url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
have h2 : ‖(f x - F i x) * g x‖ < ε / 2 := by rw [norm_mul] by_cases h : g x = 0 case pos => simp [h, half_pos hε] case neg => convert mul_lt_mul (hF x hx) (h1 x hx) (norm_pos_iff.mpr h) (by positivity) using 1 simp only [div_mul, mul_div_cancel, hMg.ne.symm, Ne.def, not_false_iff]
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s ⊢ ‖(f * g) x - (F * G) i x‖ < ε
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 ⊢ ‖(f * g) x - (F * G) i x‖ < ε
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
have h3 : ‖F i x * (g x - G i x)‖ < ε / 2 := by rw [norm_mul] by_cases h : F i x = 0 case pos => simp [h, half_pos hε] case neg => convert mul_lt_mul' (hf x hx) (hG x hx) (norm_nonneg _) hMf using 1 field_simp [hMf.ne.symm]; ring
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 ⊢ ‖(f * g) x - (F * G) i x‖ < ε
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 h3 : ‖F i x * (g x - G i x)‖ < ε / 2 ⊢ ‖(f * g) x - (F * G) i x‖ < ε
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
simp_rw [Pi.mul_apply, lxyab]
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 h3 : ‖F i x * (g x - G i x)‖ < ε / 2 ⊢ ‖(f * g) x - (F * G) i x‖ < ε
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 h3 : ‖F i x * (g x - G i x)‖ < ε / 2 ⊢ ‖(f x - F i x) * g x + F i x * (g x - G i x)‖ < ε
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
exact (norm_add_le _ _).trans_lt (add_halves' ε ā–ø add_lt_add h2 h3)
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 h3 : ‖F i x * (g x - G i x)‖ < ε / 2 ⊢ ‖(f x - F i x) * g x + F i x * (g x - G i x)‖ < ε
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
positivity
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ mg h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 ⊢ 0 < Mf
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
positivity
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ mg h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf ⊢ 0 < Mg
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
filter_upwards [hf] with i hF x hx using (hF x hx).trans ((le_abs_self mf).trans (lt_add_one _).le)
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ mg h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg ⊢ āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
filter_upwards [hg] with i hG x hx using (hG x hx).trans ((le_abs_self mg).trans (lt_add_one _).le)
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ mg h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf ⊢ āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
intro x hx
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg ⊢ āˆ€ x ∈ s, ‖g x‖ ≤ Mg
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg x : α hx : x ∈ s ⊢ ‖g x‖ ≤ Mg
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
refine le_of_tendsto ((continuous_norm.tendsto (g x)).comp (hG.tendsto_at hx)) ?_
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg x : α hx : x ∈ s ⊢ ‖g x‖ ≤ Mg
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg x : α hx : x ∈ s ⊢ āˆ€į¶  (c : ι) in p, ((fun a => ‖a‖) ∘ fun n => G n x) c ≤ Mg
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
filter_upwards [hg] with i hg using hg x hx
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg x : α hx : x ∈ s ⊢ āˆ€į¶  (c : ι) in p, ((fun a => ‖a‖) ∘ fun n => G n x) c ≤ Mg
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
positivity
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hF : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hG : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 ⊢ ε / (2 * Mg) > 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
positivity
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hF : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hG : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 ⊢ ε / (2 * Mf) > 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
rw [norm_mul]
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s ⊢ ‖(f x - F i x) * g x‖ < ε / 2
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s ⊢ ‖f x - F i x‖ * ‖g x‖ < ε / 2
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
by_cases h : g x = 0
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s ⊢ ‖f x - F i x‖ * ‖g x‖ < ε / 2
case pos š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h : g x = 0 ⊢ ‖f x - F i x‖ * ‖g x‖ < ε / 2 case neg š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h : ¬g x = 0 ⊢ ‖f x - F i x‖ * ‖g x‖ < ε / 2
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
case pos => simp [h, half_pos hε]
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h : g x = 0 ⊢ ‖f x - F i x‖ * ‖g x‖ < ε / 2
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
case neg => convert mul_lt_mul (hF x hx) (h1 x hx) (norm_pos_iff.mpr h) (by positivity) using 1 simp only [div_mul, mul_div_cancel, hMg.ne.symm, Ne.def, not_false_iff]
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h : ¬g x = 0 ⊢ ‖f x - F i x‖ * ‖g x‖ < ε / 2
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
simp [h, half_pos hε]
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h : g x = 0 ⊢ ‖f x - F i x‖ * ‖g x‖ < ε / 2
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
convert mul_lt_mul (hF x hx) (h1 x hx) (norm_pos_iff.mpr h) (by positivity) using 1
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h : ¬g x = 0 ⊢ ‖f x - F i x‖ * ‖g x‖ < ε / 2
case h.e'_4 š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h : ¬g x = 0 ⊢ ε / 2 = ε / (2 * Mg) * Mg
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
simp only [div_mul, mul_div_cancel, hMg.ne.symm, Ne.def, not_false_iff]
case h.e'_4 š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h : ¬g x = 0 ⊢ ε / 2 = ε / (2 * Mg) * Mg
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
positivity
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h : ¬g x = 0 ⊢ 0 ≤ ε / (2 * Mg)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
rw [norm_mul]
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 ⊢ ‖F i x * (g x - G i x)‖ < ε / 2
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 ⊢ ‖F i x‖ * ‖g x - G i x‖ < ε / 2
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
by_cases h : F i x = 0
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ h : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 ⊢ ‖F i x‖ * ‖g x - G i x‖ < ε / 2
case pos š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 h : F i x = 0 ⊢ ‖F i x‖ * ‖g x - G i x‖ < ε / 2 case neg š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 h : ¬F i x = 0 ⊢ ‖F i x‖ * ‖g x - G i x‖ < ε / 2
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
case pos => simp [h, half_pos hε]
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 h : F i x = 0 ⊢ ‖F i x‖ * ‖g x - G i x‖ < ε / 2
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
case neg => convert mul_lt_mul' (hf x hx) (hG x hx) (norm_nonneg _) hMf using 1 field_simp [hMf.ne.symm]; ring
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 h : ¬F i x = 0 ⊢ ‖F i x‖ * ‖g x - G i x‖ < ε / 2
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
simp [h, half_pos hε]
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 h : F i x = 0 ⊢ ‖F i x‖ * ‖g x - G i x‖ < ε / 2
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
convert mul_lt_mul' (hf x hx) (hG x hx) (norm_nonneg _) hMf using 1
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 h : ¬F i x = 0 ⊢ ‖F i x‖ * ‖g x - G i x‖ < ε / 2
case h.e'_4 š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 h : ¬F i x = 0 ⊢ ε / 2 = Mf * (ε / (2 * Mf))
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
field_simp [hMf.ne.symm]
case h.e'_4 š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 h : ¬F i x = 0 ⊢ ε / 2 = Mf * (ε / (2 * Mf))
case h.e'_4 š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 h : ¬F i x = 0 ⊢ ε * (2 * Mf) = Mf * ε * 2
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
ring
case h.e'_4 š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hāœ : NeBot p Mf : ā„ := |mf| + 1 Mg : ā„ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hfāœ : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hg : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ Mg h1 : āˆ€ x ∈ s, ‖g x‖ ≤ Mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ε : ā„ hε : ε > 0 i : ι hf : āˆ€ x ∈ s, ‖F i x‖ ≤ Mf hF : āˆ€ x ∈ s, ‖f x - F i x‖ < ε / (2 * Mg) hG : āˆ€ x ∈ s, ‖g x - G i x‖ < ε / (2 * Mf) x : α hx : x ∈ s h2 : ‖(f x - F i x) * g x‖ < ε / 2 h : ¬F i x = 0 ⊢ ε * (2 * Mf) = Mf * ε * 2
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_bound
[115, 1]
[131, 30]
have h1 : āˆ€į¶  i in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1 := by simp_rw [Metric.tendstoUniformlyOn_iff, dist_eq_norm] at hF filter_upwards [hF 1 zero_lt_one] with i hF x hx have : ‖F i x‖ ≤ ‖f x - F i x‖ + ‖f x‖ := by simpa [← norm_neg (F i x - f x)] using norm_add_le (F i x - f x) (f x) linarith [hF x hx, hf x hx]
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg ⊢ TendstoUniformlyOn (F * G) (f * g) p s
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg h1 : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1 ⊢ TendstoUniformlyOn (F * G) (f * g) p s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_bound
[115, 1]
[131, 30]
have h2 : āˆ€į¶  i in p, āˆ€ x ∈ s, ‖G i x‖ ≤ mg + 1 := by simp_rw [Metric.tendstoUniformlyOn_iff, dist_eq_norm] at hG filter_upwards [hG 1 zero_lt_one] with i hG x hx have : ‖G i x‖ ≤ ‖g x - G i x‖ + ‖g x‖ := by simpa [← norm_neg (G i x - g x)] using norm_add_le (G i x - g x) (g x) linarith [hG x hx, hg x hx]
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg h1 : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1 ⊢ TendstoUniformlyOn (F * G) (f * g) p s
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg h1 : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1 h2 : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ mg + 1 ⊢ TendstoUniformlyOn (F * G) (f * g) p s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_bound
[115, 1]
[131, 30]
exact hF.mul_of_le hG h1 h2
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg h1 : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1 h2 : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ mg + 1 ⊢ TendstoUniformlyOn (F * G) (f * g) p s
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_bound
[115, 1]
[131, 30]
simp_rw [Metric.tendstoUniformlyOn_iff, dist_eq_norm] at hF
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg ⊢ āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hG : TendstoUniformlyOn G g p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg hF : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε ⊢ āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_bound
[115, 1]
[131, 30]
filter_upwards [hF 1 zero_lt_one] with i hF x hx
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hG : TendstoUniformlyOn G g p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg hF : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε ⊢ āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hG : TendstoUniformlyOn G g p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε i : ι hF : āˆ€ x ∈ s, ‖f x - F i x‖ < 1 x : α hx : x ∈ s ⊢ ‖F i x‖ ≤ mf + 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_bound
[115, 1]
[131, 30]
have : ‖F i x‖ ≤ ‖f x - F i x‖ + ‖f x‖ := by simpa [← norm_neg (F i x - f x)] using norm_add_le (F i x - f x) (f x)
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hG : TendstoUniformlyOn G g p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε i : ι hF : āˆ€ x ∈ s, ‖f x - F i x‖ < 1 x : α hx : x ∈ s ⊢ ‖F i x‖ ≤ mf + 1
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hG : TendstoUniformlyOn G g p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε i : ι hF : āˆ€ x ∈ s, ‖f x - F i x‖ < 1 x : α hx : x ∈ s this : ‖F i x‖ ≤ ‖f x - F i x‖ + ‖f x‖ ⊢ ‖F i x‖ ≤ mf + 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_bound
[115, 1]
[131, 30]
linarith [hF x hx, hf x hx]
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hG : TendstoUniformlyOn G g p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε i : ι hF : āˆ€ x ∈ s, ‖f x - F i x‖ < 1 x : α hx : x ∈ s this : ‖F i x‖ ≤ ‖f x - F i x‖ + ‖f x‖ ⊢ ‖F i x‖ ≤ mf + 1
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_bound
[115, 1]
[131, 30]
simpa [← norm_neg (F i x - f x)] using norm_add_le (F i x - f x) (f x)
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hG : TendstoUniformlyOn G g p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg hFāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖f x - F n x‖ < ε i : ι hF : āˆ€ x ∈ s, ‖f x - F i x‖ < 1 x : α hx : x ∈ s ⊢ ‖F i x‖ ≤ ‖f x - F i x‖ + ‖f x‖
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_bound
[115, 1]
[131, 30]
simp_rw [Metric.tendstoUniformlyOn_iff, dist_eq_norm] at hG
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg h1 : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1 ⊢ āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ mg + 1
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg h1 : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1 hG : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ⊢ āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ mg + 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_bound
[115, 1]
[131, 30]
filter_upwards [hG 1 zero_lt_one] with i hG x hx
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg h1 : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1 hG : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε ⊢ āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖G i x‖ ≤ mg + 1
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg h1 : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1 hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε i : ι hG : āˆ€ x ∈ s, ‖g x - G i x‖ < 1 x : α hx : x ∈ s ⊢ ‖G i x‖ ≤ mg + 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_bound
[115, 1]
[131, 30]
have : ‖G i x‖ ≤ ‖g x - G i x‖ + ‖g x‖ := by simpa [← norm_neg (G i x - g x)] using norm_add_le (G i x - g x) (g x)
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg h1 : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1 hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε i : ι hG : āˆ€ x ∈ s, ‖g x - G i x‖ < 1 x : α hx : x ∈ s ⊢ ‖G i x‖ ≤ mg + 1
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg h1 : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1 hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε i : ι hG : āˆ€ x ∈ s, ‖g x - G i x‖ < 1 x : α hx : x ∈ s this : ‖G i x‖ ≤ ‖g x - G i x‖ + ‖g x‖ ⊢ ‖G i x‖ ≤ mg + 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_bound
[115, 1]
[131, 30]
linarith [hG x hx, hg x hx]
case h š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg h1 : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1 hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε i : ι hG : āˆ€ x ∈ s, ‖g x - G i x‖ < 1 x : α hx : x ∈ s this : ‖G i x‖ ≤ ‖g x - G i x‖ + ‖g x‖ ⊢ ‖G i x‖ ≤ mg + 1
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_bound
[115, 1]
[131, 30]
simpa [← norm_neg (G i x - g x)] using norm_add_le (G i x - g x) (g x)
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ xāœ y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ hF : TendstoUniformlyOn F f p s hf : āˆ€ x ∈ s, ‖f x‖ ≤ mf hg : āˆ€ x ∈ s, ‖g x‖ ≤ mg h1 : āˆ€į¶  (i : ι) in p, āˆ€ x ∈ s, ‖F i x‖ ≤ mf + 1 hGāœ : āˆ€ ε > 0, āˆ€į¶  (n : ι) in p, āˆ€ x ∈ s, ‖g x - G n x‖ < ε i : ι hG : āˆ€ x ∈ s, ‖g x - G i x‖ < 1 x : α hx : x ∈ s ⊢ ‖G i x‖ ≤ ‖g x - G i x‖ + ‖g x‖
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.inv_of_compact
[135, 1]
[140, 93]
apply hF.inv
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hf : ContinuousOn f K hK : IsCompact K hfz : āˆ€ x ∈ K, f x ≠ 0 ⊢ TendstoUniformlyOn F⁻¹ f⁻¹ p K
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hf : ContinuousOn f K hK : IsCompact K hfz : āˆ€ x ∈ K, f x ≠ 0 ⊢ š“Ÿ (f '' K) āŠ“ š“ 0 = ⊄
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.inv_of_compact
[135, 1]
[140, 93]
rw [inf_comm, inf_principal_eq_bot]
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hf : ContinuousOn f K hK : IsCompact K hfz : āˆ€ x ∈ K, f x ≠ 0 ⊢ š“Ÿ (f '' K) āŠ“ š“ 0 = ⊄
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hf : ContinuousOn f K hK : IsCompact K hfz : āˆ€ x ∈ K, f x ≠ 0 ⊢ (f '' K)ᶜ ∈ š“ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.inv_of_compact
[135, 1]
[140, 93]
exact (hK.image_of_continuousOn hf).isClosed.compl_mem_nhds (λ ⟨z, h1, h2⟩ => hfz z h1 h2)
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hf : ContinuousOn f K hK : IsCompact K hfz : āˆ€ x ∈ K, f x ≠ 0 ⊢ (f '' K)ᶜ ∈ š“ 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_compact
[142, 1]
[154, 35]
by_cases h : K = āˆ…
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K ⊢ TendstoUniformlyOn (F * G) (f * g) p K
case pos š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : K = āˆ… ⊢ TendstoUniformlyOn (F * G) (f * g) p K case neg š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : ¬K = āˆ… ⊢ TendstoUniformlyOn (F * G) (f * g) p K
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_compact
[142, 1]
[154, 35]
case pos => simpa only [h] using tendstoUniformlyOn_empty
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : K = āˆ… ⊢ TendstoUniformlyOn (F * G) (f * g) p K
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_compact
[142, 1]
[154, 35]
case neg => replace h : K.Nonempty := Set.nonempty_iff_ne_empty.2 h have h2 : ContinuousOn (norm ∘ f) K := continuous_norm.comp_continuousOn hf have h3 : ContinuousOn (norm ∘ g) K := continuous_norm.comp_continuousOn hg obtain ⟨xf, _, h4⟩ : ∃ x ∈ K, āˆ€ y ∈ K, ‖f y‖ ≤ ‖f x‖ := hK.exists_forall_ge h h2 obtain ⟨xg, _, h5⟩ : ∃ x ∈ K, āˆ€ y ∈ K, ‖g y‖ ≤ ‖g x‖ := hK.exists_forall_ge h h3 exact hF.mul_of_bound hG h4 h5
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : ¬K = āˆ… ⊢ TendstoUniformlyOn (F * G) (f * g) p K
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_compact
[142, 1]
[154, 35]
simpa only [h] using tendstoUniformlyOn_empty
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : K = āˆ… ⊢ TendstoUniformlyOn (F * G) (f * g) p K
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_compact
[142, 1]
[154, 35]
replace h : K.Nonempty := Set.nonempty_iff_ne_empty.2 h
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : ¬K = āˆ… ⊢ TendstoUniformlyOn (F * G) (f * g) p K
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : Set.Nonempty K ⊢ TendstoUniformlyOn (F * G) (f * g) p K
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_compact
[142, 1]
[154, 35]
have h2 : ContinuousOn (norm ∘ f) K := continuous_norm.comp_continuousOn hf
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : Set.Nonempty K ⊢ TendstoUniformlyOn (F * G) (f * g) p K
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : Set.Nonempty K h2 : ContinuousOn (norm ∘ f) K ⊢ TendstoUniformlyOn (F * G) (f * g) p K
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_compact
[142, 1]
[154, 35]
have h3 : ContinuousOn (norm ∘ g) K := continuous_norm.comp_continuousOn hg
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : Set.Nonempty K h2 : ContinuousOn (norm ∘ f) K ⊢ TendstoUniformlyOn (F * G) (f * g) p K
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : Set.Nonempty K h2 : ContinuousOn (norm ∘ f) K h3 : ContinuousOn (norm ∘ g) K ⊢ TendstoUniformlyOn (F * G) (f * g) p K
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_compact
[142, 1]
[154, 35]
obtain ⟨xf, _, h4⟩ : ∃ x ∈ K, āˆ€ y ∈ K, ‖f y‖ ≤ ‖f x‖ := hK.exists_forall_ge h h2
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : Set.Nonempty K h2 : ContinuousOn (norm ∘ f) K h3 : ContinuousOn (norm ∘ g) K ⊢ TendstoUniformlyOn (F * G) (f * g) p K
case intro.intro š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : Set.Nonempty K h2 : ContinuousOn (norm ∘ f) K h3 : ContinuousOn (norm ∘ g) K xf : α leftāœ : xf ∈ K h4 : āˆ€ y ∈ K, ‖f y‖ ≤ ‖f xf‖ ⊢ TendstoUniformlyOn (F * G) (f * g) p K
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_compact
[142, 1]
[154, 35]
obtain ⟨xg, _, h5⟩ : ∃ x ∈ K, āˆ€ y ∈ K, ‖g y‖ ≤ ‖g x‖ := hK.exists_forall_ge h h3
case intro.intro š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : Set.Nonempty K h2 : ContinuousOn (norm ∘ f) K h3 : ContinuousOn (norm ∘ g) K xf : α leftāœ : xf ∈ K h4 : āˆ€ y ∈ K, ‖f y‖ ≤ ‖f xf‖ ⊢ TendstoUniformlyOn (F * G) (f * g) p K
case intro.intro.intro.intro š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : Set.Nonempty K h2 : ContinuousOn (norm ∘ f) K h3 : ContinuousOn (norm ∘ g) K xf : α leftāœĀ¹ : xf ∈ K h4 : āˆ€ y ∈ K, ‖f y‖ ≤ ‖f xf‖ xg : α leftāœ : xg ∈ K h5 : āˆ€ y ∈ K, ‖g y‖ ≤ ‖g xg‖ ⊢ TendstoUniformlyOn (F * G) (f * g) p K
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_compact
[142, 1]
[154, 35]
exact hF.mul_of_bound hG h4 h5
case intro.intro.intro.intro š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hK : IsCompact K h : Set.Nonempty K h2 : ContinuousOn (norm ∘ f) K h3 : ContinuousOn (norm ∘ g) K xf : α leftāœĀ¹ : xf ∈ K h4 : āˆ€ y ∈ K, ‖f y‖ ≤ ‖f xf‖ xg : α leftāœ : xg ∈ K h5 : āˆ€ y ∈ K, ‖g y‖ ≤ ‖g xg‖ ⊢ TendstoUniformlyOn (F * G) (f * g) p K
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.div_of_compact
[156, 1]
[160, 99]
simpa [div_eq_mul_inv] using hF.mul_of_compact (hG.inv_of_compact hg hK hgK) hf (hg.invā‚€ hgK) hK
š•œ : Type u_1 ι : Type u_2 α : Type u_3 s K : Set α instāœĀ¹ : NormedField š•œ F G : ι → α → š•œ f g : α → š•œ x y : š•œ Ī· Ī·' : ā„ p : Filter ι mf mg : ā„ instāœ : TopologicalSpace α hF : TendstoUniformlyOn F f p K hG : TendstoUniformlyOn G g p K hf : ContinuousOn f K hg : ContinuousOn g K hgK : āˆ€ z ∈ K, g z ≠ 0 hK : IsCompact K ⊢ TendstoUniformlyOn (F / G) (f / g) p K
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
Filter.Eventually.exists'
[167, 1]
[169, 89]
simpa [and_comm, exists_prop] using (frequently_nhdsWithin_iff.mp h.frequently).exists
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ P : ā„ → Prop tā‚€ : ā„ h : āˆ€į¶  (t : ā„) in š“[>] tā‚€, P t ⊢ ∃ t > tā‚€, P t
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
order_eq_zero_iff
[171, 1]
[180, 33]
rw [hp.locally_zero_iff]
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 ⊢ FormalMultilinearSeries.order p = 0 ↔ āˆ€į¶  (z : ā„‚) in š“ zā‚€, f z = 0
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 ⊢ FormalMultilinearSeries.order p = 0 ↔ p = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
order_eq_zero_iff
[171, 1]
[180, 33]
by_cases h : p = 0
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 ⊢ FormalMultilinearSeries.order p = 0 ↔ p = 0
case pos ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 h : p = 0 ⊢ FormalMultilinearSeries.order p = 0 ↔ p = 0 case neg ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 h : ¬p = 0 ⊢ FormalMultilinearSeries.order p = 0 ↔ p = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
order_eq_zero_iff
[171, 1]
[180, 33]
case pos => simp [h]
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 h : p = 0 ⊢ FormalMultilinearSeries.order p = 0 ↔ p = 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
order_eq_zero_iff
[171, 1]
[180, 33]
case neg => simp [FormalMultilinearSeries.order_eq_zero_iff h, h] ext1 rw [hp.coeff_zero, hzā‚€]; rfl
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 h : ¬p = 0 ⊢ FormalMultilinearSeries.order p = 0 ↔ p = 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
order_eq_zero_iff
[171, 1]
[180, 33]
simp [h]
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 h : p = 0 ⊢ FormalMultilinearSeries.order p = 0 ↔ p = 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
order_eq_zero_iff
[171, 1]
[180, 33]
simp [FormalMultilinearSeries.order_eq_zero_iff h, h]
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 h : ¬p = 0 ⊢ FormalMultilinearSeries.order p = 0 ↔ p = 0
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 h : ¬p = 0 ⊢ p 0 = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
order_eq_zero_iff
[171, 1]
[180, 33]
ext1
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 h : ¬p = 0 ⊢ p 0 = 0
case H ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 h : ¬p = 0 xāœ : Fin 0 → ā„‚ ⊢ (p 0) xāœ = 0 xāœ
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
order_eq_zero_iff
[171, 1]
[180, 33]
rw [hp.coeff_zero, hzā‚€]
case H ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 h : ¬p = 0 xāœ : Fin 0 → ā„‚ ⊢ (p 0) xāœ = 0 xāœ
case H ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 h : ¬p = 0 xāœ : Fin 0 → ā„‚ ⊢ 0 = 0 xāœ
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
order_eq_zero_iff
[171, 1]
[180, 33]
rfl
case H ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 h : ¬p = 0 xāœ : Fin 0 → ā„‚ ⊢ 0 = 0 xāœ
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
order_pos_iff
[182, 1]
[185, 57]
simp [pos_iff_ne_zero, (order_eq_zero_iff hp hzā‚€).not]
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ hzā‚€ : f zā‚€ = 0 ⊢ 0 < FormalMultilinearSeries.order p ↔ ∃ᶠ (z : ā„‚) in š“ zā‚€, f z ≠ 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
cindex_pos
[187, 1]
[191, 89]
obtain ⟨p, hp⟩ := h1
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ h1 : AnalyticAt ā„‚ f zā‚€ h2 : f zā‚€ = 0 h3 : āˆ€į¶  (z : ā„‚) in š“[≠] zā‚€, f z ≠ 0 ⊢ āˆ€į¶  (r : ā„) in š“[>] 0, cindex zā‚€ r f ≠ 0
case intro ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ h2 : f zā‚€ = 0 h3 : āˆ€į¶  (z : ā„‚) in š“[≠] zā‚€, f z ≠ 0 p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ ⊢ āˆ€į¶  (r : ā„) in š“[>] 0, cindex zā‚€ r f ≠ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
cindex_pos
[187, 1]
[191, 89]
filter_upwards [cindex_eventually_eq_order hp] with r h4
case intro ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι r : ā„ U : Set ā„‚ h2 : f zā‚€ = 0 h3 : āˆ€į¶  (z : ā„‚) in š“[≠] zā‚€, f z ≠ 0 p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ ⊢ āˆ€į¶  (r : ā„) in š“[>] 0, cindex zā‚€ r f ≠ 0
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι rāœ : ā„ U : Set ā„‚ h2 : f zā‚€ = 0 h3 : āˆ€į¶  (z : ā„‚) in š“[≠] zā‚€, f z ≠ 0 p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ r : ā„ h4 : cindex zā‚€ r f = ↑(FormalMultilinearSeries.order p) ⊢ cindex zā‚€ r f ≠ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
cindex_pos
[187, 1]
[191, 89]
simpa [h4, order_eq_zero_iff hp h2] using h3.frequently.filter_mono nhdsWithin_le_nhds
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ pāœ : Filter ι rāœ : ā„ U : Set ā„‚ h2 : f zā‚€ = 0 h3 : āˆ€į¶  (z : ā„‚) in š“[≠] zā‚€, f z ≠ 0 p : FormalMultilinearSeries ā„‚ ā„‚ ā„‚ hp : HasFPowerSeriesAt f p zā‚€ r : ā„ h4 : cindex zā‚€ r f = ↑(FormalMultilinearSeries.order p) ⊢ cindex zā‚€ r f ≠ 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz2_1
[194, 1]
[207, 13]
by_cases h : K = āˆ…
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 ⊢ āˆ€į¶  (n : ι) in p, āˆ€ z ∈ K, F n z ≠ 0
case pos ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 h : K = āˆ… ⊢ āˆ€į¶  (n : ι) in p, āˆ€ z ∈ K, F n z ≠ 0 case neg ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 h : ¬K = āˆ… ⊢ āˆ€į¶  (n : ι) in p, āˆ€ z ∈ K, F n z ≠ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz2_1
[194, 1]
[207, 13]
case pos => simp [h]
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 h : K = āˆ… ⊢ āˆ€į¶  (n : ι) in p, āˆ€ z ∈ K, F n z ≠ 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz2_1
[194, 1]
[207, 13]
case neg => obtain ⟨zā‚€, h1, h2⟩ : ∃ zā‚€ ∈ K, āˆ€ z ∈ K, ‖f z₀‖ ≤ ‖f z‖ := hK.exists_forall_le (nonempty_iff_ne_empty.2 h) (continuous_norm.comp_continuousOn hf1) have h3 := tendstoUniformlyOn_iff.1 F_conv (‖f z₀‖) (norm_pos_iff.2 (hf2 _ h1)) filter_upwards [h3] with n hn z hz h specialize hn z hz specialize h2 z hz simp [h] at hn h2 linarith
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 h : ¬K = āˆ… ⊢ āˆ€į¶  (n : ι) in p, āˆ€ z ∈ K, F n z ≠ 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz2_1
[194, 1]
[207, 13]
simp [h]
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 h : K = āˆ… ⊢ āˆ€į¶  (n : ι) in p, āˆ€ z ∈ K, F n z ≠ 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz2_1
[194, 1]
[207, 13]
obtain ⟨zā‚€, h1, h2⟩ : ∃ zā‚€ ∈ K, āˆ€ z ∈ K, ‖f z₀‖ ≤ ‖f z‖ := hK.exists_forall_le (nonempty_iff_ne_empty.2 h) (continuous_norm.comp_continuousOn hf1)
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 h : ¬K = āˆ… ⊢ āˆ€į¶  (n : ι) in p, āˆ€ z ∈ K, F n z ≠ 0
case intro.intro ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€āœ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 h : ¬K = āˆ… zā‚€ : ā„‚ h1 : zā‚€ ∈ K h2 : āˆ€ z ∈ K, ‖f z₀‖ ≤ ‖f z‖ ⊢ āˆ€į¶  (n : ι) in p, āˆ€ z ∈ K, F n z ≠ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz2_1
[194, 1]
[207, 13]
have h3 := tendstoUniformlyOn_iff.1 F_conv (‖f z₀‖) (norm_pos_iff.2 (hf2 _ h1))
case intro.intro ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€āœ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 h : ¬K = āˆ… zā‚€ : ā„‚ h1 : zā‚€ ∈ K h2 : āˆ€ z ∈ K, ‖f z₀‖ ≤ ‖f z‖ ⊢ āˆ€į¶  (n : ι) in p, āˆ€ z ∈ K, F n z ≠ 0
case intro.intro ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€āœ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 h : ¬K = āˆ… zā‚€ : ā„‚ h1 : zā‚€ ∈ K h2 : āˆ€ z ∈ K, ‖f z₀‖ ≤ ‖f z‖ h3 : āˆ€į¶  (n : ι) in p, āˆ€ x ∈ K, dist (f x) (F n x) < ‖f z₀‖ ⊢ āˆ€į¶  (n : ι) in p, āˆ€ z ∈ K, F n z ≠ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz2_1
[194, 1]
[207, 13]
filter_upwards [h3] with n hn z hz h
case intro.intro ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€āœ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 h : ¬K = āˆ… zā‚€ : ā„‚ h1 : zā‚€ ∈ K h2 : āˆ€ z ∈ K, ‖f z₀‖ ≤ ‖f z‖ h3 : āˆ€į¶  (n : ι) in p, āˆ€ x ∈ K, dist (f x) (F n x) < ‖f z₀‖ ⊢ āˆ€į¶  (n : ι) in p, āˆ€ z ∈ K, F n z ≠ 0
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€āœ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 hāœ : ¬K = āˆ… zā‚€ : ā„‚ h1 : zā‚€ ∈ K h2 : āˆ€ z ∈ K, ‖f z₀‖ ≤ ‖f z‖ h3 : āˆ€į¶  (n : ι) in p, āˆ€ x ∈ K, dist (f x) (F n x) < ‖f z₀‖ n : ι hn : āˆ€ x ∈ K, dist (f x) (F n x) < ‖f z₀‖ z : ā„‚ hz : z ∈ K h : F n z = 0 ⊢ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz2_1
[194, 1]
[207, 13]
specialize hn z hz
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€āœ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 hāœ : ¬K = āˆ… zā‚€ : ā„‚ h1 : zā‚€ ∈ K h2 : āˆ€ z ∈ K, ‖f z₀‖ ≤ ‖f z‖ h3 : āˆ€į¶  (n : ι) in p, āˆ€ x ∈ K, dist (f x) (F n x) < ‖f z₀‖ n : ι hn : āˆ€ x ∈ K, dist (f x) (F n x) < ‖f z₀‖ z : ā„‚ hz : z ∈ K h : F n z = 0 ⊢ False
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€āœ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 hāœ : ¬K = āˆ… zā‚€ : ā„‚ h1 : zā‚€ ∈ K h2 : āˆ€ z ∈ K, ‖f z₀‖ ≤ ‖f z‖ h3 : āˆ€į¶  (n : ι) in p, āˆ€ x ∈ K, dist (f x) (F n x) < ‖f z₀‖ n : ι z : ā„‚ hz : z ∈ K h : F n z = 0 hn : dist (f z) (F n z) < ‖f z₀‖ ⊢ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz2_1
[194, 1]
[207, 13]
specialize h2 z hz
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€āœ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 hāœ : ¬K = āˆ… zā‚€ : ā„‚ h1 : zā‚€ ∈ K h2 : āˆ€ z ∈ K, ‖f z₀‖ ≤ ‖f z‖ h3 : āˆ€į¶  (n : ι) in p, āˆ€ x ∈ K, dist (f x) (F n x) < ‖f z₀‖ n : ι z : ā„‚ hz : z ∈ K h : F n z = 0 hn : dist (f z) (F n z) < ‖f z₀‖ ⊢ False
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€āœ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 hāœ : ¬K = āˆ… zā‚€ : ā„‚ h1 : zā‚€ ∈ K h3 : āˆ€į¶  (n : ι) in p, āˆ€ x ∈ K, dist (f x) (F n x) < ‖f z₀‖ n : ι z : ā„‚ hz : z ∈ K h : F n z = 0 hn : dist (f z) (F n z) < ‖f z₀‖ h2 : ‖f z₀‖ ≤ ‖f z‖ ⊢ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz2_1
[194, 1]
[207, 13]
simp [h] at hn h2
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€āœ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 hāœ : ¬K = āˆ… zā‚€ : ā„‚ h1 : zā‚€ ∈ K h3 : āˆ€į¶  (n : ι) in p, āˆ€ x ∈ K, dist (f x) (F n x) < ‖f z₀‖ n : ι z : ā„‚ hz : z ∈ K h : F n z = 0 hn : dist (f z) (F n z) < ‖f z₀‖ h2 : ‖f z₀‖ ≤ ‖f z‖ ⊢ False
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€āœ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 hāœ : ¬K = āˆ… zā‚€ : ā„‚ h1 : zā‚€ ∈ K h3 : āˆ€į¶  (n : ι) in p, āˆ€ x ∈ K, dist (f x) (F n x) < ‖f z₀‖ n : ι z : ā„‚ hz : z ∈ K h : F n z = 0 h2 : Complex.abs (f zā‚€) ≤ Complex.abs (f z) hn : Complex.abs (f z) < Complex.abs (f zā‚€) ⊢ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
hurwitz2_1
[194, 1]
[207, 13]
linarith
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€āœ : ā„‚ p : Filter ι r : ā„ U K : Set ā„‚ hK : IsCompact K F_conv : TendstoUniformlyOn F f p K hf1 : ContinuousOn f K hf2 : āˆ€ z ∈ K, f z ≠ 0 hāœ : ¬K = āˆ… zā‚€ : ā„‚ h1 : zā‚€ ∈ K h3 : āˆ€į¶  (n : ι) in p, āˆ€ x ∈ K, dist (f x) (F n x) < ‖f z₀‖ n : ι z : ā„‚ hz : z ∈ K h : F n z = 0 h2 : Complex.abs (f zā‚€) ≤ Complex.abs (f z) hn : Complex.abs (f z) < Complex.abs (f zā‚€) ⊢ False
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
by_cases h : NeBot p
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) ⊢ Tendsto (fun i => ∮ (z : ā„‚) in C(zā‚€, r), F i z) p (š“ (∮ (z : ā„‚) in C(zā‚€, r), f z))
case pos ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : NeBot p ⊢ Tendsto (fun i => ∮ (z : ā„‚) in C(zā‚€, r), F i z) p (š“ (∮ (z : ā„‚) in C(zā‚€, r), f z)) case neg ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : ¬NeBot p ⊢ Tendsto (fun i => ∮ (z : ā„‚) in C(zā‚€, r), F i z) p (š“ (∮ (z : ā„‚) in C(zā‚€, r), f z))
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
case neg => simp at h; simp [h]
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : ¬NeBot p ⊢ Tendsto (fun i => ∮ (z : ā„‚) in C(zā‚€, r), F i z) p (š“ (∮ (z : ā„‚) in C(zā‚€, r), f z))
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
case pos => have f_cont : ContinuousOn f (sphere zā‚€ r) := F_conv.continuousOn F_cont rw [Metric.tendsto_nhds] intro ε hε have twopir_ne_zero : 2 * Real.pi * r ≠ 0 := by simp [Real.pi_ne_zero, hr.ne.symm] have : (2 * Real.pi * r)⁻¹ * ε > 0 := mul_pos (inv_pos.mpr (mul_pos (mul_pos two_pos Real.pi_pos) hr)) hε.lt filter_upwards [tendstoUniformlyOn_iff.mp F_conv ((2 * Real.pi * r)⁻¹ * ε) this, F_cont] with n h h' simp_rw [dist_comm (f _) _, Complex.dist_eq, ← Complex.norm_eq_abs] at h rw [Complex.dist_eq, ← circleIntegral.integral_sub (h'.circleIntegrable hr.le) (f_cont.circleIntegrable hr.le), ← Complex.norm_eq_abs] have : ∃ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε := by have : zā‚€ + r ∈ sphere zā‚€ r := by simp [hr.le, Real.norm_eq_abs] exact ⟨zā‚€ + r, this, h _ this⟩ convert circleIntegral.norm_integral_lt_of_norm_le_const_of_lt hr (h'.sub f_cont) (Ī» z hz => (h z hz).le) this field_simp [hr.ne, Real.pi_ne_zero, two_ne_zero]; ring
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : NeBot p ⊢ Tendsto (fun i => ∮ (z : ā„‚) in C(zā‚€, r), F i z) p (š“ (∮ (z : ā„‚) in C(zā‚€, r), f z))
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
simp at h
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : ¬NeBot p ⊢ Tendsto (fun i => ∮ (z : ā„‚) in C(zā‚€, r), F i z) p (š“ (∮ (z : ā„‚) in C(zā‚€, r), f z))
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : p = ⊄ ⊢ Tendsto (fun i => ∮ (z : ā„‚) in C(zā‚€, r), F i z) p (š“ (∮ (z : ā„‚) in C(zā‚€, r), f z))
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
simp [h]
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : p = ⊄ ⊢ Tendsto (fun i => ∮ (z : ā„‚) in C(zā‚€, r), F i z) p (š“ (∮ (z : ā„‚) in C(zā‚€, r), f z))
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
have f_cont : ContinuousOn f (sphere zā‚€ r) := F_conv.continuousOn F_cont
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : NeBot p ⊢ Tendsto (fun i => ∮ (z : ā„‚) in C(zā‚€, r), F i z) p (š“ (∮ (z : ā„‚) in C(zā‚€, r), f z))
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ⊢ Tendsto (fun i => ∮ (z : ā„‚) in C(zā‚€, r), F i z) p (š“ (∮ (z : ā„‚) in C(zā‚€, r), f z))
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
rw [Metric.tendsto_nhds]
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ⊢ Tendsto (fun i => ∮ (z : ā„‚) in C(zā‚€, r), F i z) p (š“ (∮ (z : ā„‚) in C(zā‚€, r), f z))
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ⊢ āˆ€ ε > 0, āˆ€į¶  (x : ι) in p, dist (∮ (z : ā„‚) in C(zā‚€, r), F x z) (∮ (z : ā„‚) in C(zā‚€, r), f z) < ε
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
intro ε hε
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ⊢ āˆ€ ε > 0, āˆ€į¶  (x : ι) in p, dist (∮ (z : ā„‚) in C(zā‚€, r), F x z) (∮ (z : ā„‚) in C(zā‚€, r), f z) < ε
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 ⊢ āˆ€į¶  (x : ι) in p, dist (∮ (z : ā„‚) in C(zā‚€, r), F x z) (∮ (z : ā„‚) in C(zā‚€, r), f z) < ε
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
have twopir_ne_zero : 2 * Real.pi * r ≠ 0 := by simp [Real.pi_ne_zero, hr.ne.symm]
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 ⊢ āˆ€į¶  (x : ι) in p, dist (∮ (z : ā„‚) in C(zā‚€, r), F x z) (∮ (z : ā„‚) in C(zā‚€, r), f z) < ε
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 ⊢ āˆ€į¶  (x : ι) in p, dist (∮ (z : ā„‚) in C(zā‚€, r), F x z) (∮ (z : ā„‚) in C(zā‚€, r), f z) < ε
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
have : (2 * Real.pi * r)⁻¹ * ε > 0 := mul_pos (inv_pos.mpr (mul_pos (mul_pos two_pos Real.pi_pos) hr)) hε.lt
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 ⊢ āˆ€į¶  (x : ι) in p, dist (∮ (z : ā„‚) in C(zā‚€, r), F x z) (∮ (z : ā„‚) in C(zā‚€, r), f z) < ε
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 this : (2 * Real.pi * r)⁻¹ * ε > 0 ⊢ āˆ€į¶  (x : ι) in p, dist (∮ (z : ā„‚) in C(zā‚€, r), F x z) (∮ (z : ā„‚) in C(zā‚€, r), f z) < ε
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
filter_upwards [tendstoUniformlyOn_iff.mp F_conv ((2 * Real.pi * r)⁻¹ * ε) this, F_cont] with n h h'
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 this : (2 * Real.pi * r)⁻¹ * ε > 0 ⊢ āˆ€į¶  (x : ι) in p, dist (∮ (z : ā„‚) in C(zā‚€, r), F x z) (∮ (z : ā„‚) in C(zā‚€, r), f z) < ε
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) hāœ : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 this : (2 * Real.pi * r)⁻¹ * ε > 0 n : ι h : āˆ€ x ∈ sphere zā‚€ r, dist (f x) (F n x) < (2 * Real.pi * r)⁻¹ * ε h' : ContinuousOn (F n) (sphere zā‚€ r) ⊢ dist (∮ (z : ā„‚) in C(zā‚€, r), F n z) (∮ (z : ā„‚) in C(zā‚€, r), f z) < ε
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
simp_rw [dist_comm (f _) _, Complex.dist_eq, ← Complex.norm_eq_abs] at h
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) hāœ : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 this : (2 * Real.pi * r)⁻¹ * ε > 0 n : ι h : āˆ€ x ∈ sphere zā‚€ r, dist (f x) (F n x) < (2 * Real.pi * r)⁻¹ * ε h' : ContinuousOn (F n) (sphere zā‚€ r) ⊢ dist (∮ (z : ā„‚) in C(zā‚€, r), F n z) (∮ (z : ā„‚) in C(zā‚€, r), f z) < ε
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) hāœ : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 this : (2 * Real.pi * r)⁻¹ * ε > 0 n : ι h' : ContinuousOn (F n) (sphere zā‚€ r) h : āˆ€ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε ⊢ dist (∮ (z : ā„‚) in C(zā‚€, r), F n z) (∮ (z : ā„‚) in C(zā‚€, r), f z) < ε
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
rw [Complex.dist_eq, ← circleIntegral.integral_sub (h'.circleIntegrable hr.le) (f_cont.circleIntegrable hr.le), ← Complex.norm_eq_abs]
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) hāœ : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 this : (2 * Real.pi * r)⁻¹ * ε > 0 n : ι h' : ContinuousOn (F n) (sphere zā‚€ r) h : āˆ€ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε ⊢ dist (∮ (z : ā„‚) in C(zā‚€, r), F n z) (∮ (z : ā„‚) in C(zā‚€, r), f z) < ε
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) hāœ : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 this : (2 * Real.pi * r)⁻¹ * ε > 0 n : ι h' : ContinuousOn (F n) (sphere zā‚€ r) h : āˆ€ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε ⊢ ā€–āˆ® (z : ā„‚) in C(zā‚€, r), F n z - f z‖ < ε
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
have : ∃ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε := by have : zā‚€ + r ∈ sphere zā‚€ r := by simp [hr.le, Real.norm_eq_abs] exact ⟨zā‚€ + r, this, h _ this⟩
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) hāœ : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 this : (2 * Real.pi * r)⁻¹ * ε > 0 n : ι h' : ContinuousOn (F n) (sphere zā‚€ r) h : āˆ€ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε ⊢ ā€–āˆ® (z : ā„‚) in C(zā‚€, r), F n z - f z‖ < ε
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) hāœ : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 thisāœ : (2 * Real.pi * r)⁻¹ * ε > 0 n : ι h' : ContinuousOn (F n) (sphere zā‚€ r) h : āˆ€ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε this : ∃ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε ⊢ ā€–āˆ® (z : ā„‚) in C(zā‚€, r), F n z - f z‖ < ε
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
convert circleIntegral.norm_integral_lt_of_norm_le_const_of_lt hr (h'.sub f_cont) (Ī» z hz => (h z hz).le) this
case h ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) hāœ : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 thisāœ : (2 * Real.pi * r)⁻¹ * ε > 0 n : ι h' : ContinuousOn (F n) (sphere zā‚€ r) h : āˆ€ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε this : ∃ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε ⊢ ā€–āˆ® (z : ā„‚) in C(zā‚€, r), F n z - f z‖ < ε
case h.e'_4 ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) hāœ : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 thisāœ : (2 * Real.pi * r)⁻¹ * ε > 0 n : ι h' : ContinuousOn (F n) (sphere zā‚€ r) h : āˆ€ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε this : ∃ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε ⊢ ε = 2 * Real.pi * r * ((2 * Real.pi * r)⁻¹ * ε)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
field_simp [hr.ne, Real.pi_ne_zero, two_ne_zero]
case h.e'_4 ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) hāœ : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 thisāœ : (2 * Real.pi * r)⁻¹ * ε > 0 n : ι h' : ContinuousOn (F n) (sphere zā‚€ r) h : āˆ€ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε this : ∃ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε ⊢ ε = 2 * Real.pi * r * ((2 * Real.pi * r)⁻¹ * ε)
case h.e'_4 ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) hāœ : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 thisāœ : (2 * Real.pi * r)⁻¹ * ε > 0 n : ι h' : ContinuousOn (F n) (sphere zā‚€ r) h : āˆ€ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε this : ∃ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε ⊢ ε * (2 * Real.pi * r) = 2 * Real.pi * r * ε
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
ring
case h.e'_4 ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) hāœ : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 thisāœ : (2 * Real.pi * r)⁻¹ * ε > 0 n : ι h' : ContinuousOn (F n) (sphere zā‚€ r) h : āˆ€ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε this : ∃ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε ⊢ ε * (2 * Real.pi * r) = 2 * Real.pi * r * ε
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
simp [Real.pi_ne_zero, hr.ne.symm]
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) h : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 ⊢ 2 * Real.pi * r ≠ 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.tendsto_circle_integral
[209, 1]
[231, 59]
have : zā‚€ + r ∈ sphere zā‚€ r := by simp [hr.le, Real.norm_eq_abs]
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) hāœ : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 this : (2 * Real.pi * r)⁻¹ * ε > 0 n : ι h' : ContinuousOn (F n) (sphere zā‚€ r) h : āˆ€ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε ⊢ ∃ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε
ι : Type u_1 F : ι → ā„‚ → ā„‚ f : ā„‚ → ā„‚ zā‚€ : ā„‚ p : Filter ι r : ā„ U : Set ā„‚ hr : 0 < r F_cont : āˆ€į¶  (n : ι) in p, ContinuousOn (F n) (sphere zā‚€ r) F_conv : TendstoUniformlyOn F f p (sphere zā‚€ r) hāœ : NeBot p f_cont : ContinuousOn f (sphere zā‚€ r) ε : ā„ hε : ε > 0 twopir_ne_zero : 2 * Real.pi * r ≠ 0 thisāœ : (2 * Real.pi * r)⁻¹ * ε > 0 n : ι h' : ContinuousOn (F n) (sphere zā‚€ r) h : āˆ€ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε this : zā‚€ + ↑r ∈ sphere zā‚€ r ⊢ ∃ x ∈ sphere zā‚€ r, ‖F n x - f x‖ < (2 * Real.pi * r)⁻¹ * ε