ x ∈ ⇑ϕ ⁻¹' ↑s, ∀ y ∈ ⇑ϕ ⁻¹' ↑s, ϕ x = ϕ y → x = y)
c : F
hc : c ∉ s'
⊢ ∃ c, ∀ α' ∈ roots (Polynomial.map ϕ f), ∀ β' ∈ roots (Polynomial.map ϕ g), -(α' - α) / (β' - β) ≠ ϕ c
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
|
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
|
Mathlib.FieldTheory.PrimitiveElement.87_0.R5HND7n71i1v1rZ
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
sf : Multiset E := roots (Polynomial.map ϕ f)
sg : Multiset E := roots (Polynomial.map ϕ g)
s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg)
s' : Finset F := Finset.preimage s ⇑ϕ (_ : ∀ x ∈ ⇑ϕ ⁻¹' ↑s, ∀ y ∈ ⇑ϕ ⁻¹' ↑s, ϕ x = ϕ y → x = y)
c : F
hc : ¬∃ a ∈ roots (Polynomial.map ϕ f), ∃ a_1 ∈ roots (Polynomial.map ϕ g), -(a - α) / (a_1 - β) = ϕ c
⊢ ∃ c, ∀ α' ∈ roots (Polynomial.map ϕ f), ∀ β' ∈ roots (Polynomial.map ϕ g), -(α' - α) / (β' - β) ≠ ϕ c
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
|
push_neg at hc
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
|
Mathlib.FieldTheory.PrimitiveElement.87_0.R5HND7n71i1v1rZ
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
sf : Multiset E := roots (Polynomial.map ϕ f)
sg : Multiset E := roots (Polynomial.map ϕ g)
s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg)
s' : Finset F := Finset.preimage s ⇑ϕ (_ : ∀ x ∈ ⇑ϕ ⁻¹' ↑s, ∀ y ∈ ⇑ϕ ⁻¹' ↑s, ϕ x = ϕ y → x = y)
c : F
hc : ∀ a ∈ roots (Polynomial.map ϕ f), ∀ a_1 ∈ roots (Polynomial.map ϕ g), -(a - α) / (a_1 - β) ≠ ϕ c
⊢ ∃ c, ∀ α' ∈ roots (Polynomial.map ϕ f), ∀ β' ∈ roots (Polynomial.map ϕ g), -(α' - α) / (β' - β) ≠ ϕ c
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
|
exact ⟨c, hc⟩
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
|
Mathlib.FieldTheory.PrimitiveElement.87_0.R5HND7n71i1v1rZ
|
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
|
have hα := IsSeparable.isIntegral F α
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
|
have hβ := IsSeparable.isIntegral F β
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
|
let f := minpoly F α
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
|
let g := minpoly F β
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
|
let ιFE := algebraMap F E
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
|
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
|
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
|
let γ := α + c • β
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
|
suffices β_in_Fγ : β ∈ F⟮γ⟯
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case intro
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
·
|
use γ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
·
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case h
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ F⟮α, β⟯ = F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
|
apply le_antisymm
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case h.a
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ F⟮α, β⟯ ≤ F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
·
|
rw [adjoin_le_iff]
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
·
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case h.a
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ {α, β} ≤ ↑F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
|
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ α ∈ F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
|
rw [← add_sub_cancel α (c • β)]
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ α + c • β - c • β ∈ F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
|
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case h.a
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
α_in_Fγ : α ∈ F⟮γ⟯
⊢ {α, β} ≤ ↑F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
|
rintro x (rfl | rfl)
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case h.a.inl
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hβ : IsIntegral F β
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
x : E
hα : IsIntegral F x
f : F[X] := minpoly F x
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' x) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := x + c • β
β_in_Fγ : β ∈ F⟮γ⟯
α_in_Fγ : x ∈ F⟮γ⟯
⊢ x ∈ ↑F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;>
|
assumption
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;>
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case h.a.inr
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
f : F[X] := minpoly F α
ιFE : F →+* E := algebraMap F E
c : F
x : E
hβ : IsIntegral F x
g : F[X] := minpoly F x
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' x) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • x
β_in_Fγ : x ∈ F⟮γ⟯
α_in_Fγ : α ∈ F⟮γ⟯
⊢ x ∈ ↑F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;>
|
assumption
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;>
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case h.a
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ F⟮γ⟯ ≤ F⟮α, β⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
·
|
rw [adjoin_simple_le_iff]
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
·
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case h.a
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ γ ∈ F⟮α, β⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
|
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case h.a
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
α_in_Fαβ : α ∈ F⟮α, β⟯
⊢ γ ∈ F⟮α, β⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
|
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case h.a
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
α_in_Fαβ : α ∈ F⟮α, β⟯
β_in_Fαβ : β ∈ F⟮α, β⟯
⊢ γ ∈ F⟮α, β⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
|
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
⊢ β ∈ F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
|
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
⊢ β ∈ F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
|
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g)
⊢ β ∈ F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
|
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
⊢ β ∈ F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
|
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
⊢ β ∈ F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
|
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
p_linear : Polynomial.map (algebraMap (↥F⟮γ⟯) E) p = C (leadingCoeff h) * (X - C β)
⊢ β ∈ F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
·
|
have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
·
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
p_linear : Polynomial.map (algebraMap (↥F⟮γ⟯) E) p = C (leadingCoeff h) * (X - C β)
⊢ β = (algebraMap (↥F⟮γ⟯) E) (-coeff p 0 / coeff p 1)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
|
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
p_linear : Polynomial.map (algebraMap (↥F⟮γ⟯) E) p = C (leadingCoeff h) * (X - C β)
⊢ β = -coeff (C (leadingCoeff h) * (X - C β)) 0 / coeff (C (leadingCoeff h) * (X - C β)) 1
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
|
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
p_linear : Polynomial.map (algebraMap (↥F⟮γ⟯) E) p = C (leadingCoeff h) * (X - C β)
finale : β = (algebraMap (↥F⟮γ⟯) E) (-coeff p 0 / coeff p 1)
⊢ β ∈ F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
|
rw [finale]
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
p_linear : Polynomial.map (algebraMap (↥F⟮γ⟯) E) p = C (leadingCoeff h) * (X - C β)
finale : β = (algebraMap (↥F⟮γ⟯) E) (-coeff p 0 / coeff p 1)
⊢ (algebraMap (↥F⟮γ⟯) E) (-coeff p 0 / coeff p 1) ∈ F⟮γ⟯
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
|
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case p_linear
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
⊢ Polynomial.map (algebraMap (↥F⟮γ⟯) E) p = C (leadingCoeff h) * (X - C β)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
|
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case p_linear
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
⊢ Polynomial.map (algebraMap (↥F⟮γ⟯) E) p = C (leadingCoeff h) * (X - C β)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
|
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
⊢ eval β h = 0
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
|
apply eval_gcd_eq_zero
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case hf
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
⊢ eval β (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) = 0
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
·
|
rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
·
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case hg
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
⊢ eval β (Polynomial.map ιFE g) = 0
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
·
|
rw [eval_map, ← aeval_def, minpoly.aeval]
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
·
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
case p_linear
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f),
∀ β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g), -(α' - ιEE' α) / (β' - ιEE' β) ≠ (RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : (↥F⟮γ⟯)[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F ↥F⟮γ⟯) f)
(C (AdjoinSimple.gen F γ) - C { val := (algebraMap F E) c, property := (_ : (algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F ↥F⟮γ⟯) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (C γ - C (ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
⊢ Polynomial.map (algebraMap (↥F⟮γ⟯) E) p = C (leadingCoeff h) * (X - C β)
|
/-
Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.IsAlgClosed.AlgebraicClosure
import Mathlib.FieldTheory.NormalClosure
import Mathlib.RingTheory.IntegralDomain
#align_import field_theory.primitive_element from "leanprover-community/mathlib"@"df76f43357840485b9d04ed5dee5ab115d420e87"
/-!
# Primitive Element Theorem
In this file we prove the primitive element theorem.
## Main results
- `exists_primitive_element`: a finite separable extension `E / F` has a primitive element, i.e.
there is an `α : E` such that `F⟮α⟯ = (⊤ : Subalgebra F E)`.
- `exists_primitive_element_iff_finite_intermediateField`: a finite extension `E / F` has a
primitive element if and only if there exist only finitely many intermediate fields between `E`
and `F`.
## Implementation notes
In declaration names, `primitive_element` abbreviates `adjoin_simple_eq_top`:
it stands for the statement `F⟮α⟯ = (⊤ : Subalgebra F E)`. We did not add an extra
declaration `IsPrimitiveElement F α := F⟮α⟯ = (⊤ : Subalgebra F E)` because this
requires more unfolding without much obvious benefit.
## Tags
primitive element, separable field extension, separable extension, intermediate field, adjoin,
exists_adjoin_simple_eq_top
-/
noncomputable section
open scoped Classical Polynomial
open FiniteDimensional Polynomial IntermediateField
namespace Field
section PrimitiveElementFinite
variable (F : Type*) [Field F] (E : Type*) [Field E] [Algebra F E]
/-! ### Primitive element theorem for finite fields -/
/-- **Primitive element theorem** assuming E is finite. -/
theorem exists_primitive_element_of_finite_top [Finite E] : ∃ α : E, F⟮α⟯ = ⊤ := by
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator Eˣ _ _
use α
apply eq_top_iff.mpr
rintro x -
by_cases hx : x = 0
· rw [hx]
exact F⟮α.val⟯.zero_mem
· obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
simp only at hn
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0]]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
#align field.exists_primitive_element_of_finite_top Field.exists_primitive_element_of_finite_top
/-- Primitive element theorem for finite dimensional extension of a finite field. -/
theorem exists_primitive_element_of_finite_bot [Finite F] [FiniteDimensional F E] :
∃ α : E, F⟮α⟯ = ⊤ :=
haveI : Finite E := finite_of_finite F E
exists_primitive_element_of_finite_top F E
#align field.exists_primitive_element_of_finite_bot Field.exists_primitive_element_of_finite_bot
end PrimitiveElementFinite
/-! ### Primitive element theorem for infinite fields -/
section PrimitiveElementInf
variable {F : Type*} [Field F] [Infinite F] {E : Type*} [Field E] (ϕ : F →+* E) (α β : E)
theorem primitive_element_inf_aux_exists_c (f g : F[X]) :
∃ c : F, ∀ α' ∈ (f.map ϕ).roots, ∀ β' ∈ (g.map ϕ).roots, -(α' - α) / (β' - β) ≠ ϕ c := by
let sf := (f.map ϕ).roots
let sg := (g.map ϕ).roots
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
push_neg at hc
exact ⟨c, hc⟩
#align field.primitive_element_inf_aux_exists_c Field.primitive_element_inf_aux_exists_c
variable (F)
variable [Algebra F E]
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
|
have h_splits : Splits ιEE' h :=
splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯ := by
have hα := IsSeparable.isIntegral F α
have hβ := IsSeparable.isIntegral F β
let f := minpoly F α
let g := minpoly F β
let ιFE := algebraMap F E
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
let γ := α + c • β
suffices β_in_Fγ : β ∈ F⟮γ⟯
· use γ
apply le_antisymm
· rw [adjoin_le_iff]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
rintro x (rfl | rfl) <;> assumption
· rw [adjoin_simple_le_iff]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert α {β})
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F {α, β} (Set.mem_insert_of_mem α rfl)
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp
(C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯))
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
have h_ne_zero : h ≠ 0 :=
mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
· have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero),
-map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
rw [finale]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
· rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ←
Algebra.smul_def, add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
|
Mathlib.FieldTheory.PrimitiveElement.103_0.R5HND7n71i1v1rZ
|
/-- This is the heart of the proof of the primitive element theorem. It shows that if `F` is
infinite and `α` and `β` are separable over `F` then `F⟮α, β⟯` is generated by a single element. -/
theorem primitive_element_inf_aux [IsSeparable F E] : ∃ γ : E, F⟮α, β⟯ = F⟮γ⟯
|
Mathlib_FieldTheory_PrimitiveElement
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.