url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz_inj
[384, 1]
[420, 18]
rw [hGxn, hGyn]
case h.intro.intro.intro.intro.intro ι : Type u_1 F : ι → ℂ → ℂ f : ℂ → ℂ z₀ : ℂ p : Filter ι r : ℝ U : Set ℂ inst✝ : NeBot p hU : IsOpen U hU' : IsPreconnected U hF : ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (F n) U hf : TendstoLocallyUniformlyOn F f p U h : ¬InjOn f U x : ℂ hx : x ∈ U y : ℂ hy : y ∈ U hfxy : f x = f y hxy : x ≠ y g : ℂ → ℂ := fun z => f z - f x G : ι → ℂ → ℂ := fun n z => F n z - f x hG : ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (G n) U hg : TendstoLocallyUniformlyOn G g p U hgx : g x = 0 hgy : g y = 0 hi : ¬∀ z ∈ U, g z = 0 h1 : DifferentiableOn ℂ g U h2 : ∀ z₀ ∈ U, ∀ᶠ (z : ℂ) in 𝓝[≠] z₀, g z ≠ 0 u v : Set ℂ hu : u ∈ 𝓝 x hv : v ∈ 𝓝 y huv : Disjoint u v h3 : ∀ᶠ (n : ι) in p, ∃ z ∈ u ∩ U, G n z = 0 h4 : ∀ᶠ (n : ι) in p, ∃ z ∈ v ∩ U, G n z = 0 n : ι xn : ℂ hxn : xn ∈ u ∩ U hGxn : F n xn = f x yn : ℂ hyn : yn ∈ v ∩ U hGyn : F n yn = f x ⊢ F n xn = F n yn
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz_inj
[384, 1]
[420, 18]
simp [InjOn] at h
ι : Type u_1 F : ι → ℂ → ℂ f : ℂ → ℂ z₀ : ℂ p : Filter ι r : ℝ U : Set ℂ inst✝ : NeBot p hU : IsOpen U hU' : IsPreconnected U hF : ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (F n) U hf : TendstoLocallyUniformlyOn F f p U hi : ∃ᶠ (n : ι) in p, InjOn (F n) U h : ¬InjOn f U ⊢ ∃ x ∈ U, ∃ y ∈ U, f x = f y ∧ x ≠ y
ι : Type u_1 F : ι → ℂ → ℂ f : ℂ → ℂ z₀ : ℂ p : Filter ι r : ℝ U : Set ℂ inst✝ : NeBot p hU : IsOpen U hU' : IsPreconnected U hF : ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (F n) U hf : TendstoLocallyUniformlyOn F f p U hi : ∃ᶠ (n : ι) in p, InjOn (F n) U h : ∃ x ∈ U, ∃ x_1, f x = f x_1 ∧ x_1 ∈ U ∧ ¬x = x_1 ⊢ ∃ x ∈ U, ∃ y ∈ U, f x = f y ∧ x ≠ y
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz_inj
[384, 1]
[420, 18]
obtain ⟨x, h1, y, h2, h3, h4⟩ := h
ι : Type u_1 F : ι → ℂ → ℂ f : ℂ → ℂ z₀ : ℂ p : Filter ι r : ℝ U : Set ℂ inst✝ : NeBot p hU : IsOpen U hU' : IsPreconnected U hF : ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (F n) U hf : TendstoLocallyUniformlyOn F f p U hi : ∃ᶠ (n : ι) in p, InjOn (F n) U h : ∃ x ∈ U, ∃ x_1, f x = f x_1 ∧ x_1 ∈ U ∧ ¬x = x_1 ⊢ ∃ x ∈ U, ∃ y ∈ U, f x = f y ∧ x ≠ y
case intro.intro.intro.intro.intro ι : Type u_1 F : ι → ℂ → ℂ f : ℂ → ℂ z₀ : ℂ p : Filter ι r : ℝ U : Set ℂ inst✝ : NeBot p hU : IsOpen U hU' : IsPreconnected U hF : ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (F n) U hf : TendstoLocallyUniformlyOn F f p U hi : ∃ᶠ (n : ι) in p, InjOn (F n) U x : ℂ h1 : x ∈ U y : ℂ h2 : f x = f y h3 : y ∈ U h4 : ¬x = y ⊢ ∃ x ∈ U, ∃ y ∈ U, f x = f y ∧ x ≠ y
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz_inj
[384, 1]
[420, 18]
refine ⟨x, h1, y, h3, h2, h4⟩
case intro.intro.intro.intro.intro ι : Type u_1 F : ι → ℂ → ℂ f : ℂ → ℂ z₀ : ℂ p : Filter ι r : ℝ U : Set ℂ inst✝ : NeBot p hU : IsOpen U hU' : IsPreconnected U hF : ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (F n) U hf : TendstoLocallyUniformlyOn F f p U hi : ∃ᶠ (n : ι) in p, InjOn (F n) U x : ℂ h1 : x ∈ U y : ℂ h2 : f x = f y h3 : y ∈ U h4 : ¬x = y ⊢ ∃ x ∈ U, ∃ y ∈ U, f x = f y ∧ x ≠ y
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz_inj
[384, 1]
[420, 18]
filter_upwards [hF] with n hF using hF.sub (differentiableOn_const _)
ι : Type u_1 F : ι → ℂ → ℂ f : ℂ → ℂ z₀ : ℂ p : Filter ι r : ℝ U : Set ℂ inst✝ : NeBot p hU : IsOpen U hU' : IsPreconnected U hF : ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (F n) U hf : TendstoLocallyUniformlyOn F f p U hi : ∃ᶠ (n : ι) in p, InjOn (F n) U h : ¬InjOn f U x : ℂ hx : x ∈ U y : ℂ hy : y ∈ U hfxy : f x = f y hxy : x ≠ y g : ℂ → ℂ := fun z => f z - f x G : ι → ℂ → ℂ := fun n z => F n z - f x ⊢ ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (G n) U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz_inj
[384, 1]
[420, 18]
simp [g, hfxy]
ι : Type u_1 F : ι → ℂ → ℂ f : ℂ → ℂ z₀ : ℂ p : Filter ι r : ℝ U : Set ℂ inst✝ : NeBot p hU : IsOpen U hU' : IsPreconnected U hF : ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (F n) U hf : TendstoLocallyUniformlyOn F f p U hi : ∃ᶠ (n : ι) in p, InjOn (F n) U h : ¬InjOn f U x : ℂ hx : x ∈ U y : ℂ hy : y ∈ U hfxy : f x = f y hxy : x ≠ y g : ℂ → ℂ := fun z => f z - f x G : ι → ℂ → ℂ := fun n z => F n z - f x hG : ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (G n) U hg : TendstoLocallyUniformlyOn G g p U hgx : g x = 0 ⊢ g y = 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz_inj
[384, 1]
[420, 18]
exact ⟨f x, by simpa [sub_eq_zero, g] using this⟩
ι : Type u_1 F : ι → ℂ → ℂ f : ℂ → ℂ z₀ : ℂ p : Filter ι r : ℝ U : Set ℂ inst✝ : NeBot p hU : IsOpen U hU' : IsPreconnected U hF : ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (F n) U hf : TendstoLocallyUniformlyOn F f p U hi : ∃ᶠ (n : ι) in p, InjOn (F n) U h : ¬InjOn f U x : ℂ hx : x ∈ U y : ℂ hy : y ∈ U hfxy : f x = f y hxy : x ≠ y g : ℂ → ℂ := fun z => f z - f x G : ι → ℂ → ℂ := fun n z => F n z - f x hG : ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (G n) U hg : TendstoLocallyUniformlyOn G g p U hgx : g x = 0 hgy : g y = 0 this : ∀ z ∈ U, g z = 0 ⊢ ∃ w, ∀ z ∈ U, f z = w
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz_inj
[384, 1]
[420, 18]
simpa [sub_eq_zero, g] using this
ι : Type u_1 F : ι → ℂ → ℂ f : ℂ → ℂ z₀ : ℂ p : Filter ι r : ℝ U : Set ℂ inst✝ : NeBot p hU : IsOpen U hU' : IsPreconnected U hF : ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (F n) U hf : TendstoLocallyUniformlyOn F f p U hi : ∃ᶠ (n : ι) in p, InjOn (F n) U h : ¬InjOn f U x : ℂ hx : x ∈ U y : ℂ hy : y ∈ U hfxy : f x = f y hxy : x ≠ y g : ℂ → ℂ := fun z => f z - f x G : ι → ℂ → ℂ := fun n z => F n z - f x hG : ∀ᶠ (n : ι) in p, DifferentiableOn ℂ (G n) U hg : TendstoLocallyUniformlyOn G g p U hgx : g x = 0 hgy : g y = 0 this : ∀ z ∈ U, g z = 0 ⊢ ∀ z ∈ U, f z = f x
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
have hU : IsOpen U := good_domain.is_open
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U ⊢ IsCompact (𝓙 U)
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U ⊢ IsCompact (𝓙 U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
refine (isCompact_𝓜 hU).of_isClosed_subset ?_ (λ _ hf => hf.1)
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U ⊢ IsCompact (𝓙 U)
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U ⊢ IsClosed (𝓙 U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
refine isClosed_iff_clusterPt.2 (λ f hf => ?_)
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U ⊢ IsClosed (𝓙 U)
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) ⊢ f ∈ 𝓙 U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
set l := 𝓝 f ⊓ 𝓟 (𝓙 U)
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) ⊢ f ∈ 𝓙 U
ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) ⊢ f ∈ 𝓙 U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
haveI : l.NeBot := hf
ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) ⊢ f ∈ 𝓙 U
ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l ⊢ f ∈ 𝓙 U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
obtain ⟨h1, h2⟩ := tendsto_inf.1 (@tendsto_id _ l)
ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l ⊢ f ∈ 𝓙 U
case intro ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : Tendsto id l (𝓟 (𝓙 U)) ⊢ f ∈ 𝓙 U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
rw [tendsto_principal] at h2
case intro ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : Tendsto id l (𝓟 (𝓙 U)) ⊢ f ∈ 𝓙 U
case intro ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U ⊢ f ∈ 𝓙 U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
refine ⟨(IsClosed_𝓜 hU).mem_of_tendsto h1 (h2.mono (λ _ h => h.1)), ?_⟩
case intro ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U ⊢ f ∈ 𝓙 U
case intro ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U ⊢ InjOn f U ∨ ∃ w, EqOn f (fun x => w) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
by_cases h : ∃ᶠ f in l, InjOn f U
case intro ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U ⊢ InjOn f U ∨ ∃ w, EqOn f (fun x => w) U
case pos ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ∃ᶠ (f : ℂ → ℂ) in l, InjOn f U ⊢ InjOn f U ∨ ∃ w, EqOn f (fun x => w) U case neg ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U ⊢ InjOn f U ∨ ∃ w, EqOn f (fun x => w) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
case pos => refine (hurwitz_inj hU good_domain.is_preconnected ?_ ((tendsto_𝓒_iff hU).1 h1) h).symm filter_upwards [h2] with g hg using hg.1.1
ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ∃ᶠ (f : ℂ → ℂ) in l, InjOn f U ⊢ InjOn f U ∨ ∃ w, EqOn f (fun x => w) U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
case neg => obtain ⟨z₀, hz₀⟩ : U.Nonempty := good_domain.is_nonempty have : ∀ z ∈ U, Tendsto (eval z) l (𝓝 (f z)) := by refine λ z hz => (map_mono inf_le_left).trans ?_ exact ((UniformOnFun.uniformContinuous_eval_of_mem ℂ (compacts U) (mem_singleton z) ⟨singleton_subset_iff.2 hz, isCompact_singleton⟩).continuous).tendsto f refine Or.inr ⟨f z₀, λ z hz => tendsto_nhds_unique ((this z hz).congr' ?_) (this z₀ hz₀)⟩ filter_upwards [not_frequently.1 h, h2] with f hf1 hf2 obtain ⟨w, hw⟩ := hf2.2.resolve_left hf1 exact (hw hz).trans (hw hz₀).symm
ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U ⊢ InjOn f U ∨ ∃ w, EqOn f (fun x => w) U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
refine (hurwitz_inj hU good_domain.is_preconnected ?_ ((tendsto_𝓒_iff hU).1 h1) h).symm
ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ∃ᶠ (f : ℂ → ℂ) in l, InjOn f U ⊢ InjOn f U ∨ ∃ w, EqOn f (fun x => w) U
ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ∃ᶠ (f : ℂ → ℂ) in l, InjOn f U ⊢ ∀ᶠ (n : 𝓒 U) in l, DifferentiableOn ℂ (id n) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
filter_upwards [h2] with g hg using hg.1.1
ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ∃ᶠ (f : ℂ → ℂ) in l, InjOn f U ⊢ ∀ᶠ (n : 𝓒 U) in l, DifferentiableOn ℂ (id n) U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
obtain ⟨z₀, hz₀⟩ : U.Nonempty := good_domain.is_nonempty
ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U ⊢ InjOn f U ∨ ∃ w, EqOn f (fun x => w) U
case intro ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U z₀ : ℂ hz₀ : z₀ ∈ U ⊢ InjOn f U ∨ ∃ w, EqOn f (fun x => w) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
have : ∀ z ∈ U, Tendsto (eval z) l (𝓝 (f z)) := by refine λ z hz => (map_mono inf_le_left).trans ?_ exact ((UniformOnFun.uniformContinuous_eval_of_mem ℂ (compacts U) (mem_singleton z) ⟨singleton_subset_iff.2 hz, isCompact_singleton⟩).continuous).tendsto f
case intro ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U z₀ : ℂ hz₀ : z₀ ∈ U ⊢ InjOn f U ∨ ∃ w, EqOn f (fun x => w) U
case intro ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this✝ : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U z₀ : ℂ hz₀ : z₀ ∈ U this : ∀ z ∈ U, Tendsto (eval z) l (𝓝 (f z)) ⊢ InjOn f U ∨ ∃ w, EqOn f (fun x => w) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
refine Or.inr ⟨f z₀, λ z hz => tendsto_nhds_unique ((this z hz).congr' ?_) (this z₀ hz₀)⟩
case intro ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this✝ : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U z₀ : ℂ hz₀ : z₀ ∈ U this : ∀ z ∈ U, Tendsto (eval z) l (𝓝 (f z)) ⊢ InjOn f U ∨ ∃ w, EqOn f (fun x => w) U
case intro ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this✝ : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U z₀ : ℂ hz₀ : z₀ ∈ U this : ∀ z ∈ U, Tendsto (eval z) l (𝓝 (f z)) z : ℂ hz : z ∈ U ⊢ eval z =ᶠ[l] eval z₀
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
filter_upwards [not_frequently.1 h, h2] with f hf1 hf2
case intro ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this✝ : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U z₀ : ℂ hz₀ : z₀ ∈ U this : ∀ z ∈ U, Tendsto (eval z) l (𝓝 (f z)) z : ℂ hz : z ∈ U ⊢ eval z =ᶠ[l] eval z₀
case h ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U hU : IsOpen U f✝ : 𝓒 U hf : ClusterPt f✝ (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f✝ ⊓ 𝓟 (𝓙 U) this✝ : NeBot l h1 : Tendsto id l (𝓝 f✝) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U z₀ : ℂ hz₀ : z₀ ∈ U this : ∀ z ∈ U, Tendsto (eval z) l (𝓝 (f✝ z)) z : ℂ hz : z ∈ U f : ℂ → ℂ hf1 : ¬InjOn f U hf2 : f ∈ {x | id x ∈ 𝓙 U} ⊢ eval z f = eval z₀ f
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
obtain ⟨w, hw⟩ := hf2.2.resolve_left hf1
case h ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U hU : IsOpen U f✝ : 𝓒 U hf : ClusterPt f✝ (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f✝ ⊓ 𝓟 (𝓙 U) this✝ : NeBot l h1 : Tendsto id l (𝓝 f✝) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U z₀ : ℂ hz₀ : z₀ ∈ U this : ∀ z ∈ U, Tendsto (eval z) l (𝓝 (f✝ z)) z : ℂ hz : z ∈ U f : ℂ → ℂ hf1 : ¬InjOn f U hf2 : f ∈ {x | id x ∈ 𝓙 U} ⊢ eval z f = eval z₀ f
case h.intro ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U hU : IsOpen U f✝ : 𝓒 U hf : ClusterPt f✝ (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f✝ ⊓ 𝓟 (𝓙 U) this✝ : NeBot l h1 : Tendsto id l (𝓝 f✝) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U z₀ : ℂ hz₀ : z₀ ∈ U this : ∀ z ∈ U, Tendsto (eval z) l (𝓝 (f✝ z)) z : ℂ hz : z ∈ U f : ℂ → ℂ hf1 : ¬InjOn f U hf2 : f ∈ {x | id x ∈ 𝓙 U} w : ℂ hw : EqOn (id f) (fun x => w) U ⊢ eval z f = eval z₀ f
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
exact (hw hz).trans (hw hz₀).symm
case h.intro ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U hU : IsOpen U f✝ : 𝓒 U hf : ClusterPt f✝ (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f✝ ⊓ 𝓟 (𝓙 U) this✝ : NeBot l h1 : Tendsto id l (𝓝 f✝) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U z₀ : ℂ hz₀ : z₀ ∈ U this : ∀ z ∈ U, Tendsto (eval z) l (𝓝 (f✝ z)) z : ℂ hz : z ∈ U f : ℂ → ℂ hf1 : ¬InjOn f U hf2 : f ∈ {x | id x ∈ 𝓙 U} w : ℂ hw : EqOn (id f) (fun x => w) U ⊢ eval z f = eval z₀ f
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
refine λ z hz => (map_mono inf_le_left).trans ?_
ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U z₀ : ℂ hz₀ : z₀ ∈ U ⊢ ∀ z ∈ U, Tendsto (eval z) l (𝓝 (f z))
ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U z₀ : ℂ hz₀ : z₀ ∈ U z : ℂ hz : z ∈ U ⊢ map (eval z) (𝓝 f) ≤ 𝓝 (f z)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
IsCompact_𝓙
[10, 1]
[32, 38]
exact ((UniformOnFun.uniformContinuous_eval_of_mem ℂ (compacts U) (mem_singleton z) ⟨singleton_subset_iff.2 hz, isCompact_singleton⟩).continuous).tendsto f
ι : Type u_1 l✝ : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U hU : IsOpen U f : 𝓒 U hf : ClusterPt f (𝓟 (𝓙 U)) l : Filter (𝓒 U) := 𝓝 f ⊓ 𝓟 (𝓙 U) this : NeBot l h1 : Tendsto id l (𝓝 f) h2 : ∀ᶠ (a : 𝓒 U) in l, id a ∈ 𝓙 U h : ¬∃ᶠ (f : ℂ → ℂ) in l, InjOn f U z₀ : ℂ hz₀ : z₀ ∈ U z : ℂ hz : z ∈ U ⊢ map (eval z) (𝓝 f) ≤ 𝓝 (f z)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
ContinuousOn_obs
[38, 1]
[43, 29]
have e1 : z₀ ∈ {z₀} := mem_singleton _
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ hU : IsOpen U hz₀ : z₀ ∈ U ⊢ ContinuousOn (obs z₀) (𝓗 U)
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ hU : IsOpen U hz₀ : z₀ ∈ U e1 : z₀ ∈ {z₀} ⊢ ContinuousOn (obs z₀) (𝓗 U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
ContinuousOn_obs
[38, 1]
[43, 29]
have e2 : {z₀} ∈ compacts U := ⟨singleton_subset_iff.2 hz₀, isCompact_singleton⟩
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ hU : IsOpen U hz₀ : z₀ ∈ U e1 : z₀ ∈ {z₀} ⊢ ContinuousOn (obs z₀) (𝓗 U)
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ hU : IsOpen U hz₀ : z₀ ∈ U e1 : z₀ ∈ {z₀} e2 : {z₀} ∈ compacts U ⊢ ContinuousOn (obs z₀) (𝓗 U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
ContinuousOn_obs
[38, 1]
[43, 29]
apply continuous_norm.comp_continuousOn
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ hU : IsOpen U hz₀ : z₀ ∈ U e1 : z₀ ∈ {z₀} e2 : {z₀} ∈ compacts U ⊢ ContinuousOn (obs z₀) (𝓗 U)
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ hU : IsOpen U hz₀ : z₀ ∈ U e1 : z₀ ∈ {z₀} e2 : {z₀} ∈ compacts U ⊢ ContinuousOn (fun x => deriv x z₀) (𝓗 U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
ContinuousOn_obs
[38, 1]
[43, 29]
exact (UniformOnFun.uniformContinuous_eval_of_mem _ _ e1 e2).continuous.comp_continuousOn (ContinuousOn_uderiv hU)
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ hU : IsOpen U hz₀ : z₀ ∈ U e1 : z₀ ∈ {z₀} e2 : {z₀} ∈ compacts U ⊢ ContinuousOn (fun x => deriv x z₀) (𝓗 U)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
obtain ⟨z₀, hz₀⟩ : U.Nonempty := good_domain.is_nonempty
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ inst✝ : good_domain U ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
have hU : IsOpen U := good_domain.is_open
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
have hU' : IsPreconnected U := good_domain.is_preconnected
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
have h1 : ContinuousOn (obs z₀) (𝓙 U) := ((ContinuousOn_obs hU hz₀).mono (λ f hf => hf.1.1))
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
obtain ⟨f, hf, hfg⟩ := IsCompact_𝓙.exists_forall_ge (𝓘_nonempty.mono 𝓘_subset_𝓙) h1
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
case intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
have h7 : ¬ ∃ w, EqOn f (λ _ => w) U := by obtain ⟨g, hg⟩ : (𝓘 U).Nonempty := 𝓘_nonempty specialize hfg g (𝓘_subset_𝓙 hg) have := norm_pos_iff.1 ((norm_pos_iff.2 (deriv_ne_zero_of_inj hU hg.1.1 hg.2 hz₀)).trans_le hfg) contrapose! this obtain ⟨w, hw : EqOn f (λ _ => w) U⟩ := this simpa only [deriv_const'] using (hw.eventuallyEq_of_mem (hU.mem_nhds hz₀)).deriv_eq
case intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
case intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f h7 : ¬∃ w, EqOn f (fun x => w) U ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
have h5 : f ∈ 𝓘 U := ⟨hf.1, hf.2.resolve_right h7⟩
case intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f h7 : ¬∃ w, EqOn f (fun x => w) U ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
case intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
refine ⟨f, h5, ?_⟩
case intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U ⊢ ∃ f ∈ 𝓘 U, f '' U = ball 0 1
case intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U ⊢ f '' U = ball 0 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
have h10 : f '' U ⊆ ball 0 1 := by have := ((hf.1.1.analyticOn hU).is_constant_or_isOpen hU').resolve_left h7 U subset_rfl hU simpa [interior_closedBall] using this.subset_interior_iff.2 (mapsTo'.1 hf.1.2)
case intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U ⊢ f '' U = ball 0 1
case intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U h10 : f '' U ⊆ ball 0 1 ⊢ f '' U = ball 0 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
refine (subset_iff_ssubset_or_eq.1 h10).resolve_left ?_
case intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U h10 : f '' U ⊆ ball 0 1 ⊢ f '' U = ball 0 1
case intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U h10 : f '' U ⊆ ball 0 1 ⊢ ¬f '' U ⊂ ball 0 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
contrapose! hfg
case intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U h10 : f '' U ⊆ ball 0 1 ⊢ ¬f '' U ⊂ ball 0 1
case intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U h10 : f '' U ⊆ ball 0 1 hfg : f '' U ⊂ ball 0 1 ⊢ ∃ y ∈ 𝓙 U, obs z₀ f < obs z₀ y
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
obtain ⟨g, hg⟩ := step_2 U hz₀ ⟨f, hf.1.1, h5.2, mapsTo'.2 h10⟩ hfg
case intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U h10 : f '' U ⊆ ball 0 1 hfg : f '' U ⊂ ball 0 1 ⊢ ∃ y ∈ 𝓙 U, obs z₀ f < obs z₀ y
case intro.intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U h10 : f '' U ⊆ ball 0 1 hfg : f '' U ⊂ ball 0 1 g : embedding U 𝔻 hg : ‖deriv { to_fun := f, is_diff := ⋯, is_inj := ⋯, maps_to := ⋯ }.to_fun z₀‖ < ‖deriv g.to_fun z₀‖ ⊢ ∃ y ∈ 𝓙 U, obs z₀ f < obs z₀ y
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
exact ⟨g.to_fun, 𝓘_subset_𝓙 ⟨⟨g.is_diff, g.maps_to.mono_right ball_subset_closedBall⟩, g.is_inj⟩, hg⟩
case intro.intro.intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U h10 : f '' U ⊆ ball 0 1 hfg : f '' U ⊂ ball 0 1 g : embedding U 𝔻 hg : ‖deriv { to_fun := f, is_diff := ⋯, is_inj := ⋯, maps_to := ⋯ }.to_fun z₀‖ < ‖deriv g.to_fun z₀‖ ⊢ ∃ y ∈ 𝓙 U, obs z₀ f < obs z₀ y
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
obtain ⟨g, hg⟩ : (𝓘 U).Nonempty := 𝓘_nonempty
ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f ⊢ ¬∃ w, EqOn f (fun x => w) U
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f g : 𝓒 U hg : g ∈ 𝓘 U ⊢ ¬∃ w, EqOn f (fun x => w) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
specialize hfg g (𝓘_subset_𝓙 hg)
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f g : 𝓒 U hg : g ∈ 𝓘 U ⊢ ¬∃ w, EqOn f (fun x => w) U
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U g : 𝓒 U hg : g ∈ 𝓘 U hfg : obs z₀ g ≤ obs z₀ f ⊢ ¬∃ w, EqOn f (fun x => w) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
have := norm_pos_iff.1 ((norm_pos_iff.2 (deriv_ne_zero_of_inj hU hg.1.1 hg.2 hz₀)).trans_le hfg)
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U g : 𝓒 U hg : g ∈ 𝓘 U hfg : obs z₀ g ≤ obs z₀ f ⊢ ¬∃ w, EqOn f (fun x => w) U
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U g : 𝓒 U hg : g ∈ 𝓘 U hfg : obs z₀ g ≤ obs z₀ f this : deriv f z₀ ≠ 0 ⊢ ¬∃ w, EqOn f (fun x => w) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
contrapose! this
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U g : 𝓒 U hg : g ∈ 𝓘 U hfg : obs z₀ g ≤ obs z₀ f this : deriv f z₀ ≠ 0 ⊢ ¬∃ w, EqOn f (fun x => w) U
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U g : 𝓒 U hg : g ∈ 𝓘 U hfg : obs z₀ g ≤ obs z₀ f this : ∃ w, EqOn f (fun x => w) U ⊢ deriv f z₀ = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
obtain ⟨w, hw : EqOn f (λ _ => w) U⟩ := this
case intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U g : 𝓒 U hg : g ∈ 𝓘 U hfg : obs z₀ g ≤ obs z₀ f this : ∃ w, EqOn f (fun x => w) U ⊢ deriv f z₀ = 0
case intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U g : 𝓒 U hg : g ∈ 𝓘 U hfg : obs z₀ g ≤ obs z₀ f w : ℂ hw : EqOn f (fun x => w) U ⊢ deriv f z₀ = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
simpa only [deriv_const'] using (hw.eventuallyEq_of_mem (hU.mem_nhds hz₀)).deriv_eq
case intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U g : 𝓒 U hg : g ∈ 𝓘 U hfg : obs z₀ g ≤ obs z₀ f w : ℂ hw : EqOn f (fun x => w) U ⊢ deriv f z₀ = 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
have := ((hf.1.1.analyticOn hU).is_constant_or_isOpen hU').resolve_left h7 U subset_rfl hU
ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U ⊢ f '' U ⊆ ball 0 1
ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U this : IsOpen (f '' U) ⊢ f '' U ⊆ ball 0 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
main
[45, 1]
[66, 104]
simpa [interior_closedBall] using this.subset_interior_iff.2 (mapsTo'.1 hf.1.2)
ι : Type u_1 l : Filter ι U : Set ℂ z₀✝ : ℂ inst✝ : good_domain U z₀ : ℂ hz₀ : z₀ ∈ U hU : IsOpen U hU' : IsPreconnected U h1 : ContinuousOn (obs z₀) (𝓙 U) f : 𝓒 U hf : f ∈ 𝓙 U hfg : ∀ y ∈ 𝓙 U, obs z₀ y ≤ obs z₀ f h7 : ¬∃ w, EqOn f (fun x => w) U h5 : f ∈ 𝓘 U this : IsOpen (f '' U) ⊢ f '' U ⊆ ball 0 1
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
RMT
[68, 1]
[72, 31]
have : good_domain U := ⟨h1, h2.1, h2.2, h3, (h4.has_logs h1 h2.isPreconnected).has_sqrt⟩
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ h1 : IsOpen U h2 : IsConnected U h3 : U ≠ univ h4 : has_primitives U ⊢ ∃ f, DifferentiableOn ℂ f U ∧ InjOn f U ∧ f '' U = ball 0 1
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ h1 : IsOpen U h2 : IsConnected U h3 : U ≠ univ h4 : has_primitives U this : good_domain U ⊢ ∃ f, DifferentiableOn ℂ f U ∧ InjOn f U ∧ f '' U = ball 0 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
RMT
[68, 1]
[72, 31]
obtain ⟨f, hf : f ∈ 𝓘 U, hfU⟩ := main (U := U)
ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ h1 : IsOpen U h2 : IsConnected U h3 : U ≠ univ h4 : has_primitives U this : good_domain U ⊢ ∃ f, DifferentiableOn ℂ f U ∧ InjOn f U ∧ f '' U = ball 0 1
case intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ h1 : IsOpen U h2 : IsConnected U h3 : U ≠ univ h4 : has_primitives U this : good_domain U f : 𝓒 U hf : f ∈ 𝓘 U hfU : f '' U = ball 0 1 ⊢ ∃ f, DifferentiableOn ℂ f U ∧ InjOn f U ∧ f '' U = ball 0 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Main.lean
RMT
[68, 1]
[72, 31]
exact ⟨f, hf.1.1, hf.2, hfU⟩
case intro.intro ι : Type u_1 l : Filter ι U : Set ℂ z₀ : ℂ h1 : IsOpen U h2 : IsConnected U h3 : U ≠ univ h4 : has_primitives U this : good_domain U f : 𝓒 U hf : f ∈ 𝓘 U hfU : f '' U = ball 0 1 ⊢ ∃ f, DifferentiableOn ℂ f U ∧ InjOn f U ∧ f '' U = ball 0 1
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.mem_thickening
[14, 1]
[15, 70]
simp only [thickening, ball, mem_iUnion, mem_preimage, exists_prop]
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) ⊢ a ∈ thickening u s ↔ ∃ x ∈ s, (x, a) ∈ u
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.thickening_singleton
[17, 1]
[18, 67]
simp only [thickening, mem_singleton_iff, iUnion_iUnion_eq_left]
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) ⊢ thickening u {a} = ball a u
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.monotone_thickening
[20, 1]
[24, 35]
intro u v huv
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) ⊢ Monotone fun x => thickening x s
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u✝ v✝ u v : Set (α × α) huv : u ≤ v ⊢ (fun x => thickening x s) u ≤ (fun x => thickening x s) v
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.monotone_thickening
[20, 1]
[24, 35]
apply iUnion₂_mono
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u✝ v✝ u v : Set (α × α) huv : u ≤ v ⊢ (fun x => thickening x s) u ≤ (fun x => thickening x s) v
case h ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u✝ v✝ u v : Set (α × α) huv : u ≤ v ⊢ ∀ i ∈ s, ball i u ⊆ ball i v
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.monotone_thickening
[20, 1]
[24, 35]
simp only [ball, le_eq_subset] at huv ⊢
case h ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u✝ v✝ u v : Set (α × α) huv : u ≤ v ⊢ ∀ i ∈ s, ball i u ⊆ ball i v
case h ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u✝ v✝ u v : Set (α × α) huv : u ⊆ v ⊢ ∀ i ∈ s, Prod.mk i ⁻¹' u ⊆ Prod.mk i ⁻¹' v
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.monotone_thickening
[20, 1]
[24, 35]
exact λ _ _ => preimage_mono huv
case h ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u✝ v✝ u v : Set (α × α) huv : u ⊆ v ⊢ ∀ i ∈ s, Prod.mk i ⁻¹' u ⊆ Prod.mk i ⁻¹' v
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.thickening_comp
[29, 1]
[30, 31]
ext
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) ⊢ thickening v (thickening u s) = thickening (u ○ v) s
case h ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) x✝ : α ⊢ x✝ ∈ thickening v (thickening u s) ↔ x✝ ∈ thickening (u ○ v) s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.thickening_comp
[29, 1]
[30, 31]
simp [thickening, ball]
case h ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) x✝ : α ⊢ x✝ ∈ thickening v (thickening u s) ↔ x✝ ∈ thickening (u ○ v) s
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.disjoint_ball_iff
[32, 1]
[34, 6]
rw [← compl_compl (ball a u), disjoint_compl_left_iff_subset]
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) ⊢ Disjoint (ball a u) t ↔ ∀ b ∈ t, (a, b) ∉ u
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) ⊢ t ⊆ (ball a u)ᶜ ↔ ∀ b ∈ t, (a, b) ∉ u
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.disjoint_ball_iff
[32, 1]
[34, 6]
rfl
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) ⊢ t ⊆ (ball a u)ᶜ ↔ ∀ b ∈ t, (a, b) ∉ u
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.thickening_inter_eq_empty
[36, 1]
[37, 70]
simp [thickening, ← disjoint_iff_inter_eq_empty, disjoint_ball_iff]
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) ⊢ thickening u s ∩ t = ∅ ↔ ∀ a ∈ s, ∀ b ∈ t, (a, b) ∉ u
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.thickening_inter_eq_empty_comm
[39, 1]
[42, 89]
simp [thickening_inter_eq_empty, inter_comm s]
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) hu : SymmetricRel u ⊢ thickening u s ∩ t = ∅ ↔ s ∩ thickening u t = ∅
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) hu : SymmetricRel u ⊢ (∀ a ∈ s, ∀ b ∈ t, (a, b) ∉ u) ↔ ∀ a ∈ t, ∀ b ∈ s, (a, b) ∉ u
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.thickening_inter_eq_empty_comm
[39, 1]
[42, 89]
apply Iff.intro
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) hu : SymmetricRel u ⊢ (∀ a ∈ s, ∀ b ∈ t, (a, b) ∉ u) ↔ ∀ a ∈ t, ∀ b ∈ s, (a, b) ∉ u
case mp ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) hu : SymmetricRel u ⊢ (∀ a ∈ s, ∀ b ∈ t, (a, b) ∉ u) → ∀ a ∈ t, ∀ b ∈ s, (a, b) ∉ u case mpr ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) hu : SymmetricRel u ⊢ (∀ a ∈ t, ∀ b ∈ s, (a, b) ∉ u) → ∀ a ∈ s, ∀ b ∈ t, (a, b) ∉ u
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.thickening_inter_eq_empty_comm
[39, 1]
[42, 89]
repeat exact λ h a ha b hb hab => h b hb a ha (hu.mk_mem_comm.mp hab)
case mp ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) hu : SymmetricRel u ⊢ (∀ a ∈ s, ∀ b ∈ t, (a, b) ∉ u) → ∀ a ∈ t, ∀ b ∈ s, (a, b) ∉ u case mpr ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) hu : SymmetricRel u ⊢ (∀ a ∈ t, ∀ b ∈ s, (a, b) ∉ u) → ∀ a ∈ s, ∀ b ∈ t, (a, b) ∉ u
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.thickening_inter_eq_empty_comm
[39, 1]
[42, 89]
exact λ h a ha b hb hab => h b hb a ha (hu.mk_mem_comm.mp hab)
case mpr ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) hu : SymmetricRel u ⊢ (∀ a ∈ t, ∀ b ∈ s, (a, b) ∉ u) → ∀ a ∈ s, ∀ b ∈ t, (a, b) ∉ u
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.thickening_inter_thickening_eq_empty_of_comp
[44, 1]
[48, 82]
simp only [←thickening_inter_eq_empty_comm hv, thickening_comp]
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) hv : SymmetricRel v hvu : v ○ v ⊆ u hST : thickening u s ∩ t = ∅ ⊢ thickening v s ∩ thickening v t = ∅
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) hv : SymmetricRel v hvu : v ○ v ⊆ u hST : thickening u s ∩ t = ∅ ⊢ thickening (v ○ v) s ∩ t = ∅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.thickening_inter_thickening_eq_empty_of_comp
[44, 1]
[48, 82]
exact subset_eq_empty (inter_subset_inter_left _ (monotone_thickening hvu)) hST
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) hv : SymmetricRel v hvu : v ○ v ⊆ u hST : thickening u s ∩ t = ∅ ⊢ thickening (v ○ v) s ∩ t = ∅
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.uniform_nhds_set_singleton
[69, 1]
[70, 73]
simp only [uniform_nhds_set, thickening_singleton, nhds_eq_uniformity]
ι : Type u_1 α : Type u_2 β : Type u_3 a✝ : α s t : Set α x u v : Set (α × α) inst✝ : UniformSpace α a : α ⊢ 𝓝ᵘ {a} = 𝓝 a
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.mem_uniform_nhds_set_iff
[72, 1]
[73, 42]
simp [uniform_nhds_set, mem_lift'_sets]
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) inst✝ : UniformSpace α ⊢ s ∈ 𝓝ᵘ t ↔ ∃ u ∈ 𝓤 α, thickening u t ⊆ s
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.nhds_le_uniform_nhds_set
[75, 1]
[76, 97]
simpa [← uniform_nhds_set_singleton] using uniform_nhds_set_mono (singleton_subset_iff.mpr ha)
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t : Set α x u v : Set (α × α) inst✝ : UniformSpace α s : Set α ha : a ∈ s ⊢ 𝓝 a ≤ 𝓝ᵘ s
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.nhds_set_le_uniform_nhds_set
[78, 1]
[79, 56]
simpa [nhdsSet] using λ _ => nhds_le_uniform_nhds_set
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t : Set α x u v : Set (α × α) inst✝ : UniformSpace α s : Set α ⊢ 𝓝ˢ s ≤ 𝓝ᵘ s
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.uniform_nhds_inf_uniform_nhds_eq_bot
[81, 1]
[87, 58]
simp_rw [inf_principal_eq_bot, inf_eq_bot_iff, mem_uniform_nhds_set_iff] at h ⊢
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t✝ : Set α x u v : Set (α × α) inst✝ : UniformSpace α s t : Set α h : 𝓝ᵘ s ⊓ 𝓟 t = ⊥ ⊢ 𝓝ᵘ s ⊓ 𝓝ᵘ t = ⊥
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t✝ : Set α x u v : Set (α × α) inst✝ : UniformSpace α s t : Set α h : ∃ u ∈ 𝓤 α, thickening u s ⊆ tᶜ ⊢ ∃ U, (∃ u ∈ 𝓤 α, thickening u s ⊆ U) ∧ ∃ V, (∃ u ∈ 𝓤 α, thickening u t ⊆ V) ∧ U ∩ V = ∅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.uniform_nhds_inf_uniform_nhds_eq_bot
[81, 1]
[87, 58]
obtain ⟨u, hu, hsu⟩ := h
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t✝ : Set α x u v : Set (α × α) inst✝ : UniformSpace α s t : Set α h : ∃ u ∈ 𝓤 α, thickening u s ⊆ tᶜ ⊢ ∃ U, (∃ u ∈ 𝓤 α, thickening u s ⊆ U) ∧ ∃ V, (∃ u ∈ 𝓤 α, thickening u t ⊆ V) ∧ U ∩ V = ∅
case intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t✝ : Set α x u✝ v : Set (α × α) inst✝ : UniformSpace α s t : Set α u : Set (α × α) hu : u ∈ 𝓤 α hsu : thickening u s ⊆ tᶜ ⊢ ∃ U, (∃ u ∈ 𝓤 α, thickening u s ⊆ U) ∧ ∃ V, (∃ u ∈ 𝓤 α, thickening u t ⊆ V) ∧ U ∩ V = ∅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.uniform_nhds_inf_uniform_nhds_eq_bot
[81, 1]
[87, 58]
obtain ⟨v, hv, hvs, hvu⟩ := comp_symm_of_uniformity hu
case intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t✝ : Set α x u✝ v : Set (α × α) inst✝ : UniformSpace α s t : Set α u : Set (α × α) hu : u ∈ 𝓤 α hsu : thickening u s ⊆ tᶜ ⊢ ∃ U, (∃ u ∈ 𝓤 α, thickening u s ⊆ U) ∧ ∃ V, (∃ u ∈ 𝓤 α, thickening u t ⊆ V) ∧ U ∩ V = ∅
case intro.intro.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t✝ : Set α x u✝ v✝ : Set (α × α) inst✝ : UniformSpace α s t : Set α u : Set (α × α) hu : u ∈ 𝓤 α hsu : thickening u s ⊆ tᶜ v : Set (α × α) hv : v ∈ 𝓤 α hvs : ∀ {a b : α}, (a, b) ∈ v → (b, a) ∈ v hvu : v ○ v ⊆ u ⊢ ∃ U, (∃ u ∈ 𝓤 α, thickening u s ⊆ U) ∧ ∃ V, (∃ u ∈ 𝓤 α, thickening u t ⊆ V) ∧ U ∩ V = ∅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.uniform_nhds_inf_uniform_nhds_eq_bot
[81, 1]
[87, 58]
refine ⟨_, ⟨v, hv, subset_rfl⟩, _, ⟨v, hv, subset_rfl⟩, ?h⟩
case intro.intro.intro.intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t✝ : Set α x u✝ v✝ : Set (α × α) inst✝ : UniformSpace α s t : Set α u : Set (α × α) hu : u ∈ 𝓤 α hsu : thickening u s ⊆ tᶜ v : Set (α × α) hv : v ∈ 𝓤 α hvs : ∀ {a b : α}, (a, b) ∈ v → (b, a) ∈ v hvu : v ○ v ⊆ u ⊢ ∃ U, (∃ u ∈ 𝓤 α, thickening u s ⊆ U) ∧ ∃ V, (∃ u ∈ 𝓤 α, thickening u t ⊆ V) ∧ U ∩ V = ∅
case h ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t✝ : Set α x u✝ v✝ : Set (α × α) inst✝ : UniformSpace α s t : Set α u : Set (α × α) hu : u ∈ 𝓤 α hsu : thickening u s ⊆ tᶜ v : Set (α × α) hv : v ∈ 𝓤 α hvs : ∀ {a b : α}, (a, b) ∈ v → (b, a) ∈ v hvu : v ○ v ⊆ u ⊢ thickening v s ∩ thickening v t = ∅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.uniform_nhds_inf_uniform_nhds_eq_bot
[81, 1]
[87, 58]
apply thickening_inter_thickening_eq_empty_of_comp (symmetricRel_of hvs) hvu
case h ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t✝ : Set α x u✝ v✝ : Set (α × α) inst✝ : UniformSpace α s t : Set α u : Set (α × α) hu : u ∈ 𝓤 α hsu : thickening u s ⊆ tᶜ v : Set (α × α) hv : v ∈ 𝓤 α hvs : ∀ {a b : α}, (a, b) ∈ v → (b, a) ∈ v hvu : v ○ v ⊆ u ⊢ thickening v s ∩ thickening v t = ∅
case h ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t✝ : Set α x u✝ v✝ : Set (α × α) inst✝ : UniformSpace α s t : Set α u : Set (α × α) hu : u ∈ 𝓤 α hsu : thickening u s ⊆ tᶜ v : Set (α × α) hv : v ∈ 𝓤 α hvs : ∀ {a b : α}, (a, b) ∈ v → (b, a) ∈ v hvu : v ○ v ⊆ u ⊢ thickening u s ∩ t = ∅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.uniform_nhds_inf_uniform_nhds_eq_bot
[81, 1]
[87, 58]
exact (subset_compl_iff_disjoint_right.mp hsu).inter_eq
case h ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t✝ : Set α x u✝ v✝ : Set (α × α) inst✝ : UniformSpace α s t : Set α u : Set (α × α) hu : u ∈ 𝓤 α hsu : thickening u s ⊆ tᶜ v : Set (α × α) hv : v ∈ 𝓤 α hvs : ∀ {a b : α}, (a, b) ∈ v → (b, a) ∈ v hvu : v ○ v ⊆ u ⊢ thickening u s ∩ t = ∅
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.nhds_inf_uniform_nhds_eq_bot
[89, 1]
[91, 48]
rw [← uniform_nhds_set_singleton] at hf ⊢
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t : Set α x u v : Set (α × α) inst✝ : UniformSpace α s : Set α hf : 𝓝 a ⊓ 𝓟 s = ⊥ ⊢ 𝓝 a ⊓ 𝓝ᵘ s = ⊥
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t : Set α x u v : Set (α × α) inst✝ : UniformSpace α s : Set α hf : 𝓝ᵘ {a} ⊓ 𝓟 s = ⊥ ⊢ 𝓝ᵘ {a} ⊓ 𝓝ᵘ s = ⊥
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
UniformSpace.nhds_inf_uniform_nhds_eq_bot
[89, 1]
[91, 48]
exact uniform_nhds_inf_uniform_nhds_eq_bot hf
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s✝ t : Set α x u v : Set (α × α) inst✝ : UniformSpace α s : Set α hf : 𝓝ᵘ {a} ⊓ 𝓟 s = ⊥ ⊢ 𝓝ᵘ {a} ⊓ 𝓝ᵘ s = ⊥
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
lemma0
[104, 1]
[106, 77]
simp_rw [comap_principal, uniform_nhds_set, tendsto_lift', eventually_inf_principal]
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) p : Filter ι inst✝ : UniformSpace α ⊢ Tendsto Prod.snd (𝓤 α ⊓ Filter.comap Prod.fst (𝓟 s)) (𝓝ᵘ s)
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) p : Filter ι inst✝ : UniformSpace α ⊢ ∀ s_1 ∈ 𝓤 α, ∀ᶠ (x : α × α) in 𝓤 α, x ∈ Prod.fst ⁻¹' s → x.2 ∈ thickening s_1 s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
lemma0
[104, 1]
[106, 77]
exact λ U hU => mem_of_superset hU (λ ⟨x, y⟩ hxy hx => mem_biUnion hx hxy)
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) p : Filter ι inst✝ : UniformSpace α ⊢ ∀ s_1 ∈ 𝓤 α, ∀ᶠ (x : α × α) in 𝓤 α, x ∈ Prod.fst ⁻¹' s → x.2 ∈ thickening s_1 s
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
lemma1
[111, 1]
[115, 73]
rw [tendstoUniformlyOn_iff_tendsto] at hF
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) p : Filter ι F : ι → α → β f : α → β inst✝ : UniformSpace β hF : TendstoUniformlyOn F f p s ⊢ Tendsto (fun q => (f q.2, F q.1 q.2)) (p ×ˢ 𝓟 s) (𝓟 (f '' s) ×ˢ 𝓝ᵘ (f '' s))
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) p : Filter ι F : ι → α → β f : α → β inst✝ : UniformSpace β hF : Tendsto (fun q => (f q.2, F q.1 q.2)) (p ×ˢ 𝓟 s) (𝓤 β) ⊢ Tendsto (fun q => (f q.2, F q.1 q.2)) (p ×ˢ 𝓟 s) (𝓟 (f '' s) ×ˢ 𝓝ᵘ (f '' s))
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
lemma1
[111, 1]
[115, 73]
refine tendsto_prod_iff'.mpr ⟨lemma2, ?h⟩
ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) p : Filter ι F : ι → α → β f : α → β inst✝ : UniformSpace β hF : Tendsto (fun q => (f q.2, F q.1 q.2)) (p ×ˢ 𝓟 s) (𝓤 β) ⊢ Tendsto (fun q => (f q.2, F q.1 q.2)) (p ×ˢ 𝓟 s) (𝓟 (f '' s) ×ˢ 𝓝ᵘ (f '' s))
case h ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) p : Filter ι F : ι → α → β f : α → β inst✝ : UniformSpace β hF : Tendsto (fun q => (f q.2, F q.1 q.2)) (p ×ˢ 𝓟 s) (𝓤 β) ⊢ Tendsto (fun n => (f n.2, F n.1 n.2).2) (p ×ˢ 𝓟 s) (𝓝ᵘ (f '' s))
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/uniform.lean
lemma1
[111, 1]
[115, 73]
exact lemma0.comp (tendsto_inf.mpr ⟨hF, tendsto_comap_iff.mpr lemma2⟩)
case h ι : Type u_1 α : Type u_2 β : Type u_3 a : α s t : Set α x u v : Set (α × α) p : Filter ι F : ι → α → β f : α → β inst✝ : UniformSpace β hF : Tendsto (fun q => (f q.2, F q.1 q.2)) (p ×ˢ 𝓟 s) (𝓤 β) ⊢ Tendsto (fun n => (f n.2, F n.1 n.2).2) (p ×ˢ 𝓟 s) (𝓝ᵘ (f '' s))
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
HasFPowerSeriesAt.eventually_differentiable_at
[19, 1]
[22, 91]
obtain ⟨r, hp⟩ := hp
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ f : ℂ → E z₀ : ℂ hp : HasFPowerSeriesAt f p z₀ ⊢ ∀ᶠ (z : ℂ) in 𝓝 z₀, DifferentiableAt ℂ f z
case intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ f : ℂ → E z₀ : ℂ r : ENNReal hp : HasFPowerSeriesOnBall f p z₀ r ⊢ ∀ᶠ (z : ℂ) in 𝓝 z₀, DifferentiableAt ℂ f z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
HasFPowerSeriesAt.eventually_differentiable_at
[19, 1]
[22, 91]
exact hp.differentiableOn.eventually_differentiableAt (EMetric.ball_mem_nhds _ hp.r_pos)
case intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ f : ℂ → E z₀ : ℂ r : ENNReal hp : HasFPowerSeriesOnBall f p z₀ r ⊢ ∀ᶠ (z : ℂ) in 𝓝 z₀, DifferentiableAt ℂ f z
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
circleIntegral.integral_add
[31, 1]
[33, 84]
simp only [circleIntegral, smul_add, intervalIntegral.integral_add hf.out hg.out]
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f g : ℂ → E c : ℂ R : ℝ hf : CircleIntegrable f c R hg : CircleIntegrable g c R ⊢ (∮ (z : ℂ) in C(c, R), f z + g z) = (∮ (z : ℂ) in C(c, R), f z) + ∮ (z : ℂ) in C(c, R), g z
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
circle_integral_sub_center_inv_smul
[49, 1]
[51, 72]
simp [circleIntegral.integral_sub_inv_of_mem_ball (mem_ball_self hr)]
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f g : ℂ → E r : ℝ U : Set ℂ c : ℂ v : E hr : 0 < r ⊢ (∮ (z : ℂ) in C(c, r), (z - c)⁻¹ • v) = (2 * ↑π * I) • v
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
DifferentiableOn.iterate_dslope
[60, 1]
[64, 83]
induction n generalizing f
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ n : ℕ hf : DifferentiableOn ℂ f U hU : IsOpen U hc : c ∈ U ⊢ DifferentiableOn ℂ ((swap dslope c)^[n] f) U
case zero E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ hU : IsOpen U hc : c ∈ U f : ℂ → E hf : DifferentiableOn ℂ f U ⊢ DifferentiableOn ℂ ((swap dslope c)^[zero] f) U case succ E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ hU : IsOpen U hc : c ∈ U n✝ : ℕ n_ih✝ : ∀ {f : ℂ → E}, DifferentiableOn ℂ f U → DifferentiableOn ℂ ((swap dslope c)^[n✝] f) U f : ℂ → E hf : DifferentiableOn ℂ f U ⊢ DifferentiableOn ℂ ((swap dslope c)^[succ n✝] f) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
DifferentiableOn.iterate_dslope
[60, 1]
[64, 83]
case zero => exact hf
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ hU : IsOpen U hc : c ∈ U f : ℂ → E hf : DifferentiableOn ℂ f U ⊢ DifferentiableOn ℂ ((swap dslope c)^[zero] f) U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
DifferentiableOn.iterate_dslope
[60, 1]
[64, 83]
case succ n_ih => exact n_ih ((differentiableOn_dslope (hU.mem_nhds hc)).mpr hf)
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ hU : IsOpen U hc : c ∈ U n✝ : ℕ n_ih : ∀ {f : ℂ → E}, DifferentiableOn ℂ f U → DifferentiableOn ℂ ((swap dslope c)^[n✝] f) U f : ℂ → E hf : DifferentiableOn ℂ f U ⊢ DifferentiableOn ℂ ((swap dslope c)^[succ n✝] f) U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
DifferentiableOn.iterate_dslope
[60, 1]
[64, 83]
exact hf
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ hU : IsOpen U hc : c ∈ U f : ℂ → E hf : DifferentiableOn ℂ f U ⊢ DifferentiableOn ℂ ((swap dslope c)^[zero] f) U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/cindex.lean
DifferentiableOn.iterate_dslope
[60, 1]
[64, 83]
exact n_ih ((differentiableOn_dslope (hU.mem_nhds hc)).mpr hf)
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E p : FormalMultilinearSeries ℂ ℂ E U : Set ℂ z₀ c : ℂ hU : IsOpen U hc : c ∈ U n✝ : ℕ n_ih : ∀ {f : ℂ → E}, DifferentiableOn ℂ f U → DifferentiableOn ℂ ((swap dslope c)^[n✝] f) U f : ℂ → E hf : DifferentiableOn ℂ f U ⊢ DifferentiableOn ℂ ((swap dslope c)^[succ n✝] f) U
no goals