url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
HasFPowerSeriesAt.dslope_order_eventually_ne_zero
[66, 1]
[74, 24]
refine ContinuousAt.eventually_ne ?h (hp.iterate_dslope_fslope_ne_zero h)
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ n : ℕ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 ⊢ ∀ᶠ (z : ℂ) in 𝓝 z₀, (swap dslope z₀)^[FormalMultilinearSeries.order p] f z ≠ 0
case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ n : ℕ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 ⊢ ContinuousAt (fun z => (swap dslope z₀)^[FormalMultilinearSeries.order p] f z) z₀
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
HasFPowerSeriesAt.dslope_order_eventually_ne_zero
[66, 1]
[74, 24]
obtain ⟨r, hf⟩ := hp
case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ n : ℕ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 ⊢ ContinuousAt (fun z => (swap dslope z₀)^[FormalMultilinearSeries.order p] f z) z₀
case h.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ n : ℕ h : p ≠ 0 r : ENNReal hf : HasFPowerSeriesOnBall f p z₀ r ⊢ ContinuousAt (fun z => (swap dslope z₀)^[FormalMultilinearSeries.order p] f z) z₀
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
HasFPowerSeriesAt.dslope_order_eventually_ne_zero
[66, 1]
[74, 24]
have hr : 0 < r := hf.r_pos
case h.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ n : ℕ h : p ≠ 0 r : ENNReal hf : HasFPowerSeriesOnBall f p z₀ r ⊢ ContinuousAt (fun z => (swap dslope z₀)^[FormalMultilinearSeries.order p] f z) z₀
case h.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ n : ℕ h : p ≠ 0 r : ENNReal hf : HasFPowerSeriesOnBall f p z₀ r hr : 0 < r ⊢ ContinuousAt (fun z => (swap dslope z₀)^[FormalMultilinearSeries.order p] f z) z₀
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
HasFPowerSeriesAt.dslope_order_eventually_ne_zero
[66, 1]
[74, 24]
refine ContinuousOn.continuousAt ?h1 (EMetric.ball_mem_nhds _ hr)
case h.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ n : ℕ h : p ≠ 0 r : ENNReal hf : HasFPowerSeriesOnBall f p z₀ r hr : 0 < r ⊢ ContinuousAt (fun z => (swap dslope z₀)^[FormalMultilinearSeries.order p] f z) z₀
case h1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ n : ℕ h : p ≠ 0 r : ENNReal hf : HasFPowerSeriesOnBall f p z₀ r hr : 0 < r ⊢ ContinuousOn (fun z => (swap dslope z₀)^[FormalMultilinearSeries.order p] f z) (EMetric.ball z₀ r)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
HasFPowerSeriesAt.dslope_order_eventually_ne_zero
[66, 1]
[74, 24]
have hh : DifferentiableOn ℂ (iterate (swap dslope z₀) p.order f) (EMetric.ball z₀ r) := DifferentiableOn.iterate_dslope hf.differentiableOn EMetric.isOpen_ball (EMetric.mem_ball_self hr)
case h1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ n : ℕ h : p ≠ 0 r : ENNReal hf : HasFPowerSeriesOnBall f p z₀ r hr : 0 < r ⊢ ContinuousOn (fun z => (swap dslope z₀)^[FormalMultilinearSeries.order p] f z) (EMetric.ball z₀ r)
case h1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ n : ℕ h : p ≠ 0 r : ENNReal hf : HasFPowerSeriesOnBall f p z₀ r hr : 0 < r hh : DifferentiableOn ℂ ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) (EMetric.ball z₀ r) ⊢ ContinuousOn (fun z => (swap dslope z₀)^[FormalMultilinearSeries.order p] f z) (EMetric.ball z₀ r)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
HasFPowerSeriesAt.dslope_order_eventually_ne_zero
[66, 1]
[74, 24]
exact hh.continuousOn
case h1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ n : ℕ h : p ≠ 0 r : ENNReal hf : HasFPowerSeriesOnBall f p z₀ r hr : 0 < r hh : DifferentiableOn ℂ ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) (EMetric.ball z₀ r) ⊢ ContinuousOn (fun z => (swap dslope z₀)^[FormalMultilinearSeries.order p] f z) (EMetric.ball z₀ r)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
deriv_div_self_eq_div_add_deriv_div_self
[80, 1]
[92, 9]
have h1 : DifferentiableAt ℂ (λ y => (y - z₀) ^ n) z := ((differentiable_id'.sub_const z₀).pow n).differentiableAt
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ n * g w hz : z ≠ z₀ ⊢ deriv f z / f z = ↑n / (z - z₀) + deriv g z / g z
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ n * g w hz : z ≠ z₀ h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ n) z ⊢ deriv f z / f z = ↑n / (z - z₀) + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
deriv_div_self_eq_div_add_deriv_div_self
[80, 1]
[92, 9]
have h4 : DifferentiableAt ℂ (λ y => y - z₀) z := (differentiable_id'.sub_const z₀).differentiableAt
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ n * g w hz : z ≠ z₀ h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ n) z ⊢ deriv f z / f z = ↑n / (z - z₀) + deriv g z / g z
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ n * g w hz : z ≠ z₀ h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ n) z h4 : DifferentiableAt ℂ (fun y => y - z₀) z ⊢ deriv f z / f z = ↑n / (z - z₀) + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
deriv_div_self_eq_div_add_deriv_div_self
[80, 1]
[92, 9]
have h5 : deriv (fun y => y - z₀) z = 1 := by simp only [deriv_sub_const, deriv_id'']
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ n * g w hz : z ≠ z₀ h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ n) z h4 : DifferentiableAt ℂ (fun y => y - z₀) z ⊢ deriv f z / f z = ↑n / (z - z₀) + deriv g z / g z
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ n * g w hz : z ≠ z₀ h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ n) z h4 : DifferentiableAt ℂ (fun y => y - z₀) z h5 : deriv (fun y => y - z₀) z = 1 ⊢ deriv f z / f z = ↑n / (z - z₀) + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
deriv_div_self_eq_div_add_deriv_div_self
[80, 1]
[92, 9]
simp [hfg.deriv_eq, hfg.self_of_nhds, deriv_mul h1 hg, _root_.add_div, deriv_pow'' n h4, deriv_sub_const, h5]
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ n * g w hz : z ≠ z₀ h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ n) z h4 : DifferentiableAt ℂ (fun y => y - z₀) z h5 : deriv (fun y => y - z₀) z = 1 ⊢ deriv f z / f z = ↑n / (z - z₀) + deriv g z / g z
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ n * g w hz : z ≠ z₀ h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ n) z h4 : DifferentiableAt ℂ (fun y => y - z₀) z h5 : deriv (fun y => y - z₀) z = 1 ⊢ ↑n * (z - z₀) ^ (n - 1) * g z / ((z - z₀) ^ n * g z) + (z - z₀) ^ n * deriv g z / ((z - z₀) ^ n * g z) = ↑n / (z - z₀) + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
deriv_div_self_eq_div_add_deriv_div_self
[80, 1]
[92, 9]
cases n
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ n * g w hz : z ≠ z₀ h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ n) z h4 : DifferentiableAt ℂ (fun y => y - z₀) z h5 : deriv (fun y => y - z₀) z = 1 ⊢ ↑n * (z - z₀) ^ (n - 1) * g z / ((z - z₀) ^ n * g z) + (z - z₀) ^ n * deriv g z / ((z - z₀) ^ n * g z) = ↑n / (z - z₀) + deriv g z / g z
case zero f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hz : z ≠ z₀ h4 : DifferentiableAt ℂ (fun y => y - z₀) z h5 : deriv (fun y => y - z₀) z = 1 hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ zero * g w h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ zero) z ⊢ ↑zero * (z - z₀) ^ (zero - 1) * g z / ((z - z₀) ^ zero * g z) + (z - z₀) ^ zero * deriv g z / ((z - z₀) ^ zero * g z) = ↑zero / (z - z₀) + deriv g z / g z case succ f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hz : z ≠ z₀ h4 : DifferentiableAt ℂ (fun y => y - z₀) z h5 : deriv (fun y => y - z₀) z = 1 n✝ : ℕ hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ succ n✝ * g w h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ succ n✝) z ⊢ ↑(succ n✝) * (z - z₀) ^ (succ n✝ - 1) * g z / ((z - z₀) ^ succ n✝ * g z) + (z - z₀) ^ succ n✝ * deriv g z / ((z - z₀) ^ succ n✝ * g z) = ↑(succ n✝) / (z - z₀) + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
deriv_div_self_eq_div_add_deriv_div_self
[80, 1]
[92, 9]
case zero => simp
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hz : z ≠ z₀ h4 : DifferentiableAt ℂ (fun y => y - z₀) z h5 : deriv (fun y => y - z₀) z = 1 hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ zero * g w h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ zero) z ⊢ ↑zero * (z - z₀) ^ (zero - 1) * g z / ((z - z₀) ^ zero * g z) + (z - z₀) ^ zero * deriv g z / ((z - z₀) ^ zero * g z) = ↑zero / (z - z₀) + deriv g z / g z
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
deriv_div_self_eq_div_add_deriv_div_self
[80, 1]
[92, 9]
case succ n => field_simp [_root_.pow_succ, sub_ne_zero.mpr hz] ring
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hz : z ≠ z₀ h4 : DifferentiableAt ℂ (fun y => y - z₀) z h5 : deriv (fun y => y - z₀) z = 1 n : ℕ hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ succ n * g w h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ succ n) z ⊢ ↑(succ n) * (z - z₀) ^ (succ n - 1) * g z / ((z - z₀) ^ succ n * g z) + (z - z₀) ^ succ n * deriv g z / ((z - z₀) ^ succ n * g z) = ↑(succ n) / (z - z₀) + deriv g z / g z
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
deriv_div_self_eq_div_add_deriv_div_self
[80, 1]
[92, 9]
simp only [deriv_sub_const, deriv_id'']
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ n * g w hz : z ≠ z₀ h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ n) z h4 : DifferentiableAt ℂ (fun y => y - z₀) z ⊢ deriv (fun y => y - z₀) z = 1
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
deriv_div_self_eq_div_add_deriv_div_self
[80, 1]
[92, 9]
simp
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hz : z ≠ z₀ h4 : DifferentiableAt ℂ (fun y => y - z₀) z h5 : deriv (fun y => y - z₀) z = 1 hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ zero * g w h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ zero) z ⊢ ↑zero * (z - z₀) ^ (zero - 1) * g z / ((z - z₀) ^ zero * g z) + (z - z₀) ^ zero * deriv g z / ((z - z₀) ^ zero * g z) = ↑zero / (z - z₀) + deriv g z / g z
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
deriv_div_self_eq_div_add_deriv_div_self
[80, 1]
[92, 9]
field_simp [_root_.pow_succ, sub_ne_zero.mpr hz]
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hz : z ≠ z₀ h4 : DifferentiableAt ℂ (fun y => y - z₀) z h5 : deriv (fun y => y - z₀) z = 1 n : ℕ hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ succ n * g w h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ succ n) z ⊢ ↑(succ n) * (z - z₀) ^ (succ n - 1) * g z / ((z - z₀) ^ succ n * g z) + (z - z₀) ^ succ n * deriv g z / ((z - z₀) ^ succ n * g z) = ↑(succ n) / (z - z₀) + deriv g z / g z
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hz : z ≠ z₀ h4 : DifferentiableAt ℂ (fun y => y - z₀) z h5 : deriv (fun y => y - z₀) z = 1 n : ℕ hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ succ n * g w h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ succ n) z ⊢ ((↑n + 1) * (z - z₀) ^ n * g z + (z - z₀) * (z - z₀) ^ n * deriv g z) * ((z - z₀) * g z) = ((↑n + 1) * g z + deriv g z * (z - z₀)) * ((z - z₀) * (z - z₀) ^ n * g z)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
deriv_div_self_eq_div_add_deriv_div_self
[80, 1]
[92, 9]
ring
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ U : Set ℂ r : ℝ hg : DifferentiableAt ℂ g z hgz : g z ≠ 0 hz : z ≠ z₀ h4 : DifferentiableAt ℂ (fun y => y - z₀) z h5 : deriv (fun y => y - z₀) z = 1 n : ℕ hfg : f =ᶠ[𝓝 z] fun w => (w - z₀) ^ succ n * g w h1 : DifferentiableAt ℂ (fun y => (y - z₀) ^ succ n) z ⊢ ((↑n + 1) * (z - z₀) ^ n * g z + (z - z₀) * (z - z₀) ^ n * deriv g z) * ((z - z₀) * g z) = ((↑n + 1) * g z + deriv g z * (z - z₀)) * ((z - z₀) * (z - z₀) ^ n * g z)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
eventually_deriv_div_self_eq
[94, 1]
[102, 87]
intro g
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 ⊢ let g := (swap dslope z₀)^[FormalMultilinearSeries.order p] f; ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z
f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f ⊢ ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
eventually_deriv_div_self_eq
[94, 1]
[102, 87]
obtain ⟨r, h2⟩ := hp.has_fpower_series_iterate_dslope_fslope p.order
f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f ⊢ ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z
case intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f r : ENNReal h2 : HasFPowerSeriesOnBall ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) (FormalMultilinearSeries.fslope^[FormalMultilinearSeries.order p] p) z₀ r ⊢ ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
eventually_deriv_div_self_eq
[94, 1]
[102, 87]
have lh1 := h2.differentiableOn.eventually_differentiableAt (EMetric.ball_mem_nhds _ h2.r_pos)
case intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f r : ENNReal h2 : HasFPowerSeriesOnBall ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) (FormalMultilinearSeries.fslope^[FormalMultilinearSeries.order p] p) z₀ r ⊢ ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z
case intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f r : ENNReal h2 : HasFPowerSeriesOnBall ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) (FormalMultilinearSeries.fslope^[FormalMultilinearSeries.order p] p) z₀ r lh1 : ∀ᶠ (y : ℂ) in 𝓝 z₀, DifferentiableAt ℂ ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) y ⊢ ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
eventually_deriv_div_self_eq
[94, 1]
[102, 87]
have lh2 := hp.dslope_order_eventually_ne_zero h
case intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f r : ENNReal h2 : HasFPowerSeriesOnBall ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) (FormalMultilinearSeries.fslope^[FormalMultilinearSeries.order p] p) z₀ r lh1 : ∀ᶠ (y : ℂ) in 𝓝 z₀, DifferentiableAt ℂ ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) y ⊢ ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z
case intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f r : ENNReal h2 : HasFPowerSeriesOnBall ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) (FormalMultilinearSeries.fslope^[FormalMultilinearSeries.order p] p) z₀ r lh1 : ∀ᶠ (y : ℂ) in 𝓝 z₀, DifferentiableAt ℂ ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) y lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, (swap dslope z₀)^[FormalMultilinearSeries.order p] f z ≠ 0 ⊢ ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
eventually_deriv_div_self_eq
[94, 1]
[102, 87]
have lh3 := eventually_eventually_nhds.mpr hp.eq_pow_order_mul_iterate_dslope
case intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f r : ENNReal h2 : HasFPowerSeriesOnBall ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) (FormalMultilinearSeries.fslope^[FormalMultilinearSeries.order p] p) z₀ r lh1 : ∀ᶠ (y : ℂ) in 𝓝 z₀, DifferentiableAt ℂ ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) y lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, (swap dslope z₀)^[FormalMultilinearSeries.order p] f z ≠ 0 ⊢ ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z
case intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f r : ENNReal h2 : HasFPowerSeriesOnBall ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) (FormalMultilinearSeries.fslope^[FormalMultilinearSeries.order p] p) z₀ r lh1 : ∀ᶠ (y : ℂ) in 𝓝 z₀, DifferentiableAt ℂ ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) y lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, (swap dslope z₀)^[FormalMultilinearSeries.order p] f z ≠ 0 lh3 : ∀ᶠ (y : ℂ) in 𝓝 z₀, ∀ᶠ (x : ℂ) in 𝓝 y, f x = (x - z₀) ^ FormalMultilinearSeries.order p • (swap dslope z₀)^[FormalMultilinearSeries.order p] f x ⊢ ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
eventually_deriv_div_self_eq
[94, 1]
[102, 87]
filter_upwards [lh1, lh2, lh3] with z using deriv_div_self_eq_div_add_deriv_div_self
case intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f r : ENNReal h2 : HasFPowerSeriesOnBall ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) (FormalMultilinearSeries.fslope^[FormalMultilinearSeries.order p] p) z₀ r lh1 : ∀ᶠ (y : ℂ) in 𝓝 z₀, DifferentiableAt ℂ ((swap dslope z₀)^[FormalMultilinearSeries.order p] f) y lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, (swap dslope z₀)^[FormalMultilinearSeries.order p] f z ≠ 0 lh3 : ∀ᶠ (y : ℂ) in 𝓝 z₀, ∀ᶠ (x : ℂ) in 𝓝 y, f x = (x - z₀) ^ FormalMultilinearSeries.order p • (swap dslope z₀)^[FormalMultilinearSeries.order p] f x ⊢ ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_zero
[104, 1]
[116, 102]
simp [cindex, circle_integral_eq_zero h2 hr h3 (((f_hol.mono h1).deriv h2).div (f_hol.mono h1) h4)]
case intro.intro.intro.intro f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 V : Set ℂ h1 : V ⊆ U h2 : IsOpen V h3 : closedBall c r ⊆ V h4 : ∀ z ∈ V, f z ≠ 0 ⊢ cindex c r f = 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_zero
[104, 1]
[116, 102]
set s : Set ℂ := { z ∈ U | f z ≠ 0 }
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 ⊢ ∃ V ⊆ U, IsOpen V ∧ closedBall c r ⊆ V ∧ ∀ z ∈ V, f z ≠ 0
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 s : Set ℂ := {z | z ∈ U ∧ f z ≠ 0} ⊢ ∃ V ⊆ U, IsOpen V ∧ closedBall c r ⊆ V ∧ ∀ z ∈ V, f z ≠ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_zero
[104, 1]
[116, 102]
have e1 : IsCompact (closedBall c r) := isCompact_closedBall _ _
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 s : Set ℂ := {z | z ∈ U ∧ f z ≠ 0} ⊢ ∃ V ⊆ U, IsOpen V ∧ closedBall c r ⊆ V ∧ ∀ z ∈ V, f z ≠ 0
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 s : Set ℂ := {z | z ∈ U ∧ f z ≠ 0} e1 : IsCompact (closedBall c r) ⊢ ∃ V ⊆ U, IsOpen V ∧ closedBall c r ⊆ V ∧ ∀ z ∈ V, f z ≠ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_zero
[104, 1]
[116, 102]
have e2 : IsOpen s := f_hol.continuousOn.isOpen_inter_preimage hU isOpen_compl_singleton
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 s : Set ℂ := {z | z ∈ U ∧ f z ≠ 0} e1 : IsCompact (closedBall c r) ⊢ ∃ V ⊆ U, IsOpen V ∧ closedBall c r ⊆ V ∧ ∀ z ∈ V, f z ≠ 0
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 s : Set ℂ := {z | z ∈ U ∧ f z ≠ 0} e1 : IsCompact (closedBall c r) e2 : IsOpen s ⊢ ∃ V ⊆ U, IsOpen V ∧ closedBall c r ⊆ V ∧ ∀ z ∈ V, f z ≠ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_zero
[104, 1]
[116, 102]
have e3 : closedBall c r ⊆ s := λ z hz => ⟨hcr hz, hf z hz⟩
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 s : Set ℂ := {z | z ∈ U ∧ f z ≠ 0} e1 : IsCompact (closedBall c r) e2 : IsOpen s ⊢ ∃ V ⊆ U, IsOpen V ∧ closedBall c r ⊆ V ∧ ∀ z ∈ V, f z ≠ 0
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 s : Set ℂ := {z | z ∈ U ∧ f z ≠ 0} e1 : IsCompact (closedBall c r) e2 : IsOpen s e3 : closedBall c r ⊆ s ⊢ ∃ V ⊆ U, IsOpen V ∧ closedBall c r ⊆ V ∧ ∀ z ∈ V, f z ≠ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_zero
[104, 1]
[116, 102]
obtain ⟨δ, e4, e5⟩ := e1.exists_thickening_subset_open e2 e3
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 s : Set ℂ := {z | z ∈ U ∧ f z ≠ 0} e1 : IsCompact (closedBall c r) e2 : IsOpen s e3 : closedBall c r ⊆ s ⊢ ∃ V ⊆ U, IsOpen V ∧ closedBall c r ⊆ V ∧ ∀ z ∈ V, f z ≠ 0
case intro.intro f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 s : Set ℂ := {z | z ∈ U ∧ f z ≠ 0} e1 : IsCompact (closedBall c r) e2 : IsOpen s e3 : closedBall c r ⊆ s δ : ℝ e4 : 0 < δ e5 : thickening δ (closedBall c r) ⊆ s ⊢ ∃ V ⊆ U, IsOpen V ∧ closedBall c r ⊆ V ∧ ∀ z ∈ V, f z ≠ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_zero
[104, 1]
[116, 102]
refine ⟨thickening δ (closedBall c r), ?_, isOpen_thickening, self_subset_thickening e4 _, ?_⟩
case intro.intro f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 s : Set ℂ := {z | z ∈ U ∧ f z ≠ 0} e1 : IsCompact (closedBall c r) e2 : IsOpen s e3 : closedBall c r ⊆ s δ : ℝ e4 : 0 < δ e5 : thickening δ (closedBall c r) ⊆ s ⊢ ∃ V ⊆ U, IsOpen V ∧ closedBall c r ⊆ V ∧ ∀ z ∈ V, f z ≠ 0
case intro.intro.refine_1 f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 s : Set ℂ := {z | z ∈ U ∧ f z ≠ 0} e1 : IsCompact (closedBall c r) e2 : IsOpen s e3 : closedBall c r ⊆ s δ : ℝ e4 : 0 < δ e5 : thickening δ (closedBall c r) ⊆ s ⊢ thickening δ (closedBall c r) ⊆ U case intro.intro.refine_2 f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 s : Set ℂ := {z | z ∈ U ∧ f z ≠ 0} e1 : IsCompact (closedBall c r) e2 : IsOpen s e3 : closedBall c r ⊆ s δ : ℝ e4 : 0 < δ e5 : thickening δ (closedBall c r) ⊆ s ⊢ ∀ z ∈ thickening δ (closedBall c r), f z ≠ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_zero
[104, 1]
[116, 102]
exact (e5.trans $ Set.sep_subset _ _)
case intro.intro.refine_1 f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 s : Set ℂ := {z | z ∈ U ∧ f z ≠ 0} e1 : IsCompact (closedBall c r) e2 : IsOpen s e3 : closedBall c r ⊆ s δ : ℝ e4 : 0 < δ e5 : thickening δ (closedBall c r) ⊆ s ⊢ thickening δ (closedBall c r) ⊆ U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_zero
[104, 1]
[116, 102]
exact λ z hz => (e5 hz).2
case intro.intro.refine_2 f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r hcr : closedBall c r ⊆ U f_hol : DifferentiableOn ℂ f U hf : ∀ z ∈ closedBall c r, f z ≠ 0 s : Set ℂ := {z | z ∈ U ∧ f z ≠ 0} e1 : IsCompact (closedBall c r) e2 : IsOpen s e3 : closedBall c r ⊆ s δ : ℝ e4 : 0 < δ e5 : thickening δ (closedBall c r) ⊆ s ⊢ ∀ z ∈ thickening δ (closedBall c r), f z ≠ 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
have e2 : sphere z₀ r ⊆ U := sphere_subset_closedBall.trans h0
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z ⊢ cindex z₀ r f = c
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U ⊢ cindex z₀ r f = c
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
have e4 : (∮ z in C(z₀,r), deriv f z / f z) = ∮ z in C(z₀,r), c / (z - z₀) + deriv g z / g z := circleIntegral.integral_congr hr.le (λ z hz => h3 hz)
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U ⊢ cindex z₀ r f = c
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ cindex z₀ r f = c
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
have e6 : (∮ z in C(z₀, r), deriv g z / g z) = 0 := by have := cindex_eq_zero hU hr h0 h1 h2 simpa [cindex, Real.pi_ne_zero, I_ne_zero] using this
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z e5 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z) = (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) + ∮ (z : ℂ) in C(z₀, r), deriv g z / g z ⊢ cindex z₀ r f = c
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z e5 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z) = (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) + ∮ (z : ℂ) in C(z₀, r), deriv g z / g z e6 : (∮ (z : ℂ) in C(z₀, r), deriv g z / g z) = 0 ⊢ cindex z₀ r f = c
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
have e7 : (∮ z in C(z₀, r), c / (z - z₀)) = 2 * π * I * c := by simpa [div_eq_mul_inv, mul_comm _ _⁻¹] using circle_integral_sub_center_inv_smul hr
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z e5 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z) = (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) + ∮ (z : ℂ) in C(z₀, r), deriv g z / g z e6 : (∮ (z : ℂ) in C(z₀, r), deriv g z / g z) = 0 ⊢ cindex z₀ r f = c
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z e5 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z) = (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) + ∮ (z : ℂ) in C(z₀, r), deriv g z / g z e6 : (∮ (z : ℂ) in C(z₀, r), deriv g z / g z) = 0 e7 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) = 2 * ↑π * I * c ⊢ cindex z₀ r f = c
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
field_simp [cindex, e4, e5, e6, e7, Real.pi_ne_zero, I_ne_zero, two_ne_zero]
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z e5 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z) = (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) + ∮ (z : ℂ) in C(z₀, r), deriv g z / g z e6 : (∮ (z : ℂ) in C(z₀, r), deriv g z / g z) = 0 e7 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) = 2 * ↑π * I * c ⊢ cindex z₀ r f = c
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z e5 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z) = (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) + ∮ (z : ℂ) in C(z₀, r), deriv g z / g z e6 : (∮ (z : ℂ) in C(z₀, r), deriv g z / g z) = 0 e7 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) = 2 * ↑π * I * c ⊢ 2 * ↑π * I * c = c * (2 * ↑π * I)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
ring
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z e5 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z) = (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) + ∮ (z : ℂ) in C(z₀, r), deriv g z / g z e6 : (∮ (z : ℂ) in C(z₀, r), deriv g z / g z) = 0 e7 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) = 2 * ↑π * I * c ⊢ 2 * ↑π * I * c = c * (2 * ↑π * I)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
apply circleIntegral.integral_add
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ (∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z) = (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) + ∮ (z : ℂ) in C(z₀, r), deriv g z / g z
case hf f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ CircleIntegrable (fun z => c / (z - z₀)) z₀ r case hg f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ CircleIntegrable (fun z => deriv g z / g z) z₀ r
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
apply ContinuousOn.circleIntegrable hr.le
case hf f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ CircleIntegrable (fun z => c / (z - z₀)) z₀ r
case hf f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ ContinuousOn (fun z => c / (z - z₀)) (sphere z₀ r)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
apply ContinuousOn.div continuousOn_const (continuousOn_id.sub continuousOn_const)
case hf f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ ContinuousOn (fun z => c / (z - z₀)) (sphere z₀ r)
case hf f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ ∀ x ∈ sphere z₀ r, id x - z₀ ≠ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
exact λ z hz => sub_ne_zero.mpr (ne_of_mem_sphere hz hr.ne.symm)
case hf f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ ∀ x ∈ sphere z₀ r, id x - z₀ ≠ 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
apply ContinuousOn.circleIntegrable hr.le
case hg f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ CircleIntegrable (fun z => deriv g z / g z) z₀ r
case hg f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ ContinuousOn (fun z => deriv g z / g z) (sphere z₀ r)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
refine ContinuousOn.div ?_ (h1.continuousOn.mono e2) (λ z hz => h2 _ (sphere_subset_closedBall hz))
case hg f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ ContinuousOn (fun z => deriv g z / g z) (sphere z₀ r)
case hg f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ ContinuousOn (fun z => deriv g z) (sphere z₀ r)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
refine ContinuousOn.mono ?_ e2
case hg f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ ContinuousOn (fun z => deriv g z) (sphere z₀ r)
case hg f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ ContinuousOn (fun z => deriv g z) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
apply ContDiffOn.continuousOn_deriv_of_isOpen ?_ hU le_rfl
case hg f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ ContinuousOn (fun z => deriv g z) U
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ ContDiffOn ℂ 1 g U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
exact h1.contDiffOn hU
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z ⊢ ContDiffOn ℂ 1 g U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
have := cindex_eq_zero hU hr h0 h1 h2
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z e5 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z) = (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) + ∮ (z : ℂ) in C(z₀, r), deriv g z / g z ⊢ (∮ (z : ℂ) in C(z₀, r), deriv g z / g z) = 0
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z e5 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z) = (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) + ∮ (z : ℂ) in C(z₀, r), deriv g z / g z this : cindex z₀ r g = 0 ⊢ (∮ (z : ℂ) in C(z₀, r), deriv g z / g z) = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
simpa [cindex, Real.pi_ne_zero, I_ne_zero] using this
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z e5 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z) = (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) + ∮ (z : ℂ) in C(z₀, r), deriv g z / g z this : cindex z₀ r g = 0 ⊢ (∮ (z : ℂ) in C(z₀, r), deriv g z / g z) = 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eq_order_aux
[120, 1]
[144, 7]
simpa [div_eq_mul_inv, mul_comm _ _⁻¹] using circle_integral_sub_center_inv_smul hr
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hU : IsOpen U hr : 0 < r h0 : closedBall z₀ r ⊆ U h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall z₀ r, g z ≠ 0 h3 : ∀ {z : ℂ}, z ∈ sphere z₀ r → deriv f z / f z = c / (z - z₀) + deriv g z / g z e2 : sphere z₀ r ⊆ U e4 : (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = ∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z e5 : (∮ (z : ℂ) in C(z₀, r), c / (z - z₀) + deriv g z / g z) = (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) + ∮ (z : ℂ) in C(z₀, r), deriv g z / g z e6 : (∮ (z : ℂ) in C(z₀, r), deriv g z / g z) = 0 ⊢ (∮ (z : ℂ) in C(z₀, r), c / (z - z₀)) = 2 * ↑π * I * c
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order'
[146, 1]
[161, 41]
set g : ℂ → ℂ := iterate (swap dslope z₀) p.order f
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order'
[146, 1]
[161, 41]
have lh1 : ∀ᶠ z in 𝓝 z₀, g z ≠ 0 := hp.dslope_order_eventually_ne_zero h
f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f lh1 : ∀ᶠ (z : ℂ) in 𝓝 z₀, g z ≠ 0 ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order'
[146, 1]
[161, 41]
have lh2 : ∀ᶠ z in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = p.order / (z - z₀) + deriv g z / g z := eventually_deriv_div_self_eq hp h
f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f lh1 : ∀ᶠ (z : ℂ) in 𝓝 z₀, g z ≠ 0 ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f lh1 : ∀ᶠ (z : ℂ) in 𝓝 z₀, g z ≠ 0 lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order'
[146, 1]
[161, 41]
have lh3 : ∀ᶠ z in 𝓝 z₀, DifferentiableAt ℂ g z := (hp.has_fpower_series_iterate_dslope_fslope p.order).eventually_differentiable_at
f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f lh1 : ∀ᶠ (z : ℂ) in 𝓝 z₀, g z ≠ 0 lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f lh1 : ∀ᶠ (z : ℂ) in 𝓝 z₀, g z ≠ 0 lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z lh3 : ∀ᶠ (z : ℂ) in 𝓝 z₀, DifferentiableAt ℂ g z ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order'
[146, 1]
[161, 41]
obtain ⟨R, hR₁, hh⟩ := Metric.mem_nhds_iff.mp (lh1.and (lh2.and lh3))
f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f lh1 : ∀ᶠ (z : ℂ) in 𝓝 z₀, g z ≠ 0 lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z lh3 : ∀ᶠ (z : ℂ) in 𝓝 z₀, DifferentiableAt ℂ g z ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
case intro.intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f lh1 : ∀ᶠ (z : ℂ) in 𝓝 z₀, g z ≠ 0 lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z lh3 : ∀ᶠ (z : ℂ) in 𝓝 z₀, DifferentiableAt ℂ g z R : ℝ hR₁ : R > 0 hh : ball z₀ R ⊆ {x | (fun x => g x ≠ 0 ∧ (x ≠ z₀ → deriv f x / f x = ↑(FormalMultilinearSeries.order p) / (x - z₀) + deriv g x / g x) ∧ DifferentiableAt ℂ g x) x} ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order'
[146, 1]
[161, 41]
refine ⟨R, hR₁, λ r hr => ?_⟩
case intro.intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f lh1 : ∀ᶠ (z : ℂ) in 𝓝 z₀, g z ≠ 0 lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z lh3 : ∀ᶠ (z : ℂ) in 𝓝 z₀, DifferentiableAt ℂ g z R : ℝ hR₁ : R > 0 hh : ball z₀ R ⊆ {x | (fun x => g x ≠ 0 ∧ (x ≠ z₀ → deriv f x / f x = ↑(FormalMultilinearSeries.order p) / (x - z₀) + deriv g x / g x) ∧ DifferentiableAt ℂ g x) x} ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
case intro.intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f lh1 : ∀ᶠ (z : ℂ) in 𝓝 z₀, g z ≠ 0 lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z lh3 : ∀ᶠ (z : ℂ) in 𝓝 z₀, DifferentiableAt ℂ g z R : ℝ hR₁ : R > 0 hh : ball z₀ R ⊆ {x | (fun x => g x ≠ 0 ∧ (x ≠ z₀ → deriv f x / f x = ↑(FormalMultilinearSeries.order p) / (x - z₀) + deriv g x / g x) ∧ DifferentiableAt ℂ g x) x} r : ℝ hr : r ∈ Set.Ioo 0 R ⊢ cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order'
[146, 1]
[161, 41]
refine cindex_eq_order_aux isOpen_ball hr.1 (closedBall_subset_ball hr.2) (λ z hz => (hh hz).2.2.differentiableWithinAt) (λ z hz => (hh (closedBall_subset_ball hr.2 hz)).1) (λ hz => ?_)
case intro.intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f lh1 : ∀ᶠ (z : ℂ) in 𝓝 z₀, g z ≠ 0 lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z lh3 : ∀ᶠ (z : ℂ) in 𝓝 z₀, DifferentiableAt ℂ g z R : ℝ hR₁ : R > 0 hh : ball z₀ R ⊆ {x | (fun x => g x ≠ 0 ∧ (x ≠ z₀ → deriv f x / f x = ↑(FormalMultilinearSeries.order p) / (x - z₀) + deriv g x / g x) ∧ DifferentiableAt ℂ g x) x} r : ℝ hr : r ∈ Set.Ioo 0 R ⊢ cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
case intro.intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f lh1 : ∀ᶠ (z : ℂ) in 𝓝 z₀, g z ≠ 0 lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z lh3 : ∀ᶠ (z : ℂ) in 𝓝 z₀, DifferentiableAt ℂ g z R : ℝ hR₁ : R > 0 hh : ball z₀ R ⊆ {x | (fun x => g x ≠ 0 ∧ (x ≠ z₀ → deriv f x / f x = ↑(FormalMultilinearSeries.order p) / (x - z₀) + deriv g x / g x) ∧ DifferentiableAt ℂ g x) x} r : ℝ hr : r ∈ Set.Ioo 0 R z✝ : ℂ hz : z✝ ∈ sphere z₀ r ⊢ deriv f z✝ / f z✝ = ↑(FormalMultilinearSeries.order p) / (z✝ - z₀) + deriv g z✝ / g z✝
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order'
[146, 1]
[161, 41]
refine (hh (sphere_subset_closedBall.trans (closedBall_subset_ball hr.2) hz)).2.1 ?_
case intro.intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f lh1 : ∀ᶠ (z : ℂ) in 𝓝 z₀, g z ≠ 0 lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z lh3 : ∀ᶠ (z : ℂ) in 𝓝 z₀, DifferentiableAt ℂ g z R : ℝ hR₁ : R > 0 hh : ball z₀ R ⊆ {x | (fun x => g x ≠ 0 ∧ (x ≠ z₀ → deriv f x / f x = ↑(FormalMultilinearSeries.order p) / (x - z₀) + deriv g x / g x) ∧ DifferentiableAt ℂ g x) x} r : ℝ hr : r ∈ Set.Ioo 0 R z✝ : ℂ hz : z✝ ∈ sphere z₀ r ⊢ deriv f z✝ / f z✝ = ↑(FormalMultilinearSeries.order p) / (z✝ - z₀) + deriv g z✝ / g z✝
case intro.intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f lh1 : ∀ᶠ (z : ℂ) in 𝓝 z₀, g z ≠ 0 lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z lh3 : ∀ᶠ (z : ℂ) in 𝓝 z₀, DifferentiableAt ℂ g z R : ℝ hR₁ : R > 0 hh : ball z₀ R ⊆ {x | (fun x => g x ≠ 0 ∧ (x ≠ z₀ → deriv f x / f x = ↑(FormalMultilinearSeries.order p) / (x - z₀) + deriv g x / g x) ∧ DifferentiableAt ℂ g x) x} r : ℝ hr : r ∈ Set.Ioo 0 R z✝ : ℂ hz : z✝ ∈ sphere z₀ r ⊢ z✝ ≠ z₀
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order'
[146, 1]
[161, 41]
exact ne_of_mem_sphere hz hr.1.ne.symm
case intro.intro f g✝ : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ h : p ≠ 0 g : ℂ → ℂ := (swap dslope z₀)^[FormalMultilinearSeries.order p] f lh1 : ∀ᶠ (z : ℂ) in 𝓝 z₀, g z ≠ 0 lh2 : ∀ᶠ (z : ℂ) in 𝓝 z₀, z ≠ z₀ → deriv f z / f z = ↑(FormalMultilinearSeries.order p) / (z - z₀) + deriv g z / g z lh3 : ∀ᶠ (z : ℂ) in 𝓝 z₀, DifferentiableAt ℂ g z R : ℝ hR₁ : R > 0 hh : ball z₀ R ⊆ {x | (fun x => g x ≠ 0 ∧ (x ≠ z₀ → deriv f x / f x = ↑(FormalMultilinearSeries.order p) / (x - z₀) + deriv g x / g x) ∧ DifferentiableAt ℂ g x) x} r : ℝ hr : r ∈ Set.Ioo 0 R z✝ : ℂ hz : z✝ ∈ sphere z₀ r ⊢ z✝ ≠ z₀
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
by_cases h : p = 0
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
case pos f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p = 0 ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p) case neg f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : ¬p = 0 ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
case neg => exact exists_cindex_eq_order' hp h
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : ¬p = 0 ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
case pos => subst_vars obtain ⟨R, hR, hf⟩ := Metric.eventually_nhds_iff.mp (hp.locally_zero_iff.mpr rfl) refine ⟨R, hR, λ r hr => ?_⟩ simp [cindex, Real.pi_ne_zero, Complex.I_ne_zero] have : Set.EqOn (λ z => deriv f z / f z) 0 (sphere z₀ r) := by intro z hz simp right apply hf rw [hz.symm.symm] exact hr.2 rw [circleIntegral.integral_congr hr.1.le this] simp [circleIntegral]
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p = 0 ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
exact exists_cindex_eq_order' hp h
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : ¬p = 0 ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
subst_vars
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ h : p = 0 ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
f g : ℂ → ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f 0 z₀ ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order 0)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
obtain ⟨R, hR, hf⟩ := Metric.eventually_nhds_iff.mp (hp.locally_zero_iff.mpr rfl)
f g : ℂ → ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f 0 z₀ ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order 0)
case intro.intro f g : ℂ → ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order 0)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
refine ⟨R, hR, λ r hr => ?_⟩
case intro.intro f g : ℂ → ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 ⊢ ∃ R > 0, ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order 0)
case intro.intro f g : ℂ → ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R ⊢ cindex z₀ r f = ↑(FormalMultilinearSeries.order 0)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
simp [cindex, Real.pi_ne_zero, Complex.I_ne_zero]
case intro.intro f g : ℂ → ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R ⊢ cindex z₀ r f = ↑(FormalMultilinearSeries.order 0)
case intro.intro f g : ℂ → ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R ⊢ (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
have : Set.EqOn (λ z => deriv f z / f z) 0 (sphere z₀ r) := by intro z hz simp right apply hf rw [hz.symm.symm] exact hr.2
case intro.intro f g : ℂ → ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R ⊢ (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = 0
case intro.intro f g : ℂ → ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R this : Set.EqOn (fun z => deriv f z / f z) 0 (sphere z₀ r) ⊢ (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
rw [circleIntegral.integral_congr hr.1.le this]
case intro.intro f g : ℂ → ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R this : Set.EqOn (fun z => deriv f z / f z) 0 (sphere z₀ r) ⊢ (∮ (z : ℂ) in C(z₀, r), deriv f z / f z) = 0
case intro.intro f g : ℂ → ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R this : Set.EqOn (fun z => deriv f z / f z) 0 (sphere z₀ r) ⊢ (∮ (z : ℂ) in C(z₀, r), 0 z) = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
simp [circleIntegral]
case intro.intro f g : ℂ → ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R this : Set.EqOn (fun z => deriv f z / f z) 0 (sphere z₀ r) ⊢ (∮ (z : ℂ) in C(z₀, r), 0 z) = 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
intro z hz
f g : ℂ → ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R ⊢ Set.EqOn (fun z => deriv f z / f z) 0 (sphere z₀ r)
f g : ℂ → ℂ z✝ z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R z : ℂ hz : z ∈ sphere z₀ r ⊢ (fun z => deriv f z / f z) z = 0 z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
simp
f g : ℂ → ℂ z✝ z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R z : ℂ hz : z ∈ sphere z₀ r ⊢ (fun z => deriv f z / f z) z = 0 z
f g : ℂ → ℂ z✝ z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R z : ℂ hz : z ∈ sphere z₀ r ⊢ deriv f z = 0 ∨ f z = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
right
f g : ℂ → ℂ z✝ z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R z : ℂ hz : z ∈ sphere z₀ r ⊢ deriv f z = 0 ∨ f z = 0
case h f g : ℂ → ℂ z✝ z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R z : ℂ hz : z ∈ sphere z₀ r ⊢ f z = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
apply hf
case h f g : ℂ → ℂ z✝ z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R z : ℂ hz : z ∈ sphere z₀ r ⊢ f z = 0
case h.a f g : ℂ → ℂ z✝ z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R z : ℂ hz : z ∈ sphere z₀ r ⊢ dist z z₀ < R
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
rw [hz.symm.symm]
case h.a f g : ℂ → ℂ z✝ z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R z : ℂ hz : z ∈ sphere z₀ r ⊢ dist z z₀ < R
case h.a f g : ℂ → ℂ z✝ z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R z : ℂ hz : z ∈ sphere z₀ r ⊢ r < R
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
exists_cindex_eq_order
[163, 1]
[180, 26]
exact hr.2
case h.a f g : ℂ → ℂ z✝ z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f 0 z₀ R : ℝ hR : R > 0 hf : ∀ ⦃y : ℂ⦄, dist y z₀ < R → f y = 0 r : ℝ hr : r ∈ Set.Ioo 0 R z : ℂ hz : z ∈ sphere z₀ r ⊢ r < R
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eventually_eq_order
[182, 1]
[186, 76]
rw [eventually_nhdsWithin_iff, Metric.eventually_nhds_iff]
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ ⊢ ∀ᶠ (r : ℝ) in 𝓝[>] 0, cindex z₀ r f = ↑(FormalMultilinearSeries.order p)
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ ⊢ ∃ ε > 0, ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Set.Ioi 0 → cindex z₀ y f = ↑(FormalMultilinearSeries.order p)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eventually_eq_order
[182, 1]
[186, 76]
obtain ⟨R, hR, hf⟩ := exists_cindex_eq_order hp
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ ⊢ ∃ ε > 0, ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Set.Ioi 0 → cindex z₀ y f = ↑(FormalMultilinearSeries.order p)
case intro.intro f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ R : ℝ hR : R > 0 hf : ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p) ⊢ ∃ ε > 0, ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Set.Ioi 0 → cindex z₀ y f = ↑(FormalMultilinearSeries.order p)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eventually_eq_order
[182, 1]
[186, 76]
exact ⟨R, hR, λ r hr1 hr2 => hf r ⟨hr2, by simpa using lt_of_abs_lt hr1⟩⟩
case intro.intro f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r : ℝ hp : HasFPowerSeriesAt f p z₀ R : ℝ hR : R > 0 hf : ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p) ⊢ ∃ ε > 0, ∀ ⦃y : ℝ⦄, dist y 0 < ε → y ∈ Set.Ioi 0 → cindex z₀ y f = ↑(FormalMultilinearSeries.order p)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
cindex_eventually_eq_order
[182, 1]
[186, 76]
simpa using lt_of_abs_lt hr1
f g : ℂ → ℂ p : FormalMultilinearSeries ℂ ℂ ℂ z z₀ c : ℂ n : ℕ U : Set ℂ r✝ : ℝ hp : HasFPowerSeriesAt f p z₀ R : ℝ hR : R > 0 hf : ∀ r ∈ Set.Ioo 0 R, cindex z₀ r f = ↑(FormalMultilinearSeries.order p) r : ℝ hr1 : dist r 0 < R hr2 : r ∈ Set.Ioi 0 ⊢ r < R
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.deriv
[14, 1]
[30, 32]
rintro K ⟨hK1, hK2⟩
ι : Type u_1 U K : Set ℂ z : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U ⊢ UniformlyBoundedOn (_root_.deriv ∘ F) U
case intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K ⊢ ∃ Q, IsCompact Q ∧ ∀ (i : ι), MapsTo ((_root_.deriv ∘ F) i) K Q
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.deriv
[14, 1]
[30, 32]
obtain ⟨δ, hδ, h⟩ := hK2.exists_cthickening_subset_open hU hK1
case intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K ⊢ ∃ Q, IsCompact Q ∧ ∀ (i : ι), MapsTo ((_root_.deriv ∘ F) i) K Q
case intro.intro.intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U ⊢ ∃ Q, IsCompact Q ∧ ∀ (i : ι), MapsTo ((_root_.deriv ∘ F) i) K Q
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.deriv
[14, 1]
[30, 32]
have e1 : cthickening δ K ∈ compacts U := ⟨h, isCompact_of_isClosed_isBounded isClosed_cthickening hK2.isBounded.cthickening⟩
case intro.intro.intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U ⊢ ∃ Q, IsCompact Q ∧ ∀ (i : ι), MapsTo ((_root_.deriv ∘ F) i) K Q
case intro.intro.intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U ⊢ ∃ Q, IsCompact Q ∧ ∀ (i : ι), MapsTo ((_root_.deriv ∘ F) i) K Q
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.deriv
[14, 1]
[30, 32]
obtain ⟨Q, hQ1, hQ2⟩ := h1 _ e1
case intro.intro.intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U ⊢ ∃ Q, IsCompact Q ∧ ∀ (i : ι), MapsTo ((_root_.deriv ∘ F) i) K Q
case intro.intro.intro.intro.intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q ⊢ ∃ Q, IsCompact Q ∧ ∀ (i : ι), MapsTo ((_root_.deriv ∘ F) i) K Q
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.deriv
[14, 1]
[30, 32]
obtain ⟨M, hM⟩ := hQ1.isBounded.subset_closedBall 0
case intro.intro.intro.intro.intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q ⊢ ∃ Q, IsCompact Q ∧ ∀ (i : ι), MapsTo ((_root_.deriv ∘ F) i) K Q
case intro.intro.intro.intro.intro.intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M ⊢ ∃ Q, IsCompact Q ∧ ∀ (i : ι), MapsTo ((_root_.deriv ∘ F) i) K Q
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.deriv
[14, 1]
[30, 32]
refine ⟨closedBall 0 (M / δ), isCompact_closedBall _ _, ?_⟩
case intro.intro.intro.intro.intro.intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M ⊢ ∃ Q, IsCompact Q ∧ ∀ (i : ι), MapsTo ((_root_.deriv ∘ F) i) K Q
case intro.intro.intro.intro.intro.intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M ⊢ ∀ (i : ι), MapsTo ((_root_.deriv ∘ F) i) K (closedBall 0 (M / δ))
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.deriv
[14, 1]
[30, 32]
intro i x hx
case intro.intro.intro.intro.intro.intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M ⊢ ∀ (i : ι), MapsTo ((_root_.deriv ∘ F) i) K (closedBall 0 (M / δ))
case intro.intro.intro.intro.intro.intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M i : ι x : ℂ hx : x ∈ K ⊢ (_root_.deriv ∘ F) i x ∈ closedBall 0 (M / δ)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.deriv
[14, 1]
[30, 32]
simp only [mem_closedBall_zero_iff]
case intro.intro.intro.intro.intro.intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M i : ι x : ℂ hx : x ∈ K ⊢ (_root_.deriv ∘ F) i x ∈ closedBall 0 (M / δ)
case intro.intro.intro.intro.intro.intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M i : ι x : ℂ hx : x ∈ K ⊢ ‖(_root_.deriv ∘ F) i x‖ ≤ M / δ
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.deriv
[14, 1]
[30, 32]
refine norm_deriv_le_aux hδ ?_ ?_
case intro.intro.intro.intro.intro.intro ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M i : ι x : ℂ hx : x ∈ K ⊢ ‖(_root_.deriv ∘ F) i x‖ ≤ M / δ
case intro.intro.intro.intro.intro.intro.refine_1 ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M i : ι x : ℂ hx : x ∈ K ⊢ DiffContOnCl ℂ (F i) (ball x δ) case intro.intro.intro.intro.intro.intro.refine_2 ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M i : ι x : ℂ hx : x ∈ K ⊢ ∀ z ∈ sphere x δ, ‖F i z‖ ≤ M
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.deriv
[14, 1]
[30, 32]
exact (h2 i).diffContOnCl_ball ((closedBall_subset_cthickening hx δ).trans h)
case intro.intro.intro.intro.intro.intro.refine_1 ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M i : ι x : ℂ hx : x ∈ K ⊢ DiffContOnCl ℂ (F i) (ball x δ)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.deriv
[14, 1]
[30, 32]
rintro z hz
case intro.intro.intro.intro.intro.intro.refine_2 ι : Type u_1 U K✝ : Set ℂ z : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M i : ι x : ℂ hx : x ∈ K ⊢ ∀ z ∈ sphere x δ, ‖F i z‖ ≤ M
case intro.intro.intro.intro.intro.intro.refine_2 ι : Type u_1 U K✝ : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M i : ι x : ℂ hx : x ∈ K z : ℂ hz : z ∈ sphere x δ ⊢ ‖F i z‖ ≤ M
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.deriv
[14, 1]
[30, 32]
have : z ∈ cthickening δ K := sphere_subset_closedBall.trans (closedBall_subset_cthickening hx δ) hz
case intro.intro.intro.intro.intro.intro.refine_2 ι : Type u_1 U K✝ : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M i : ι x : ℂ hx : x ∈ K z : ℂ hz : z ∈ sphere x δ ⊢ ‖F i z‖ ≤ M
case intro.intro.intro.intro.intro.intro.refine_2 ι : Type u_1 U K✝ : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M i : ι x : ℂ hx : x ∈ K z : ℂ hz : z ∈ sphere x δ this : z ∈ cthickening δ K ⊢ ‖F i z‖ ≤ M
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.deriv
[14, 1]
[30, 32]
simpa using hM (hQ2 i this)
case intro.intro.intro.intro.intro.intro.refine_2 ι : Type u_1 U K✝ : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q✝ : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U K : Set ℂ hK1 : K ⊆ U hK2 : IsCompact K δ : ℝ hδ : 0 < δ h : cthickening δ K ⊆ U e1 : cthickening δ K ∈ compacts U Q : Set ℂ hQ1 : IsCompact Q hQ2 : ∀ (i : ι), MapsTo (F i) (cthickening δ K) Q M : ℝ hM : Q ⊆ closedBall 0 M i : ι x : ℂ hx : x ∈ K z : ℂ hz : z ∈ sphere x δ this : z ∈ cthickening δ K ⊢ ‖F i z‖ ≤ M
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
apply (equicontinuous_restrict_iff _).mp
ι : Type u_1 U K : Set ℂ z : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U hK : K ∈ compacts U ⊢ EquicontinuousOn F K
ι : Type u_1 U K : Set ℂ z : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U hK : K ∈ compacts U ⊢ Equicontinuous (restrict K ∘ F)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
rintro ⟨z, hz⟩
ι : Type u_1 U K : Set ℂ z : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U hK : K ∈ compacts U ⊢ Equicontinuous (restrict K ∘ F)
case mk ι : Type u_1 U K : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U hK : K ∈ compacts U z : ℂ hz : z ∈ K ⊢ EquicontinuousAt (restrict K ∘ F) { val := z, property := hz }
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
obtain ⟨δ, hδ, h⟩ := nhds_basis_closedBall.mem_iff.1 (hU.mem_nhds (hK.1 hz))
case mk ι : Type u_1 U K : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U hK : K ∈ compacts U z : ℂ hz : z ∈ K ⊢ EquicontinuousAt (restrict K ∘ F) { val := z, property := hz }
case mk.intro.intro ι : Type u_1 U K : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U hK : K ∈ compacts U z : ℂ hz : z ∈ K δ : ℝ hδ : 0 < δ h : closedBall z δ ⊆ U ⊢ EquicontinuousAt (restrict K ∘ F) { val := z, property := hz }
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
have : ∃ M > 0, ∀ i, MapsTo (_root_.deriv (F i)) (closedBall z δ) (closedBall 0 M) := by obtain ⟨Q, hQ1, hQ2⟩ := h1.deriv hU h2 (closedBall z δ) ⟨h, isCompact_closedBall _ _⟩ obtain ⟨M, hM⟩ := hQ1.isBounded.subset_closedBall 0 refine ⟨M ⊔ 1, by simp, fun i => ?_⟩ exact ((hQ2 i).mono_right hM).mono_right <| closedBall_subset_closedBall le_sup_left
case mk.intro.intro ι : Type u_1 U K : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U hK : K ∈ compacts U z : ℂ hz : z ∈ K δ : ℝ hδ : 0 < δ h : closedBall z δ ⊆ U ⊢ EquicontinuousAt (restrict K ∘ F) { val := z, property := hz }
case mk.intro.intro ι : Type u_1 U K : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U hK : K ∈ compacts U z : ℂ hz : z ∈ K δ : ℝ hδ : 0 < δ h : closedBall z δ ⊆ U this : ∃ M > 0, ∀ (i : ι), MapsTo (_root_.deriv (F i)) (closedBall z δ) (closedBall 0 M) ⊢ EquicontinuousAt (restrict K ∘ F) { val := z, property := hz }
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
obtain ⟨M, hMp, hM⟩ := this
case mk.intro.intro ι : Type u_1 U K : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U hK : K ∈ compacts U z : ℂ hz : z ∈ K δ : ℝ hδ : 0 < δ h : closedBall z δ ⊆ U this : ∃ M > 0, ∀ (i : ι), MapsTo (_root_.deriv (F i)) (closedBall z δ) (closedBall 0 M) ⊢ EquicontinuousAt (restrict K ∘ F) { val := z, property := hz }
case mk.intro.intro.intro.intro ι : Type u_1 U K : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U hK : K ∈ compacts U z : ℂ hz : z ∈ K δ : ℝ hδ : 0 < δ h : closedBall z δ ⊆ U M : ℝ hMp : M > 0 hM : ∀ (i : ι), MapsTo (_root_.deriv (F i)) (closedBall z δ) (closedBall 0 M) ⊢ EquicontinuousAt (restrict K ∘ F) { val := z, property := hz }
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
rw [equicontinuousAt_iff]
case mk.intro.intro.intro.intro ι : Type u_1 U K : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U hK : K ∈ compacts U z : ℂ hz : z ∈ K δ : ℝ hδ : 0 < δ h : closedBall z δ ⊆ U M : ℝ hMp : M > 0 hM : ∀ (i : ι), MapsTo (_root_.deriv (F i)) (closedBall z δ) (closedBall 0 M) ⊢ EquicontinuousAt (restrict K ∘ F) { val := z, property := hz }
case mk.intro.intro.intro.intro ι : Type u_1 U K : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U hK : K ∈ compacts U z : ℂ hz : z ∈ K δ : ℝ hδ : 0 < δ h : closedBall z δ ⊆ U M : ℝ hMp : M > 0 hM : ∀ (i : ι), MapsTo (_root_.deriv (F i)) (closedBall z δ) (closedBall 0 M) ⊢ ∀ ε > 0, ∃ δ > 0, ∀ (x : ↑K), dist x { val := z, property := hz } < δ → ∀ (i : ι), dist ((restrict K ∘ F) i { val := z, property := hz }) ((restrict K ∘ F) i x) < ε
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Montel.lean
UniformlyBoundedOn.equicontinuousOn
[32, 1]
[58, 40]
rintro ε hε
case mk.intro.intro.intro.intro ι : Type u_1 U K : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U hK : K ∈ compacts U z : ℂ hz : z ∈ K δ : ℝ hδ : 0 < δ h : closedBall z δ ⊆ U M : ℝ hMp : M > 0 hM : ∀ (i : ι), MapsTo (_root_.deriv (F i)) (closedBall z δ) (closedBall 0 M) ⊢ ∀ ε > 0, ∃ δ > 0, ∀ (x : ↑K), dist x { val := z, property := hz } < δ → ∀ (i : ι), dist ((restrict K ∘ F) i { val := z, property := hz }) ((restrict K ∘ F) i x) < ε
case mk.intro.intro.intro.intro ι : Type u_1 U K : Set ℂ z✝ : ℂ F : ι → 𝓒 U Q : Set ℂ → Set ℂ h1 : UniformlyBoundedOn F U hU : IsOpen U h2 : ∀ (i : ι), DifferentiableOn ℂ (F i) U hK : K ∈ compacts U z : ℂ hz : z ∈ K δ : ℝ hδ : 0 < δ h : closedBall z δ ⊆ U M : ℝ hMp : M > 0 hM : ∀ (i : ι), MapsTo (_root_.deriv (F i)) (closedBall z δ) (closedBall 0 M) ε : ℝ hε : ε > 0 ⊢ ∃ δ > 0, ∀ (x : ↑K), dist x { val := z, property := hz } < δ → ∀ (i : ι), dist ((restrict K ∘ F) i { val := z, property := hz }) ((restrict K ∘ F) i x) < ε