url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
refine ⟨δ βŠ“ Ξ΅ / M, gt_iff_lt.2 (lt_inf_iff.2 ⟨hΞ΄, div_pos hΞ΅ hMp⟩), Ξ» w hw i => ?_⟩
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 ⊒ βˆƒ Ξ΄ > 0, βˆ€ (x : ↑K), dist x { val := z, property := hz } < Ξ΄ β†’ βˆ€ (i : ΞΉ), dist ((restrict K ∘ F) i { val := z, property := hz }) ((restrict K ∘ F) i x) < Ξ΅
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ ⊒ dist ((restrict K ∘ F) i { val := z, property := hz }) ((restrict K ∘ F) i w) < Ξ΅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
simp
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ ⊒ dist ((restrict K ∘ F) i { val := z, property := hz }) ((restrict K ∘ F) i w) < Ξ΅
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ ⊒ dist (F i z) (F i ↑w) < Ξ΅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
have e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x := Ξ» x hx => (h2 i).differentiableAt (hU.mem_nhds (h hx))
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ ⊒ dist (F i z) (F i ↑w) < Ξ΅
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x ⊒ dist (F i z) (F i ↑w) < Ξ΅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
have e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M := by simpa [MapsTo] using hM i
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x ⊒ dist (F i z) (F i ↑w) < Ξ΅
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M ⊒ dist (F i z) (F i ↑w) < Ξ΅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
have e3 : z ∈ closedBall z δ := mem_closedBall_self hδ.le
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M ⊒ dist (F i z) (F i ↑w) < Ξ΅
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ ⊒ dist (F i z) (F i ↑w) < Ξ΅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
have e4 : w.1 ∈ closedBall z δ := by simpa using (lt_inf_iff.1 hw).1.le
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ ⊒ dist (F i z) (F i ↑w) < Ξ΅
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ e4 : ↑w ∈ closedBall z Ξ΄ ⊒ dist (F i z) (F i ↑w) < Ξ΅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
rw [dist_eq_norm]
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ e4 : ↑w ∈ closedBall z Ξ΄ ⊒ dist (F i z) (F i ↑w) < Ξ΅
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ e4 : ↑w ∈ closedBall z Ξ΄ ⊒ β€–F i z - F i ↑wβ€– < Ξ΅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
refine ((convex_closedBall _ _).norm_image_sub_le_of_norm_deriv_le e1 e2 e4 e3).trans_lt ?_
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ e4 : ↑w ∈ closedBall z Ξ΄ ⊒ β€–F i z - F i ↑wβ€– < Ξ΅
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ e4 : ↑w ∈ closedBall z Ξ΄ ⊒ M * β€–z - ↑wβ€– < Ξ΅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
have : β€–z - w.valβ€– < Ξ΅ / M := by have := (lt_inf_iff.1 hw).2 rwa [dist_comm, Subtype.dist_eq, dist_eq_norm] at this
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ e4 : ↑w ∈ closedBall z Ξ΄ ⊒ M * β€–z - ↑wβ€– < Ξ΅
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ e4 : ↑w ∈ closedBall z Ξ΄ this : β€–z - ↑wβ€– < Ξ΅ / M ⊒ M * β€–z - ↑wβ€– < Ξ΅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
convert mul_lt_mul' le_rfl this (norm_nonneg _) hMp
case mk.intro.intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ e4 : ↑w ∈ closedBall z Ξ΄ this : β€–z - ↑wβ€– < Ξ΅ / M ⊒ M * β€–z - ↑wβ€– < Ξ΅
case h.e'_4 ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ e4 : ↑w ∈ closedBall z Ξ΄ this : β€–z - ↑wβ€– < Ξ΅ / M ⊒ Ξ΅ = M * (Ξ΅ / M)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
field_simp [hMp.lt.ne.symm, mul_comm]
case h.e'_4 ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ e4 : ↑w ∈ closedBall z Ξ΄ this : β€–z - ↑wβ€– < Ξ΅ / M ⊒ Ξ΅ = M * (Ξ΅ / M)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
obtain ⟨Q, hQ1, hQ2⟩ := h1.deriv hU h2 (closedBall z δ) ⟨h, isCompact_closedBall _ _⟩
ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U ⊒ βˆƒ M > 0, βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M)
case intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q✝ : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U Q : Set β„‚ hQ1 : IsCompact Q hQ2 : βˆ€ (i : ΞΉ), MapsTo ((_root_.deriv ∘ F) i) (closedBall z Ξ΄) Q ⊒ βˆƒ M > 0, βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
obtain ⟨M, hM⟩ := hQ1.isBounded.subset_closedBall 0
case intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q✝ : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U Q : Set β„‚ hQ1 : IsCompact Q hQ2 : βˆ€ (i : ΞΉ), MapsTo ((_root_.deriv ∘ F) i) (closedBall z Ξ΄) Q ⊒ βˆƒ M > 0, βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M)
case intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q✝ : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U Q : Set β„‚ hQ1 : IsCompact Q hQ2 : βˆ€ (i : ΞΉ), MapsTo ((_root_.deriv ∘ F) i) (closedBall z Ξ΄) Q M : ℝ hM : Q βŠ† closedBall 0 M ⊒ βˆƒ M > 0, βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
refine ⟨M βŠ” 1, by simp, fun i => ?_⟩
case intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q✝ : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U Q : Set β„‚ hQ1 : IsCompact Q hQ2 : βˆ€ (i : ΞΉ), MapsTo ((_root_.deriv ∘ F) i) (closedBall z Ξ΄) Q M : ℝ hM : Q βŠ† closedBall 0 M ⊒ βˆƒ M > 0, βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M)
case intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q✝ : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U Q : Set β„‚ hQ1 : IsCompact Q hQ2 : βˆ€ (i : ΞΉ), MapsTo ((_root_.deriv ∘ F) i) (closedBall z Ξ΄) Q M : ℝ hM : Q βŠ† closedBall 0 M i : ΞΉ ⊒ MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 (M βŠ” 1))
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
exact ((hQ2 i).mono_right hM).mono_right <| closedBall_subset_closedBall le_sup_left
case intro.intro.intro ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q✝ : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U Q : Set β„‚ hQ1 : IsCompact Q hQ2 : βˆ€ (i : ΞΉ), MapsTo ((_root_.deriv ∘ F) i) (closedBall z Ξ΄) Q M : ℝ hM : Q βŠ† closedBall 0 M i : ΞΉ ⊒ MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 (M βŠ” 1))
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
simp
ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q✝ : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U Q : Set β„‚ hQ1 : IsCompact Q hQ2 : βˆ€ (i : ΞΉ), MapsTo ((_root_.deriv ∘ F) i) (closedBall z Ξ΄) Q M : ℝ hM : Q βŠ† closedBall 0 M ⊒ M βŠ” 1 > 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
simpa [MapsTo] using hM i
ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x ⊒ βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
simpa using (lt_inf_iff.1 hw).1.le
ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ ⊒ ↑w ∈ closedBall z Ξ΄
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
have := (lt_inf_iff.1 hw).2
ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ e4 : ↑w ∈ closedBall z Ξ΄ ⊒ β€–z - ↑wβ€– < Ξ΅ / M
ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ e4 : ↑w ∈ closedBall z Ξ΄ this : dist w { val := z, property := hz } < Ξ΅ / M ⊒ β€–z - ↑wβ€– < Ξ΅ / M
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
rwa [dist_comm, Subtype.dist_eq, dist_eq_norm] at this
ΞΉ : Type u_1 U K : Set β„‚ z✝ : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U hK : K ∈ compacts U z : β„‚ hz : z ∈ K Ξ΄ : ℝ hΞ΄ : 0 < Ξ΄ h : closedBall z Ξ΄ βŠ† U M : ℝ hMp : M > 0 hM : βˆ€ (i : ΞΉ), MapsTo (_root_.deriv (F i)) (closedBall z Ξ΄) (closedBall 0 M) Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 w : ↑K hw : dist w { val := z, property := hz } < Ξ΄ βŠ“ Ξ΅ / M i : ΞΉ e1 : βˆ€ x ∈ closedBall z Ξ΄, DifferentiableAt β„‚ (F i) x e2 : βˆ€ x ∈ closedBall z Ξ΄, β€–_root_.deriv (F i) xβ€– ≀ M e3 : z ∈ closedBall z Ξ΄ e4 : ↑w ∈ closedBall z Ξ΄ this : dist w { val := z, property := hz } < Ξ΅ / M ⊒ β€–z - ↑wβ€– < Ξ΅ / M
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
uniformlyBoundedOn_𝓑
[60, 1]
[62, 56]
exact fun K hK => ⟨Q K, hQ K hK, fun f => f.2.2 K hK⟩
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) ⊒ UniformlyBoundedOn Subtype.val U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
isCompact_𝓑
[64, 1]
[73, 59]
have l1 (K) (hK : K ∈ compacts U) : EquicontinuousOn ((↑) : 𝓑 U Q β†’ 𝓒 U) K := (uniformlyBoundedOn_𝓑 hQ).equicontinuousOn hU (fun f => f.2.1) hK
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) ⊒ IsCompact (𝓑 U Q)
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) l1 : βˆ€ K ∈ compacts U, EquicontinuousOn Subtype.val K ⊒ IsCompact (𝓑 U Q)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
isCompact_𝓑
[64, 1]
[73, 59]
have l2 (K) (hK : K ∈ compacts U) (x) (hx : x ∈ K) : βˆƒ L, IsCompact L ∧ βˆ€ i : 𝓑 U Q, i.1 x ∈ L := ⟨Q K, hQ K hK, fun f => f.2.2 K hK hx⟩
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) l1 : βˆ€ K ∈ compacts U, EquicontinuousOn Subtype.val K ⊒ IsCompact (𝓑 U Q)
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) l1 : βˆ€ K ∈ compacts U, EquicontinuousOn Subtype.val K l2 : βˆ€ K ∈ compacts U, βˆ€ x ∈ K, βˆƒ L, IsCompact L ∧ βˆ€ (i : ↑(𝓑 U Q)), ↑i x ∈ L ⊒ IsCompact (𝓑 U Q)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
isCompact_𝓑
[64, 1]
[73, 59]
rw [isCompact_iff_compactSpace]
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) l1 : βˆ€ K ∈ compacts U, EquicontinuousOn Subtype.val K l2 : βˆ€ K ∈ compacts U, βˆ€ x ∈ K, βˆƒ L, IsCompact L ∧ βˆ€ (i : ↑(𝓑 U Q)), ↑i x ∈ L ⊒ IsCompact (𝓑 U Q)
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) l1 : βˆ€ K ∈ compacts U, EquicontinuousOn Subtype.val K l2 : βˆ€ K ∈ compacts U, βˆ€ x ∈ K, βˆƒ L, IsCompact L ∧ βˆ€ (i : ↑(𝓑 U Q)), ↑i x ∈ L ⊒ CompactSpace ↑(𝓑 U Q)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
isCompact_𝓑
[64, 1]
[73, 59]
refine ArzelaAscoli.compactSpace_of_closedEmbedding (fun K hK => hK.2) ?_ l1 l2
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) l1 : βˆ€ K ∈ compacts U, EquicontinuousOn Subtype.val K l2 : βˆ€ K ∈ compacts U, βˆ€ x ∈ K, βˆƒ L, IsCompact L ∧ βˆ€ (i : ↑(𝓑 U Q)), ↑i x ∈ L ⊒ CompactSpace ↑(𝓑 U Q)
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) l1 : βˆ€ K ∈ compacts U, EquicontinuousOn Subtype.val K l2 : βˆ€ K ∈ compacts U, βˆ€ x ∈ K, βˆƒ L, IsCompact L ∧ βˆ€ (i : ↑(𝓑 U Q)), ↑i x ∈ L ⊒ ClosedEmbedding (⇑(UniformOnFun.ofFun (compacts U)) ∘ Subtype.val)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
isCompact_𝓑
[64, 1]
[73, 59]
refine ⟨⟨by tauto, fun f g => Subtype.ext⟩, ?_⟩
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) l1 : βˆ€ K ∈ compacts U, EquicontinuousOn Subtype.val K l2 : βˆ€ K ∈ compacts U, βˆ€ x ∈ K, βˆƒ L, IsCompact L ∧ βˆ€ (i : ↑(𝓑 U Q)), ↑i x ∈ L ⊒ ClosedEmbedding (⇑(UniformOnFun.ofFun (compacts U)) ∘ Subtype.val)
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) l1 : βˆ€ K ∈ compacts U, EquicontinuousOn Subtype.val K l2 : βˆ€ K ∈ compacts U, βˆ€ x ∈ K, βˆƒ L, IsCompact L ∧ βˆ€ (i : ↑(𝓑 U Q)), ↑i x ∈ L ⊒ IsClosed (range (⇑(UniformOnFun.ofFun (compacts U)) ∘ Subtype.val))
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
isCompact_𝓑
[64, 1]
[73, 59]
simpa [range, UniformOnFun.ofFun] using isClosed_𝓑 hU hQ
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) l1 : βˆ€ K ∈ compacts U, EquicontinuousOn Subtype.val K l2 : βˆ€ K ∈ compacts U, βˆ€ x ∈ K, βˆƒ L, IsCompact L ∧ βˆ€ (i : ↑(𝓑 U Q)), ↑i x ∈ L ⊒ IsClosed (range (⇑(UniformOnFun.ofFun (compacts U)) ∘ Subtype.val))
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
isCompact_𝓑
[64, 1]
[73, 59]
tauto
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) l1 : βˆ€ K ∈ compacts U, EquicontinuousOn Subtype.val K l2 : βˆ€ K ∈ compacts U, βˆ€ x ∈ K, βˆƒ L, IsCompact L ∧ βˆ€ (i : ↑(𝓑 U Q)), ↑i x ∈ L ⊒ Inducing (⇑(UniformOnFun.ofFun (compacts U)) ∘ Subtype.val)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
montel
[75, 1]
[79, 72]
choose! Q hQ1 hQ2 using h1
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hU : IsOpen U h1 : UniformlyBoundedOn F U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U ⊒ TotallyBounded (range F)
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q✝ : Set β„‚ β†’ Set β„‚ hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U Q : Set β„‚ β†’ Set β„‚ hQ1 : βˆ€ K ∈ compacts U, IsCompact (Q K) hQ2 : βˆ€ K ∈ compacts U, βˆ€ (i : ΞΉ), MapsTo (F i) K (Q K) ⊒ TotallyBounded (range F)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
montel
[75, 1]
[79, 72]
have l1 : range F βŠ† 𝓑 U Q := by rintro f ⟨i, rfl⟩ ; exact ⟨h2 i, fun K hK => hQ2 K hK i⟩
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q✝ : Set β„‚ β†’ Set β„‚ hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U Q : Set β„‚ β†’ Set β„‚ hQ1 : βˆ€ K ∈ compacts U, IsCompact (Q K) hQ2 : βˆ€ K ∈ compacts U, βˆ€ (i : ΞΉ), MapsTo (F i) K (Q K) ⊒ TotallyBounded (range F)
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q✝ : Set β„‚ β†’ Set β„‚ hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U Q : Set β„‚ β†’ Set β„‚ hQ1 : βˆ€ K ∈ compacts U, IsCompact (Q K) hQ2 : βˆ€ K ∈ compacts U, βˆ€ (i : ΞΉ), MapsTo (F i) K (Q K) l1 : range F βŠ† 𝓑 U Q ⊒ TotallyBounded (range F)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
montel
[75, 1]
[79, 72]
exact totallyBounded_subset l1 <| (isCompact_𝓑 hU hQ1).totallyBounded
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q✝ : Set β„‚ β†’ Set β„‚ hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U Q : Set β„‚ β†’ Set β„‚ hQ1 : βˆ€ K ∈ compacts U, IsCompact (Q K) hQ2 : βˆ€ K ∈ compacts U, βˆ€ (i : ΞΉ), MapsTo (F i) K (Q K) l1 : range F βŠ† 𝓑 U Q ⊒ TotallyBounded (range F)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
montel
[75, 1]
[79, 72]
rintro f ⟨i, rfl⟩
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q✝ : Set β„‚ β†’ Set β„‚ hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U Q : Set β„‚ β†’ Set β„‚ hQ1 : βˆ€ K ∈ compacts U, IsCompact (Q K) hQ2 : βˆ€ K ∈ compacts U, βˆ€ (i : ΞΉ), MapsTo (F i) K (Q K) ⊒ range F βŠ† 𝓑 U Q
case intro ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q✝ : Set β„‚ β†’ Set β„‚ hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U Q : Set β„‚ β†’ Set β„‚ hQ1 : βˆ€ K ∈ compacts U, IsCompact (Q K) hQ2 : βˆ€ K ∈ compacts U, βˆ€ (i : ΞΉ), MapsTo (F i) K (Q K) i : ΞΉ ⊒ F i ∈ 𝓑 U Q
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
montel
[75, 1]
[79, 72]
exact ⟨h2 i, fun K hK => hQ2 K hK i⟩
case intro ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q✝ : Set β„‚ β†’ Set β„‚ hU : IsOpen U h2 : βˆ€ (i : ΞΉ), DifferentiableOn β„‚ (F i) U Q : Set β„‚ β†’ Set β„‚ hQ1 : βˆ€ K ∈ compacts U, IsCompact (Q K) hQ2 : βˆ€ K ∈ compacts U, βˆ€ (i : ΞΉ), MapsTo (F i) K (Q K) i : ΞΉ ⊒ F i ∈ 𝓑 U Q
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
isCompact_π“œ
[83, 1]
[84, 82]
simpa only [𝓑_const] using isCompact_𝓑 hU (fun _ _ => isCompact_closedBall 0 1)
ΞΉ : Type u_1 U K : Set β„‚ z : β„‚ F : ΞΉ β†’ 𝓒 U Q : Set β„‚ β†’ Set β„‚ hU : IsOpen U ⊒ IsCompact (π“œ U)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/defs.lean
neg_in_𝔻
[19, 1]
[20, 11]
simp [𝔻]
u : β„‚ U V W : Set β„‚ ⊒ u ∈ 𝔻 β†’ -u ∈ 𝔻
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/defs.lean
sqrt_𝔻_eq_𝔻
[22, 1]
[23, 17]
simp [𝔻, ball]
u : β„‚ U V W : Set β„‚ ⊒ {z | z ^ 2 ∈ 𝔻} = 𝔻
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/defs.lean
ne_center_of_not_mem_closed_ball
[69, 1]
[72, 16]
contrapose! hz
u : β„‚ U V W : Set β„‚ w : β„‚ r : ℝ hr : 0 ≀ r z : β„‚ hz : z ∈ (closedBall w r)ᢜ ⊒ z β‰  w
u : β„‚ U V W : Set β„‚ w : β„‚ r : ℝ hr : 0 ≀ r z : β„‚ hz : z = w ⊒ z βˆ‰ (closedBall w r)ᢜ
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/defs.lean
ne_center_of_not_mem_closed_ball
[69, 1]
[72, 16]
simp [hz, hr]
u : β„‚ U V W : Set β„‚ w : β„‚ r : ℝ hr : 0 ≀ r z : β„‚ hz : z = w ⊒ z βˆ‰ (closedBall w r)ᢜ
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
one_sub_mul_conj_ne_zero
[9, 1]
[12, 65]
rw [mem_𝔻_iff] at hu hz
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 ⊒ 1 - z * (starRingEnd β„‚) u β‰  0
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : β€–uβ€– < 1 hz : β€–zβ€– < 1 ⊒ 1 - z * (starRingEnd β„‚) u β‰  0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
one_sub_mul_conj_ne_zero
[9, 1]
[12, 65]
refine sub_ne_zero.mpr (mt (congr_arg Complex.abs) (ne_comm.mp (ne_of_lt ?_)))
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : β€–uβ€– < 1 hz : β€–zβ€– < 1 ⊒ 1 - z * (starRingEnd β„‚) u β‰  0
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : β€–uβ€– < 1 hz : β€–zβ€– < 1 ⊒ Complex.abs (z * (starRingEnd β„‚) u) < Complex.abs 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
one_sub_mul_conj_ne_zero
[9, 1]
[12, 65]
simpa using mul_lt_mul'' hz hu (norm_nonneg z) (norm_nonneg u)
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : β€–uβ€– < 1 hz : β€–zβ€– < 1 ⊒ Complex.abs (z * (starRingEnd β„‚) u) < Complex.abs 1
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
one_sub_mul_conj_add_mul_conj_ne_zero
[14, 1]
[18, 22]
have h1 := one_sub_mul_conj_ne_zero hu hu
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 ⊒ 1 - z * (starRingEnd β„‚) u + (z - u) * (starRingEnd β„‚) u β‰  0
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 h1 : 1 - u * (starRingEnd β„‚) u β‰  0 ⊒ 1 - z * (starRingEnd β„‚) u + (z - u) * (starRingEnd β„‚) u β‰  0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
one_sub_mul_conj_add_mul_conj_ne_zero
[14, 1]
[18, 22]
ring_nf
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 h1 : 1 - u * (starRingEnd β„‚) u β‰  0 ⊒ 1 - z * (starRingEnd β„‚) u + (z - u) * (starRingEnd β„‚) u β‰  0
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 h1 : 1 - u * (starRingEnd β„‚) u β‰  0 ⊒ 1 - (starRingEnd β„‚) u * u β‰  0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
one_sub_mul_conj_add_mul_conj_ne_zero
[14, 1]
[18, 22]
simp [h1, mul_comm]
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 h1 : 1 - u * (starRingEnd β„‚) u β‰  0 ⊒ 1 - (starRingEnd β„‚) u * u β‰  0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
normSq_sub_normSq
[20, 1]
[21, 59]
field_simp [← ofReal_inj, normSq_eq_conj_mul_self]
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U ⊒ normSq (z - u) - normSq (1 - z * (starRingEnd β„‚) u) = (normSq z - 1) * (1 - normSq u)
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U ⊒ ((starRingEnd β„‚) z - (starRingEnd β„‚) u) * (z - u) - (1 - (starRingEnd β„‚) z * u) * (1 - z * (starRingEnd β„‚) u) = ((starRingEnd β„‚) z * z - 1) * (1 - (starRingEnd β„‚) u * u)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
normSq_sub_normSq
[20, 1]
[21, 59]
ring
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U ⊒ ((starRingEnd β„‚) z - (starRingEnd β„‚) u) * (z - u) - (1 - (starRingEnd β„‚) z * u) * (1 - z * (starRingEnd β„‚) u) = ((starRingEnd β„‚) z * z - 1) * (1 - (starRingEnd β„‚) u * u)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
pre_Ο†_inv
[25, 1]
[28, 7]
rintro z hz
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 ⊒ LeftInvOn (pre_Ο† (-u)) (pre_Ο† u) 𝔻
z✝ u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 z : β„‚ hz : z ∈ 𝔻 ⊒ pre_Ο† (-u) (pre_Ο† u z) = z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
pre_Ο†_inv
[25, 1]
[28, 7]
field_simp [pre_Ο†, one_sub_mul_conj_ne_zero hu hz, one_sub_mul_conj_add_mul_conj_ne_zero hu]
z✝ u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 z : β„‚ hz : z ∈ 𝔻 ⊒ pre_Ο† (-u) (pre_Ο† u z) = z
z✝ u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 z : β„‚ hz : z ∈ 𝔻 ⊒ z - u + (1 - z * (starRingEnd β„‚) u) * u = z * (1 - z * (starRingEnd β„‚) u + (z - u) * (starRingEnd β„‚) u)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
pre_Ο†_inv
[25, 1]
[28, 7]
ring
z✝ u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 z : β„‚ hz : z ∈ 𝔻 ⊒ z - u + (1 - z * (starRingEnd β„‚) u) * u = z * (1 - z * (starRingEnd β„‚) u + (z - u) * (starRingEnd β„‚) u)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
Ο†_deriv
[50, 1]
[57, 24]
have h1 : DifferentiableAt β„‚ (fun z => z - u) z := by simp
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 ⊒ deriv (Ο† hu).to_fun z = (1 - u * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z ⊒ deriv (Ο† hu).to_fun z = (1 - u * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
Ο†_deriv
[50, 1]
[57, 24]
have h2 : DifferentiableAt β„‚ (fun z => 1 - z * conj u) z := by simp [DifferentiableAt.mul_const]
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z ⊒ deriv (Ο† hu).to_fun z = (1 - u * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z h2 : DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z ⊒ deriv (Ο† hu).to_fun z = (1 - u * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
Ο†_deriv
[50, 1]
[57, 24]
have h3 : 1 - z * conj u β‰  0 := one_sub_mul_conj_ne_zero hu hz
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z h2 : DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z ⊒ deriv (Ο† hu).to_fun z = (1 - u * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z h2 : DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z h3 : 1 - z * (starRingEnd β„‚) u β‰  0 ⊒ deriv (Ο† hu).to_fun z = (1 - u * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
Ο†_deriv
[50, 1]
[57, 24]
have h4 : deriv (fun z => z - u) z = 1 := by simp [deriv_sub_const]
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z h2 : DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z h3 : 1 - z * (starRingEnd β„‚) u β‰  0 ⊒ deriv (Ο† hu).to_fun z = (1 - u * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z h2 : DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z h3 : 1 - z * (starRingEnd β„‚) u β‰  0 h4 : deriv (fun z => z - u) z = 1 ⊒ deriv (Ο† hu).to_fun z = (1 - u * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
Ο†_deriv
[50, 1]
[57, 24]
have h5 : deriv (fun z => 1 - z * conj u) z = - conj u := by simp [deriv_const_sub]
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z h2 : DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z h3 : 1 - z * (starRingEnd β„‚) u β‰  0 h4 : deriv (fun z => z - u) z = 1 ⊒ deriv (Ο† hu).to_fun z = (1 - u * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z h2 : DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z h3 : 1 - z * (starRingEnd β„‚) u β‰  0 h4 : deriv (fun z => z - u) z = 1 h5 : deriv (fun z => 1 - z * (starRingEnd β„‚) u) z = -(starRingEnd β„‚) u ⊒ deriv (Ο† hu).to_fun z = (1 - u * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
Ο†_deriv
[50, 1]
[57, 24]
simp [Ο†, deriv_div h1 h2 h3, h4, h5]
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z h2 : DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z h3 : 1 - z * (starRingEnd β„‚) u β‰  0 h4 : deriv (fun z => z - u) z = 1 h5 : deriv (fun z => 1 - z * (starRingEnd β„‚) u) z = -(starRingEnd β„‚) u ⊒ deriv (Ο† hu).to_fun z = (1 - u * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z h2 : DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z h3 : 1 - z * (starRingEnd β„‚) u β‰  0 h4 : deriv (fun z => z - u) z = 1 h5 : deriv (fun z => 1 - z * (starRingEnd β„‚) u) z = -(starRingEnd β„‚) u ⊒ (1 - z * (starRingEnd β„‚) u + (z - u) * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2 = (1 - u * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
Ο†_deriv
[50, 1]
[57, 24]
field_simp [h3]
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z h2 : DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z h3 : 1 - z * (starRingEnd β„‚) u β‰  0 h4 : deriv (fun z => z - u) z = 1 h5 : deriv (fun z => 1 - z * (starRingEnd β„‚) u) z = -(starRingEnd β„‚) u ⊒ (1 - z * (starRingEnd β„‚) u + (z - u) * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2 = (1 - u * (starRingEnd β„‚) u) / (1 - z * (starRingEnd β„‚) u) ^ 2
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z h2 : DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z h3 : 1 - z * (starRingEnd β„‚) u β‰  0 h4 : deriv (fun z => z - u) z = 1 h5 : deriv (fun z => 1 - z * (starRingEnd β„‚) u) z = -(starRingEnd β„‚) u ⊒ 1 - z * (starRingEnd β„‚) u + (z - u) * (starRingEnd β„‚) u = 1 - u * (starRingEnd β„‚) u
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
Ο†_deriv
[50, 1]
[57, 24]
ring
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z h2 : DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z h3 : 1 - z * (starRingEnd β„‚) u β‰  0 h4 : deriv (fun z => z - u) z = 1 h5 : deriv (fun z => 1 - z * (starRingEnd β„‚) u) z = -(starRingEnd β„‚) u ⊒ 1 - z * (starRingEnd β„‚) u + (z - u) * (starRingEnd β„‚) u = 1 - u * (starRingEnd β„‚) u
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
Ο†_deriv
[50, 1]
[57, 24]
simp
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 ⊒ DifferentiableAt β„‚ (fun z => z - u) z
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
Ο†_deriv
[50, 1]
[57, 24]
simp [DifferentiableAt.mul_const]
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z ⊒ DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
Ο†_deriv
[50, 1]
[57, 24]
simp [deriv_sub_const]
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z h2 : DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z h3 : 1 - z * (starRingEnd β„‚) u β‰  0 ⊒ deriv (fun z => z - u) z = 1
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
Ο†_deriv
[50, 1]
[57, 24]
simp [deriv_const_sub]
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U hu : u ∈ 𝔻 hz : z ∈ 𝔻 h1 : DifferentiableAt β„‚ (fun z => z - u) z h2 : DifferentiableAt β„‚ (fun z => 1 - z * (starRingEnd β„‚) u) z h3 : 1 - z * (starRingEnd β„‚) u β‰  0 h4 : deriv (fun z => z - u) z = 1 ⊒ deriv (fun z => 1 - z * (starRingEnd β„‚) u) z = -(starRingEnd β„‚) u
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
set u := f 0
z u zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have u_in_𝔻 : u ∈ 𝔻 := f_img (mem_ball_self zero_lt_one)
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
let g := Ο† u_in_𝔻 ∘ f
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have g_diff : DifferentiableOn β„‚ g 𝔻 := (Ο† u_in_𝔻).is_diff.comp f_diff f_img
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have g_maps : MapsTo g 𝔻 𝔻 := (Ο† u_in_𝔻).maps_to.comp f_img
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have g_0_eq_0 : g 0 = 0 := by simp [g, Ο†]
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
by_cases h : β€–deriv g 0β€– = 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 ⊒ β€–deriv f 0β€– < 1
case pos z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 ⊒ β€–deriv f 0β€– < 1 case neg z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬β€–deriv g 0β€– = 1 ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
case pos => have g_lin : EqOn g (Ξ» (z : β„‚) => z β€’ deriv g 0) (ball 0 1) := by have h2 : MapsTo g (ball 0 1) (ball (g 0) 1) := by rwa [g_0_eq_0] have h1 : Set.EqOn g (fun z => g 0 + (z - 0) β€’ dslope g 0 0) (Metric.ball 0 1) := by apply affine_of_mapsTo_ball_of_exists_norm_dslope_eq_div g_diff h2 (mem_ball_self zero_lt_one) rwa [dslope_same, div_one] convert h1 using 1 ext1 z rw [g_0_eq_0, zero_add, sub_zero, dslope_same] have g'0_ne_0 : deriv g 0 β‰  0 := Ξ» h' => by simp [h'] at h have g_inj : InjOn g 𝔻 := Ξ» x hx y hy => by rw [g_lin hx, g_lin hy] simp [g'0_ne_0] cases f_noninj (injOn_of_injOn_comp g_inj)
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 ⊒ β€–deriv f 0β€– < 1
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
case neg => rw [norm_eq_abs] at h have g'0_le_1 := abs_deriv_le_one_of_mapsTo_ball g_diff g_maps g_0_eq_0 zero_lt_one have g'0_lt_1 : abs (deriv g 0) < 1 := Ne.lt_of_le h g'0_le_1 have g'0_eq_mul : deriv g 0 = deriv (Ο† u_in_𝔻) u * deriv f 0 := deriv.comp 0 ((Ο† u_in_𝔻).is_diff.differentiableAt (isOpen_ball.mem_nhds u_in_𝔻)) (f_diff.differentiableAt (ball_mem_nhds _ zero_lt_one)) have e1 : 1 - (normSq u : β„‚) β‰  0 := by simpa [normSq_eq_conj_mul_self, mul_comm] using one_sub_mul_conj_ne_zero u_in_𝔻 u_in_𝔻 have Ο†'u_u : deriv (Ο† u_in_𝔻) u = 1 / (1 - normSq u) := by set w := 1 - conj u * u with hw have : w β‰  0 := by simpa [normSq_eq_conj_mul_self, mul_comm u] using e1 rw [Ο†_deriv u_in_𝔻 u_in_𝔻, normSq_eq_conj_mul_self, mul_comm u, ← hw] field_simp; ring have e2 : 0 ≀ normSq u := normSq_nonneg _ have e3 : normSq u < 1 := by rw [normSq_eq_abs] have : abs u < 1 := mem_𝔻_iff.mp u_in_𝔻 simp only [sq_lt_one_iff_abs_lt_one, Complex.abs_abs, this] simp [normSq_eq_abs, ← mem_𝔻_iff] simp only [Ο†'u_u, one_div] at g'0_eq_mul rw [eq_comm, inv_mul_eq_iff_eq_mulβ‚€ e1] at g'0_eq_mul rw [← norm_eq_abs, g'0_eq_mul, norm_mul, mul_comm, ← one_mul (1 : ℝ)] refine mul_lt_mul g'0_lt_1 ?_ (norm_pos_iff.mpr e1) zero_le_one simp at e2 e3 ⊒ norm_cast rw [abs_sub_le_iff] refine ⟨?_, ?_⟩; repeat linarith
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬β€–deriv g 0β€– = 1 ⊒ β€–deriv f 0β€– < 1
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
simp [g, Ο†]
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 ⊒ g 0 = 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have g_lin : EqOn g (Ξ» (z : β„‚) => z β€’ deriv g 0) (ball 0 1) := by have h2 : MapsTo g (ball 0 1) (ball (g 0) 1) := by rwa [g_0_eq_0] have h1 : Set.EqOn g (fun z => g 0 + (z - 0) β€’ dslope g 0 0) (Metric.ball 0 1) := by apply affine_of_mapsTo_ball_of_exists_norm_dslope_eq_div g_diff h2 (mem_ball_self zero_lt_one) rwa [dslope_same, div_one] convert h1 using 1 ext1 z rw [g_0_eq_0, zero_add, sub_zero, dslope_same]
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 g_lin : EqOn g (fun z => z β€’ deriv g 0) (ball 0 1) ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have g'0_ne_0 : deriv g 0 β‰  0 := Ξ» h' => by simp [h'] at h
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 g_lin : EqOn g (fun z => z β€’ deriv g 0) (ball 0 1) ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 g_lin : EqOn g (fun z => z β€’ deriv g 0) (ball 0 1) g'0_ne_0 : deriv g 0 β‰  0 ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have g_inj : InjOn g 𝔻 := Ξ» x hx y hy => by rw [g_lin hx, g_lin hy] simp [g'0_ne_0]
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 g_lin : EqOn g (fun z => z β€’ deriv g 0) (ball 0 1) g'0_ne_0 : deriv g 0 β‰  0 ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 g_lin : EqOn g (fun z => z β€’ deriv g 0) (ball 0 1) g'0_ne_0 : deriv g 0 β‰  0 g_inj : InjOn g 𝔻 ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
cases f_noninj (injOn_of_injOn_comp g_inj)
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 g_lin : EqOn g (fun z => z β€’ deriv g 0) (ball 0 1) g'0_ne_0 : deriv g 0 β‰  0 g_inj : InjOn g 𝔻 ⊒ β€–deriv f 0β€– < 1
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have h2 : MapsTo g (ball 0 1) (ball (g 0) 1) := by rwa [g_0_eq_0]
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 ⊒ EqOn g (fun z => z β€’ deriv g 0) (ball 0 1)
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 h2 : MapsTo g (ball 0 1) (ball (g 0) 1) ⊒ EqOn g (fun z => z β€’ deriv g 0) (ball 0 1)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have h1 : Set.EqOn g (fun z => g 0 + (z - 0) β€’ dslope g 0 0) (Metric.ball 0 1) := by apply affine_of_mapsTo_ball_of_exists_norm_dslope_eq_div g_diff h2 (mem_ball_self zero_lt_one) rwa [dslope_same, div_one]
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 h2 : MapsTo g (ball 0 1) (ball (g 0) 1) ⊒ EqOn g (fun z => z β€’ deriv g 0) (ball 0 1)
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 h2 : MapsTo g (ball 0 1) (ball (g 0) 1) h1 : EqOn g (fun z => g 0 + (z - 0) β€’ dslope g 0 0) (ball 0 1) ⊒ EqOn g (fun z => z β€’ deriv g 0) (ball 0 1)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
convert h1 using 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 h2 : MapsTo g (ball 0 1) (ball (g 0) 1) h1 : EqOn g (fun z => g 0 + (z - 0) β€’ dslope g 0 0) (ball 0 1) ⊒ EqOn g (fun z => z β€’ deriv g 0) (ball 0 1)
case h.e'_4 z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 h2 : MapsTo g (ball 0 1) (ball (g 0) 1) h1 : EqOn g (fun z => g 0 + (z - 0) β€’ dslope g 0 0) (ball 0 1) ⊒ (fun z => z β€’ deriv g 0) = fun z => g 0 + (z - 0) β€’ dslope g 0 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
ext1 z
case h.e'_4 z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 h2 : MapsTo g (ball 0 1) (ball (g 0) 1) h1 : EqOn g (fun z => g 0 + (z - 0) β€’ dslope g 0 0) (ball 0 1) ⊒ (fun z => z β€’ deriv g 0) = fun z => g 0 + (z - 0) β€’ dslope g 0 0
case h.e'_4.h z✝ u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 h2 : MapsTo g (ball 0 1) (ball (g 0) 1) h1 : EqOn g (fun z => g 0 + (z - 0) β€’ dslope g 0 0) (ball 0 1) z : β„‚ ⊒ z β€’ deriv g 0 = g 0 + (z - 0) β€’ dslope g 0 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
rw [g_0_eq_0, zero_add, sub_zero, dslope_same]
case h.e'_4.h z✝ u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 h2 : MapsTo g (ball 0 1) (ball (g 0) 1) h1 : EqOn g (fun z => g 0 + (z - 0) β€’ dslope g 0 0) (ball 0 1) z : β„‚ ⊒ z β€’ deriv g 0 = g 0 + (z - 0) β€’ dslope g 0 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
rwa [g_0_eq_0]
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 ⊒ MapsTo g (ball 0 1) (ball (g 0) 1)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
apply affine_of_mapsTo_ball_of_exists_norm_dslope_eq_div g_diff h2 (mem_ball_self zero_lt_one)
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 h2 : MapsTo g (ball 0 1) (ball (g 0) 1) ⊒ EqOn g (fun z => g 0 + (z - 0) β€’ dslope g 0 0) (ball 0 1)
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 h2 : MapsTo g (ball 0 1) (ball (g 0) 1) ⊒ β€–dslope g 0 0β€– = 1 / 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
rwa [dslope_same, div_one]
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 h2 : MapsTo g (ball 0 1) (ball (g 0) 1) ⊒ β€–dslope g 0 0β€– = 1 / 1
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
simp [h'] at h
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 g_lin : EqOn g (fun z => z β€’ deriv g 0) (ball 0 1) h' : deriv g 0 = 0 ⊒ False
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
rw [g_lin hx, g_lin hy]
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 g_lin : EqOn g (fun z => z β€’ deriv g 0) (ball 0 1) g'0_ne_0 : deriv g 0 β‰  0 x : β„‚ hx : x ∈ 𝔻 y : β„‚ hy : y ∈ 𝔻 ⊒ g x = g y β†’ x = y
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 g_lin : EqOn g (fun z => z β€’ deriv g 0) (ball 0 1) g'0_ne_0 : deriv g 0 β‰  0 x : β„‚ hx : x ∈ 𝔻 y : β„‚ hy : y ∈ 𝔻 ⊒ (fun z => z β€’ deriv g 0) x = (fun z => z β€’ deriv g 0) y β†’ x = y
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
simp [g'0_ne_0]
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : β€–deriv g 0β€– = 1 g_lin : EqOn g (fun z => z β€’ deriv g 0) (ball 0 1) g'0_ne_0 : deriv g 0 β‰  0 x : β„‚ hx : x ∈ 𝔻 y : β„‚ hy : y ∈ 𝔻 ⊒ (fun z => z β€’ deriv g 0) x = (fun z => z β€’ deriv g 0) y β†’ x = y
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
rw [norm_eq_abs] at h
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬β€–deriv g 0β€– = 1 ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have g'0_le_1 := abs_deriv_le_one_of_mapsTo_ball g_diff g_maps g_0_eq_0 zero_lt_one
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have g'0_lt_1 : abs (deriv g 0) < 1 := Ne.lt_of_le h g'0_le_1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have g'0_eq_mul : deriv g 0 = deriv (Ο† u_in_𝔻) u * deriv f 0 := deriv.comp 0 ((Ο† u_in_𝔻).is_diff.differentiableAt (isOpen_ball.mem_nhds u_in_𝔻)) (f_diff.differentiableAt (ball_mem_nhds _ zero_lt_one))
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 g'0_eq_mul : deriv g 0 = deriv (Ο† u_in_𝔻).to_fun u * deriv f 0 ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have e1 : 1 - (normSq u : β„‚) β‰  0 := by simpa [normSq_eq_conj_mul_self, mul_comm] using one_sub_mul_conj_ne_zero u_in_𝔻 u_in_𝔻
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 g'0_eq_mul : deriv g 0 = deriv (Ο† u_in_𝔻).to_fun u * deriv f 0 ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 g'0_eq_mul : deriv g 0 = deriv (Ο† u_in_𝔻).to_fun u * deriv f 0 e1 : 1 - ↑(normSq u) β‰  0 ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have Ο†'u_u : deriv (Ο† u_in_𝔻) u = 1 / (1 - normSq u) := by set w := 1 - conj u * u with hw have : w β‰  0 := by simpa [normSq_eq_conj_mul_self, mul_comm u] using e1 rw [Ο†_deriv u_in_𝔻 u_in_𝔻, normSq_eq_conj_mul_self, mul_comm u, ← hw] field_simp; ring
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 g'0_eq_mul : deriv g 0 = deriv (Ο† u_in_𝔻).to_fun u * deriv f 0 e1 : 1 - ↑(normSq u) β‰  0 ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 g'0_eq_mul : deriv g 0 = deriv (Ο† u_in_𝔻).to_fun u * deriv f 0 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have e2 : 0 ≀ normSq u := normSq_nonneg _
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 g'0_eq_mul : deriv g 0 = deriv (Ο† u_in_𝔻).to_fun u * deriv f 0 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 g'0_eq_mul : deriv g 0 = deriv (Ο† u_in_𝔻).to_fun u * deriv f 0 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
have e3 : normSq u < 1 := by rw [normSq_eq_abs] have : abs u < 1 := mem_𝔻_iff.mp u_in_𝔻 simp only [sq_lt_one_iff_abs_lt_one, Complex.abs_abs, this]
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 g'0_eq_mul : deriv g 0 = deriv (Ο† u_in_𝔻).to_fun u * deriv f 0 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 g'0_eq_mul : deriv g 0 = deriv (Ο† u_in_𝔻).to_fun u * deriv f 0 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u e3 : normSq u < 1 ⊒ β€–deriv f 0β€– < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
simp [normSq_eq_abs, ← mem_𝔻_iff]
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 g'0_eq_mul : deriv g 0 = deriv (Ο† u_in_𝔻).to_fun u * deriv f 0 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u e3 : normSq u < 1 ⊒ β€–deriv f 0β€– < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 g'0_eq_mul : deriv g 0 = deriv (Ο† u_in_𝔻).to_fun u * deriv f 0 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u e3 : normSq u < 1 ⊒ Complex.abs (deriv f 0) < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
simp only [Ο†'u_u, one_div] at g'0_eq_mul
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 g'0_eq_mul : deriv g 0 = deriv (Ο† u_in_𝔻).to_fun u * deriv f 0 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u e3 : normSq u < 1 ⊒ Complex.abs (deriv f 0) < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u e3 : normSq u < 1 g'0_eq_mul : deriv g 0 = (1 - ↑(normSq u))⁻¹ * deriv f 0 ⊒ Complex.abs (deriv f 0) < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
rw [eq_comm, inv_mul_eq_iff_eq_mulβ‚€ e1] at g'0_eq_mul
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u e3 : normSq u < 1 g'0_eq_mul : deriv g 0 = (1 - ↑(normSq u))⁻¹ * deriv f 0 ⊒ Complex.abs (deriv f 0) < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u e3 : normSq u < 1 g'0_eq_mul : deriv f 0 = (1 - ↑(normSq u)) * deriv g 0 ⊒ Complex.abs (deriv f 0) < 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
rw [← norm_eq_abs, g'0_eq_mul, norm_mul, mul_comm, ← one_mul (1 : ℝ)]
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u e3 : normSq u < 1 g'0_eq_mul : deriv f 0 = (1 - ↑(normSq u)) * deriv g 0 ⊒ Complex.abs (deriv f 0) < 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u e3 : normSq u < 1 g'0_eq_mul : deriv f 0 = (1 - ↑(normSq u)) * deriv g 0 ⊒ β€–deriv g 0β€– * β€–1 - ↑(normSq u)β€– < 1 * 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
refine mul_lt_mul g'0_lt_1 ?_ (norm_pos_iff.mpr e1) zero_le_one
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u e3 : normSq u < 1 g'0_eq_mul : deriv f 0 = (1 - ↑(normSq u)) * deriv g 0 ⊒ β€–deriv g 0β€– * β€–1 - ↑(normSq u)β€– < 1 * 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u e3 : normSq u < 1 g'0_eq_mul : deriv f 0 = (1 - ↑(normSq u)) * deriv g 0 ⊒ β€–1 - ↑(normSq u)β€– ≀ 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/etape2.lean
non_injective_schwarz
[62, 1]
[112, 37]
simp at e2 e3 ⊒
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u e3 : normSq u < 1 g'0_eq_mul : deriv f 0 = (1 - ↑(normSq u)) * deriv g 0 ⊒ β€–1 - ↑(normSq u)β€– ≀ 1
z u✝ zβ‚€ : β„‚ U : Set β„‚ inst✝ : good_domain U f : β„‚ β†’ β„‚ f_diff : DifferentiableOn β„‚ f 𝔻 f_img : MapsTo f 𝔻 𝔻 f_noninj : Β¬InjOn f 𝔻 u : β„‚ := f 0 u_in_𝔻 : u ∈ 𝔻 g : β„‚ β†’ β„‚ := (Ο† u_in_𝔻).to_fun ∘ f g_diff : DifferentiableOn β„‚ g 𝔻 g_maps : MapsTo g 𝔻 𝔻 g_0_eq_0 : g 0 = 0 h : Β¬Complex.abs (deriv g 0) = 1 g'0_le_1 : Complex.abs (deriv g 0) ≀ 1 g'0_lt_1 : Complex.abs (deriv g 0) < 1 e1 : 1 - ↑(normSq u) β‰  0 Ο†'u_u : deriv (Ο† u_in_𝔻).to_fun u = 1 / (1 - ↑(normSq u)) e2 : 0 ≀ normSq u e3 : normSq u < 1 g'0_eq_mul : deriv f 0 = (1 - ↑(normSq u)) * deriv g 0 ⊒ Complex.abs (1 - ↑(normSq u)) ≀ 1