url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
ContinuousOn_uderiv
[30, 1]
[35, 27]
exact nhdsWithin_le_nhds
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U ⊒ Tendsto (fun f => f) (𝓝[𝓗 U] f) (𝓝 f)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
𝓑_const
[42, 1]
[43, 28]
simp [𝓑, ← mapsTo_sUnion]
U : Set β„‚ Q✝ : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ Q : Set β„‚ ⊒ (𝓑 U fun x => Q) = {f | f ∈ 𝓗 U ∧ MapsTo f U Q}
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
isClosed_𝓑
[45, 1]
[53, 91]
rw [𝓑, setOf_and]
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) ⊒ IsClosed (𝓑 U Q)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) ⊒ IsClosed ({a | a ∈ 𝓗 U} ∩ {a | βˆ€ K ∈ compacts U, MapsTo a K (Q K)})
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
isClosed_𝓑
[45, 1]
[53, 91]
apply (isClosed_𝓗 hU).inter
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) ⊒ IsClosed ({a | a ∈ 𝓗 U} ∩ {a | βˆ€ K ∈ compacts U, MapsTo a K (Q K)})
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) ⊒ IsClosed {a | βˆ€ K ∈ compacts U, MapsTo a K (Q K)}
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
isClosed_𝓑
[45, 1]
[53, 91]
simp only [setOf_forall, MapsTo]
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) ⊒ IsClosed {a | βˆ€ K ∈ compacts U, MapsTo a K (Q K)}
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) ⊒ IsClosed (β‹‚ i ∈ compacts U, β‹‚ i_1 ∈ i, {x | x i_1 ∈ Q i})
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
isClosed_𝓑
[45, 1]
[53, 91]
apply isClosed_biInter
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) ⊒ IsClosed (β‹‚ i ∈ compacts U, β‹‚ i_1 ∈ i, {x | x i_1 ∈ Q i})
case h U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) ⊒ βˆ€ i ∈ compacts U, IsClosed (β‹‚ i_1 ∈ i, {x | x i_1 ∈ Q i})
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
isClosed_𝓑
[45, 1]
[53, 91]
intro K hK
case h U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) ⊒ βˆ€ i ∈ compacts U, IsClosed (β‹‚ i_1 ∈ i, {x | x i_1 ∈ Q i})
case h U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) K : Set β„‚ hK : K ∈ compacts U ⊒ IsClosed (β‹‚ i ∈ K, {x | x i ∈ Q K})
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
isClosed_𝓑
[45, 1]
[53, 91]
apply isClosed_biInter
case h U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) K : Set β„‚ hK : K ∈ compacts U ⊒ IsClosed (β‹‚ i ∈ K, {x | x i ∈ Q K})
case h.h U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) K : Set β„‚ hK : K ∈ compacts U ⊒ βˆ€ i ∈ K, IsClosed {x | x i ∈ Q K}
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
isClosed_𝓑
[45, 1]
[53, 91]
intro z hz
case h.h U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) K : Set β„‚ hK : K ∈ compacts U ⊒ βˆ€ i ∈ K, IsClosed {x | x i ∈ Q K}
case h.h U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) K : Set β„‚ hK : K ∈ compacts U z : β„‚ hz : z ∈ K ⊒ IsClosed {x | x z ∈ Q K}
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
isClosed_𝓑
[45, 1]
[53, 91]
apply (hQ K hK).isClosed.preimage
case h.h U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) K : Set β„‚ hK : K ∈ compacts U z : β„‚ hz : z ∈ K ⊒ IsClosed {x | x z ∈ Q K}
case h.h U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) K : Set β„‚ hK : K ∈ compacts U z : β„‚ hz : z ∈ K ⊒ Continuous fun x => x z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
isClosed_𝓑
[45, 1]
[53, 91]
exact ((UniformOnFun.uniformContinuous_eval_of_mem β„‚ (compacts U) (mem_singleton z) ⟨singleton_subset_iff.2 (hK.1 hz), isCompact_singleton⟩).continuous)
case h.h U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U hQ : βˆ€ K ∈ compacts U, IsCompact (Q K) K : Set β„‚ hK : K ∈ compacts U z : β„‚ hz : z ∈ K ⊒ Continuous fun x => x z
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
IsClosed_π“œ
[61, 1]
[67, 84]
suffices h : IsClosed {f : 𝓒 U | MapsTo f U (closedBall 0 1)} by exact (isClosed_𝓗 hU).inter h
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U ⊒ IsClosed (π“œ U)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U ⊒ IsClosed {f | MapsTo f U (closedBall 0 1)}
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
IsClosed_π“œ
[61, 1]
[67, 84]
simp_rw [MapsTo, setOf_forall]
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U ⊒ IsClosed {f | MapsTo f U (closedBall 0 1)}
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U ⊒ IsClosed (β‹‚ i ∈ U, {x | x i ∈ closedBall 0 1})
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
IsClosed_π“œ
[61, 1]
[67, 84]
refine isClosed_biInter (Ξ» z hz => isClosed_ball.preimage ?_)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U ⊒ IsClosed (β‹‚ i ∈ U, {x | x i ∈ closedBall 0 1})
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U z : β„‚ hz : z ∈ U ⊒ Continuous fun x => x z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
IsClosed_π“œ
[61, 1]
[67, 84]
exact ((UniformOnFun.uniformContinuous_eval_of_mem β„‚ (compacts U) (mem_singleton z) ⟨singleton_subset_iff.2 hz, isCompact_singleton⟩).continuous)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U z : β„‚ hz : z ∈ U ⊒ Continuous fun x => x z
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
IsClosed_π“œ
[61, 1]
[67, 84]
exact (isClosed_𝓗 hU).inter h
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U h : IsClosed {f | MapsTo f U (closedBall 0 1)} ⊒ IsClosed (π“œ U)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
obtain ⟨u, hu⟩ := nonempty_compl.mpr (good_domain.ne_univ : U β‰  univ)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U ⊒ Set.Nonempty (π“˜ U)
case intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ ⊒ Set.Nonempty (π“˜ U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
let f : β„‚ β†’ β„‚ := Ξ» z => z - u
case intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ ⊒ Set.Nonempty (π“˜ U)
case intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u ⊒ Set.Nonempty (π“˜ U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
have f_inj : Injective f := Ξ» _ _ h => sub_left_inj.mp h
case intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u ⊒ Set.Nonempty (π“˜ U)
case intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f ⊒ Set.Nonempty (π“˜ U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
have f_hol : DifferentiableOn β„‚ f U := differentiableOn_id.sub (differentiableOn_const u)
case intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f ⊒ Set.Nonempty (π“˜ U)
case intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U ⊒ Set.Nonempty (π“˜ U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
have f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U -> f z β‰  0 := Ξ» z hz f0 => hu (sub_eq_zero.mp f0 β–Έ hz)
case intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U ⊒ Set.Nonempty (π“˜ U)
case intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 ⊒ Set.Nonempty (π“˜ U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
obtain ⟨g, g_hol, g_sqf⟩ := good_domain.has_sqrt f f_noz f_hol
case intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 ⊒ Set.Nonempty (π“˜ U)
case intro.intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U ⊒ Set.Nonempty (π“˜ U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
obtain ⟨zβ‚€, hzβ‚€βŸ© := (good_domain.is_nonempty : U.Nonempty)
case intro.intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U ⊒ Set.Nonempty (π“˜ U)
case intro.intro.intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U ⊒ Set.Nonempty (π“˜ U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
have gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) := by have e1 : U ∈ 𝓝 zβ‚€ := good_domain.is_open.mem_nhds hzβ‚€ have e2 := g_hol.analyticAt e1 have f_eq_comp := (good_domain.is_open.eventually_mem hzβ‚€).mono g_sqf have dg_nonzero : deriv g zβ‚€ β‰  0 := by have e3 := e2.differentiableAt.deriv_eq_deriv_pow_div_pow zero_lt_two f_eq_comp (f_noz hzβ‚€) simp [e3, deriv_sub_const, f] intro h have := g_sqf hzβ‚€ rw [Pi.pow_apply, h, zero_pow two_ne_zero] at this cases f_noz hzβ‚€ this refine e2.eventually_constant_or_nhds_le_map_nhds.resolve_left (Ξ» h => ?_) (image_mem_map e1) simp [EventuallyEq.deriv_eq h] at dg_nonzero
case intro.intro.intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U ⊒ Set.Nonempty (π“˜ U)
case intro.intro.intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) ⊒ Set.Nonempty (π“˜ U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
obtain ⟨r, r_pos, hr⟩ := Metric.mem_nhds_iff.mp gU_nhd
case intro.intro.intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) ⊒ Set.Nonempty (π“˜ U)
case intro.intro.intro.intro.intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U ⊒ Set.Nonempty (π“˜ U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
let gg : embedding U ((closedBall (- g zβ‚€) (r / 2))ᢜ) := { to_fun := g, is_diff := g_hol, is_inj := Ξ» z₁ hz₁ zβ‚‚ hzβ‚‚ hgz => f_inj (by simp [g_sqf _, hz₁, hzβ‚‚, hgz]), maps_to := Ξ» z hz hgz => by { apply f_noz hz rw [mem_closed_ball_neg_iff_mem_neg_closed_ball] at hgz obtain ⟨z', hz', hgz'⟩ := (closedBall_subset_ball (by linarith)).trans hr hgz have hzz' : z = z' := f_inj (by simp [g_sqf hz, g_sqf hz', hgz']) simpa [hzz', neg_eq_self_iff, g_sqf hz'] using hgz'.symm } }
case intro.intro.intro.intro.intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U ⊒ Set.Nonempty (π“˜ U)
case intro.intro.intro.intro.intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U gg : embedding U (closedBall (-g zβ‚€) (r / 2))ᢜ := { to_fun := g, is_diff := g_hol, is_inj := β‹―, maps_to := β‹― } ⊒ Set.Nonempty (π“˜ U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
let ggg := (embedding.inv _ (by linarith)).comp gg
case intro.intro.intro.intro.intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U gg : embedding U (closedBall (-g zβ‚€) (r / 2))ᢜ := { to_fun := g, is_diff := g_hol, is_inj := β‹―, maps_to := β‹― } ⊒ Set.Nonempty (π“˜ U)
case intro.intro.intro.intro.intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U gg : embedding U (closedBall (-g zβ‚€) (r / 2))ᢜ := { to_fun := g, is_diff := g_hol, is_inj := β‹―, maps_to := β‹― } ggg : embedding U 𝔻 := embedding.comp (embedding.inv (-g zβ‚€) β‹―) gg ⊒ Set.Nonempty (π“˜ U)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
refine ⟨ggg.to_fun, ⟨ggg.is_diff, ?_⟩, ggg.is_inj⟩
case intro.intro.intro.intro.intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U gg : embedding U (closedBall (-g zβ‚€) (r / 2))ᢜ := { to_fun := g, is_diff := g_hol, is_inj := β‹―, maps_to := β‹― } ggg : embedding U 𝔻 := embedding.comp (embedding.inv (-g zβ‚€) β‹―) gg ⊒ Set.Nonempty (π“˜ U)
case intro.intro.intro.intro.intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U gg : embedding U (closedBall (-g zβ‚€) (r / 2))ᢜ := { to_fun := g, is_diff := g_hol, is_inj := β‹―, maps_to := β‹― } ggg : embedding U 𝔻 := embedding.comp (embedding.inv (-g zβ‚€) β‹―) gg ⊒ MapsTo ggg.to_fun U (closedBall 0 1)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
exact Ξ» z hz => ball_subset_closedBall (ggg.maps_to hz)
case intro.intro.intro.intro.intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U gg : embedding U (closedBall (-g zβ‚€) (r / 2))ᢜ := { to_fun := g, is_diff := g_hol, is_inj := β‹―, maps_to := β‹― } ggg : embedding U 𝔻 := embedding.comp (embedding.inv (-g zβ‚€) β‹―) gg ⊒ MapsTo ggg.to_fun U (closedBall 0 1)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
have e1 : U ∈ 𝓝 zβ‚€ := good_domain.is_open.mem_nhds hzβ‚€
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U ⊒ g '' U ∈ 𝓝 (g zβ‚€)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ ⊒ g '' U ∈ 𝓝 (g zβ‚€)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
have e2 := g_hol.analyticAt e1
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ ⊒ g '' U ∈ 𝓝 (g zβ‚€)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ ⊒ g '' U ∈ 𝓝 (g zβ‚€)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
have f_eq_comp := (good_domain.is_open.eventually_mem hzβ‚€).mono g_sqf
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ ⊒ g '' U ∈ 𝓝 (g zβ‚€)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x ⊒ g '' U ∈ 𝓝 (g zβ‚€)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
have dg_nonzero : deriv g zβ‚€ β‰  0 := by have e3 := e2.differentiableAt.deriv_eq_deriv_pow_div_pow zero_lt_two f_eq_comp (f_noz hzβ‚€) simp [e3, deriv_sub_const, f] intro h have := g_sqf hzβ‚€ rw [Pi.pow_apply, h, zero_pow two_ne_zero] at this cases f_noz hzβ‚€ this
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x ⊒ g '' U ∈ 𝓝 (g zβ‚€)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x dg_nonzero : deriv g zβ‚€ β‰  0 ⊒ g '' U ∈ 𝓝 (g zβ‚€)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
refine e2.eventually_constant_or_nhds_le_map_nhds.resolve_left (Ξ» h => ?_) (image_mem_map e1)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x dg_nonzero : deriv g zβ‚€ β‰  0 ⊒ g '' U ∈ 𝓝 (g zβ‚€)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x dg_nonzero : deriv g zβ‚€ β‰  0 h : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, g z = g zβ‚€ ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
simp [EventuallyEq.deriv_eq h] at dg_nonzero
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x dg_nonzero : deriv g zβ‚€ β‰  0 h : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, g z = g zβ‚€ ⊒ False
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
have e3 := e2.differentiableAt.deriv_eq_deriv_pow_div_pow zero_lt_two f_eq_comp (f_noz hzβ‚€)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x ⊒ deriv g zβ‚€ β‰  0
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x e3 : deriv (fun z => g z) zβ‚€ = deriv (fun z => f z) zβ‚€ / (↑2 * g zβ‚€ ^ (2 - 1)) ⊒ deriv g zβ‚€ β‰  0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
simp [e3, deriv_sub_const, f]
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x e3 : deriv (fun z => g z) zβ‚€ = deriv (fun z => f z) zβ‚€ / (↑2 * g zβ‚€ ^ (2 - 1)) ⊒ deriv g zβ‚€ β‰  0
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x e3 : deriv (fun z => g z) zβ‚€ = deriv (fun z => f z) zβ‚€ / (↑2 * g zβ‚€ ^ (2 - 1)) ⊒ Β¬g zβ‚€ = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
intro h
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x e3 : deriv (fun z => g z) zβ‚€ = deriv (fun z => f z) zβ‚€ / (↑2 * g zβ‚€ ^ (2 - 1)) ⊒ Β¬g zβ‚€ = 0
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x e3 : deriv (fun z => g z) zβ‚€ = deriv (fun z => f z) zβ‚€ / (↑2 * g zβ‚€ ^ (2 - 1)) h : g zβ‚€ = 0 ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
have := g_sqf hzβ‚€
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x e3 : deriv (fun z => g z) zβ‚€ = deriv (fun z => f z) zβ‚€ / (↑2 * g zβ‚€ ^ (2 - 1)) h : g zβ‚€ = 0 ⊒ False
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x e3 : deriv (fun z => g z) zβ‚€ = deriv (fun z => f z) zβ‚€ / (↑2 * g zβ‚€ ^ (2 - 1)) h : g zβ‚€ = 0 this : f zβ‚€ = (g ^ 2) zβ‚€ ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
rw [Pi.pow_apply, h, zero_pow two_ne_zero] at this
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x e3 : deriv (fun z => g z) zβ‚€ = deriv (fun z => f z) zβ‚€ / (↑2 * g zβ‚€ ^ (2 - 1)) h : g zβ‚€ = 0 this : f zβ‚€ = (g ^ 2) zβ‚€ ⊒ False
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x e3 : deriv (fun z => g z) zβ‚€ = deriv (fun z => f z) zβ‚€ / (↑2 * g zβ‚€ ^ (2 - 1)) h : g zβ‚€ = 0 this : f zβ‚€ = 0 ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
cases f_noz hzβ‚€ this
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U e1 : U ∈ 𝓝 zβ‚€ e2 : AnalyticAt β„‚ g zβ‚€ f_eq_comp : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, f x = (g ^ 2) x e3 : deriv (fun z => g z) zβ‚€ = deriv (fun z => f z) zβ‚€ / (↑2 * g zβ‚€ ^ (2 - 1)) h : g zβ‚€ = 0 this : f zβ‚€ = 0 ⊒ False
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
simp [g_sqf _, hz₁, hzβ‚‚, hgz]
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U z₁ : β„‚ hz₁ : z₁ ∈ U zβ‚‚ : β„‚ hzβ‚‚ : zβ‚‚ ∈ U hgz : g z₁ = g zβ‚‚ ⊒ f z₁ = f zβ‚‚
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
apply f_noz hz
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U z : β„‚ hz : z ∈ U hgz : g z ∈ closedBall (-g zβ‚€) (r / 2) ⊒ False
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U z : β„‚ hz : z ∈ U hgz : g z ∈ closedBall (-g zβ‚€) (r / 2) ⊒ f z = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
rw [mem_closed_ball_neg_iff_mem_neg_closed_ball] at hgz
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U z : β„‚ hz : z ∈ U hgz : g z ∈ closedBall (-g zβ‚€) (r / 2) ⊒ f z = 0
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U z : β„‚ hz : z ∈ U hgz : -g z ∈ closedBall (g zβ‚€) (r / 2) ⊒ f z = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
obtain ⟨z', hz', hgz'⟩ := (closedBall_subset_ball (by linarith)).trans hr hgz
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U z : β„‚ hz : z ∈ U hgz : -g z ∈ closedBall (g zβ‚€) (r / 2) ⊒ f z = 0
case intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U z : β„‚ hz : z ∈ U hgz : -g z ∈ closedBall (g zβ‚€) (r / 2) z' : β„‚ hz' : z' ∈ U hgz' : g z' = -g z ⊒ f z = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
have hzz' : z = z' := f_inj (by simp [g_sqf hz, g_sqf hz', hgz'])
case intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U z : β„‚ hz : z ∈ U hgz : -g z ∈ closedBall (g zβ‚€) (r / 2) z' : β„‚ hz' : z' ∈ U hgz' : g z' = -g z ⊒ f z = 0
case intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U z : β„‚ hz : z ∈ U hgz : -g z ∈ closedBall (g zβ‚€) (r / 2) z' : β„‚ hz' : z' ∈ U hgz' : g z' = -g z hzz' : z = z' ⊒ f z = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
simpa [hzz', neg_eq_self_iff, g_sqf hz'] using hgz'.symm
case intro.intro U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U z : β„‚ hz : z ∈ U hgz : -g z ∈ closedBall (g zβ‚€) (r / 2) z' : β„‚ hz' : z' ∈ U hgz' : g z' = -g z hzz' : z = z' ⊒ f z = 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
linarith
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U z : β„‚ hz : z ∈ U hgz : -g z ∈ closedBall (g zβ‚€) (r / 2) ⊒ r / 2 < r
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
simp [g_sqf hz, g_sqf hz', hgz']
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U z : β„‚ hz : z ∈ U hgz : -g z ∈ closedBall (g zβ‚€) (r / 2) z' : β„‚ hz' : z' ∈ U hgz' : g z' = -g z ⊒ f z = f z'
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
π“˜_nonempty
[73, 1]
[111, 58]
linarith
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ inst✝ : good_domain U u : β„‚ hu : u ∈ Uᢜ f : β„‚ β†’ β„‚ := fun z => z - u f_inj : Injective f f_hol : DifferentiableOn β„‚ f U f_noz : βˆ€ ⦃z : ℂ⦄, z ∈ U β†’ f z β‰  0 g : β„‚ β†’ β„‚ g_hol : DifferentiableOn β„‚ g U g_sqf : EqOn f (g ^ 2) U zβ‚€ : β„‚ hzβ‚€ : zβ‚€ ∈ U gU_nhd : g '' U ∈ 𝓝 (g zβ‚€) r : ℝ r_pos : r > 0 hr : ball (g zβ‚€) r βŠ† g '' U gg : embedding U (closedBall (-g zβ‚€) (r / 2))ᢜ := { to_fun := g, is_diff := g_hol, is_inj := β‹―, maps_to := β‹― } ⊒ 0 < r / 2
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
mem_iff_eventually_subset
[11, 1]
[16, 51]
rw [(nhdsWithin_hasBasis nhds_basis_closedBall (Ioi (0 : ℝ))).eventually_iff]
Ξ± : Type u_1 π•œ : Type u_2 s : Set Ξ± zβ‚€ : Ξ± P : Ξ± β†’ Prop p : Filter Ξ± Ο† : ℝ β†’ Set Ξ± hp : HasBasis p (fun t => 0 < t) Ο† hΟ† : Monotone Ο† ⊒ s ∈ p ↔ βˆ€αΆ  (t : ℝ) in 𝓝[>] 0, Ο† t βŠ† s
Ξ± : Type u_1 π•œ : Type u_2 s : Set Ξ± zβ‚€ : Ξ± P : Ξ± β†’ Prop p : Filter Ξ± Ο† : ℝ β†’ Set Ξ± hp : HasBasis p (fun t => 0 < t) Ο† hΟ† : Monotone Ο† ⊒ s ∈ p ↔ βˆƒ i, 0 < i ∧ βˆ€ ⦃x : ℝ⦄, x ∈ closedBall 0 i ∩ Ioi 0 β†’ Ο† x βŠ† s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
mem_iff_eventually_subset
[11, 1]
[16, 51]
simp_rw [hp.mem_iff, ← exists_prop, mem_inter_iff, mem_closedBall_zero_iff]
Ξ± : Type u_1 π•œ : Type u_2 s : Set Ξ± zβ‚€ : Ξ± P : Ξ± β†’ Prop p : Filter Ξ± Ο† : ℝ β†’ Set Ξ± hp : HasBasis p (fun t => 0 < t) Ο† hΟ† : Monotone Ο† ⊒ s ∈ p ↔ βˆƒ i, 0 < i ∧ βˆ€ ⦃x : ℝ⦄, x ∈ closedBall 0 i ∩ Ioi 0 β†’ Ο† x βŠ† s
Ξ± : Type u_1 π•œ : Type u_2 s : Set Ξ± zβ‚€ : Ξ± P : Ξ± β†’ Prop p : Filter Ξ± Ο† : ℝ β†’ Set Ξ± hp : HasBasis p (fun t => 0 < t) Ο† hΟ† : Monotone Ο† ⊒ (βˆƒ i, βˆƒ (_ : 0 < i), Ο† i βŠ† s) ↔ βˆƒ i, βˆƒ (_ : 0 < i), βˆ€ ⦃x : ℝ⦄, β€–xβ€– ≀ i ∧ x ∈ Ioi 0 β†’ Ο† x βŠ† s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
mem_iff_eventually_subset
[11, 1]
[16, 51]
refine existsβ‚‚_congr (Ξ» Ξ΅ hΞ΅ => ⟨λ h r h' => (hΟ† (le_of_abs_le h'.1)).trans h, Ξ» h => h ⟨Eq.le (abs_eq_self.mpr hΞ΅.le), hΡ⟩⟩)
Ξ± : Type u_1 π•œ : Type u_2 s : Set Ξ± zβ‚€ : Ξ± P : Ξ± β†’ Prop p : Filter Ξ± Ο† : ℝ β†’ Set Ξ± hp : HasBasis p (fun t => 0 < t) Ο† hΟ† : Monotone Ο† ⊒ (βˆƒ i, βˆƒ (_ : 0 < i), Ο† i βŠ† s) ↔ βˆƒ i, βˆƒ (_ : 0 < i), βˆ€ ⦃x : ℝ⦄, β€–xβ€– ≀ i ∧ x ∈ Ioi 0 β†’ Ο† x βŠ† s
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
dist_inv_le_dist_div
[33, 1]
[39, 9]
have h1 : x β‰  0 := by contrapose! hx; simp only [hx, mem_ball_self, hΞ·]
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' hx : x βˆ‰ ball 0 Ξ· hy : y βˆ‰ ball 0 Ξ·' ⊒ dist x⁻¹ y⁻¹ ≀ dist x y / (Ξ· * Ξ·')
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' hx : x βˆ‰ ball 0 Ξ· hy : y βˆ‰ ball 0 Ξ·' h1 : x β‰  0 ⊒ dist x⁻¹ y⁻¹ ≀ dist x y / (Ξ· * Ξ·')
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
dist_inv_le_dist_div
[33, 1]
[39, 9]
have h2 : y β‰  0 := by contrapose! hy; simp only [hy, mem_ball_self, hΞ·']
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' hx : x βˆ‰ ball 0 Ξ· hy : y βˆ‰ ball 0 Ξ·' h1 : x β‰  0 ⊒ dist x⁻¹ y⁻¹ ≀ dist x y / (Ξ· * Ξ·')
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' hx : x βˆ‰ ball 0 Ξ· hy : y βˆ‰ ball 0 Ξ·' h1 : x β‰  0 h2 : y β‰  0 ⊒ dist x⁻¹ y⁻¹ ≀ dist x y / (Ξ· * Ξ·')
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
dist_inv_le_dist_div
[33, 1]
[39, 9]
simp only [mem_ball, dist_eq_norm, sub_zero, not_lt] at hx hy
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' hx : x βˆ‰ ball 0 Ξ· hy : y βˆ‰ ball 0 Ξ·' h1 : x β‰  0 h2 : y β‰  0 ⊒ dist x⁻¹ y⁻¹ ≀ dist x y / (Ξ· * Ξ·')
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' h1 : x β‰  0 h2 : y β‰  0 hx : Ξ· ≀ β€–xβ€– hy : Ξ·' ≀ β€–yβ€– ⊒ dist x⁻¹ y⁻¹ ≀ dist x y / (Ξ· * Ξ·')
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
dist_inv_le_dist_div
[33, 1]
[39, 9]
rw [dist_inv_invβ‚€ h1 h2]
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' h1 : x β‰  0 h2 : y β‰  0 hx : Ξ· ≀ β€–xβ€– hy : Ξ·' ≀ β€–yβ€– ⊒ dist x⁻¹ y⁻¹ ≀ dist x y / (Ξ· * Ξ·')
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' h1 : x β‰  0 h2 : y β‰  0 hx : Ξ· ≀ β€–xβ€– hy : Ξ·' ≀ β€–yβ€– ⊒ dist x y / (β€–xβ€– * β€–yβ€–) ≀ dist x y / (Ξ· * Ξ·')
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
dist_inv_le_dist_div
[33, 1]
[39, 9]
gcongr
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' h1 : x β‰  0 h2 : y β‰  0 hx : Ξ· ≀ β€–xβ€– hy : Ξ·' ≀ β€–yβ€– ⊒ dist x y / (β€–xβ€– * β€–yβ€–) ≀ dist x y / (Ξ· * Ξ·')
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
dist_inv_le_dist_div
[33, 1]
[39, 9]
contrapose! hx
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' hx : x βˆ‰ ball 0 Ξ· hy : y βˆ‰ ball 0 Ξ·' ⊒ x β‰  0
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' hy : y βˆ‰ ball 0 Ξ·' hx : x = 0 ⊒ x ∈ ball 0 Ξ·
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
dist_inv_le_dist_div
[33, 1]
[39, 9]
simp only [hx, mem_ball_self, hΞ·]
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' hy : y βˆ‰ ball 0 Ξ·' hx : x = 0 ⊒ x ∈ ball 0 Ξ·
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
dist_inv_le_dist_div
[33, 1]
[39, 9]
contrapose! hy
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' hx : x βˆ‰ ball 0 Ξ· hy : y βˆ‰ ball 0 Ξ·' h1 : x β‰  0 ⊒ y β‰  0
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' hx : x βˆ‰ ball 0 Ξ· h1 : x β‰  0 hy : y = 0 ⊒ y ∈ ball 0 Ξ·'
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
dist_inv_le_dist_div
[33, 1]
[39, 9]
simp only [hy, mem_ball_self, hΞ·']
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hΞ· : 0 < Ξ· hΞ·' : 0 < Ξ·' hx : x βˆ‰ ball 0 Ξ· h1 : x β‰  0 hy : y = 0 ⊒ y ∈ ball 0 Ξ·'
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
obtain ⟨U, hU, V, hV, hUV⟩ := inf_eq_bot_iff.mp hp
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ ⊒ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q) ≀ 𝓀 π•œ
case intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… ⊒ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q) ≀ 𝓀 π•œ
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
obtain ⟨U', hU', V', hV', hUV'⟩ := inf_eq_bot_iff.mp hq
case intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… ⊒ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q) ≀ 𝓀 π•œ
case intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV' : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… ⊒ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q) ≀ 𝓀 π•œ
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
obtain ⟨η, hη, hV⟩ := Metric.mem_nhds_iff.mp hV
case intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV' : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… ⊒ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q) ≀ 𝓀 π•œ
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ η✝ Ξ·' : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV' : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V ⊒ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q) ≀ 𝓀 π•œ
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
obtain ⟨η', hη', hV'⟩ := Metric.mem_nhds_iff.mp hV'
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ η✝ Ξ·' : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV' : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V ⊒ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q) ≀ 𝓀 π•œ
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' ⊒ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q) ≀ 𝓀 π•œ
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
have hΞ·Ξ·' : 0 < Ξ· * Ξ·' := mul_pos hΞ· hΞ·'
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' ⊒ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q) ≀ 𝓀 π•œ
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' ⊒ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q) ≀ 𝓀 π•œ
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
intro u hu
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' ⊒ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q) ≀ 𝓀 π•œ
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu : u ∈ 𝓀 π•œ ⊒ u ∈ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
obtain ⟨Ρ, hΡ, hu⟩ := mem_uniformity_dist.mp hu
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu : u ∈ 𝓀 π•œ ⊒ u ∈ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q)
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u ⊒ u ∈ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
rw [mem_map_iff_exists_image]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u ⊒ u ∈ map (fun x => (x.1⁻¹, x.2⁻¹)) (𝓀 π•œ βŠ“ p Γ—Λ’ q)
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u ⊒ βˆƒ s ∈ 𝓀 π•œ βŠ“ p Γ—Λ’ q, (fun x => (x.1⁻¹, x.2⁻¹)) '' s βŠ† u
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
refine ⟨_, inter_mem_inf (dist_mem_uniformity (mul_pos hΡ hηη')) (prod_mem_prod hU hU'), ?_⟩
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u ⊒ βˆƒ s ∈ 𝓀 π•œ βŠ“ p Γ—Λ’ q, (fun x => (x.1⁻¹, x.2⁻¹)) '' s βŠ† u
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u ⊒ (fun x => (x.1⁻¹, x.2⁻¹)) '' ({p | dist p.1 p.2 < Ξ΅ * (Ξ· * Ξ·')} ∩ U Γ—Λ’ U') βŠ† u
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
rintro z ⟨x, ⟨hx1, hx2⟩, rfl⟩
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u ⊒ (fun x => (x.1⁻¹, x.2⁻¹)) '' ({p | dist p.1 p.2 < Ξ΅ * (Ξ· * Ξ·')} ∩ U Γ—Λ’ U') βŠ† u
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x✝ y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u x : π•œ Γ— π•œ hx1 : x ∈ {p | dist p.1 p.2 < Ξ΅ * (Ξ· * Ξ·')} hx2 : x ∈ U Γ—Λ’ U' ⊒ (fun x => (x.1⁻¹, x.2⁻¹)) x ∈ u
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
have hx'1 : x.1 βˆ‰ ball (0 : π•œ) Ξ· := Ξ» h => (Set.nonempty_of_mem (mem_inter hx2.1 (hV h))).ne_empty hUV
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x✝ y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u x : π•œ Γ— π•œ hx1 : x ∈ {p | dist p.1 p.2 < Ξ΅ * (Ξ· * Ξ·')} hx2 : x ∈ U Γ—Λ’ U' ⊒ (fun x => (x.1⁻¹, x.2⁻¹)) x ∈ u
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x✝ y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u x : π•œ Γ— π•œ hx1 : x ∈ {p | dist p.1 p.2 < Ξ΅ * (Ξ· * Ξ·')} hx2 : x ∈ U Γ—Λ’ U' hx'1 : x.1 βˆ‰ ball 0 Ξ· ⊒ (fun x => (x.1⁻¹, x.2⁻¹)) x ∈ u
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
have hx'2 : x.2 βˆ‰ ball (0 : π•œ) Ξ·' := Ξ» h => (Set.nonempty_of_mem (mem_inter hx2.2 (hV' h))).ne_empty hUV'
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x✝ y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u x : π•œ Γ— π•œ hx1 : x ∈ {p | dist p.1 p.2 < Ξ΅ * (Ξ· * Ξ·')} hx2 : x ∈ U Γ—Λ’ U' hx'1 : x.1 βˆ‰ ball 0 Ξ· ⊒ (fun x => (x.1⁻¹, x.2⁻¹)) x ∈ u
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x✝ y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u x : π•œ Γ— π•œ hx1 : x ∈ {p | dist p.1 p.2 < Ξ΅ * (Ξ· * Ξ·')} hx2 : x ∈ U Γ—Λ’ U' hx'1 : x.1 βˆ‰ ball 0 Ξ· hx'2 : x.2 βˆ‰ ball 0 Ξ·' ⊒ (fun x => (x.1⁻¹, x.2⁻¹)) x ∈ u
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
refine hu ((dist_inv_le_dist_div hΞ· hΞ·' hx'1 hx'2).trans_lt ?_)
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x✝ y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u x : π•œ Γ— π•œ hx1 : x ∈ {p | dist p.1 p.2 < Ξ΅ * (Ξ· * Ξ·')} hx2 : x ∈ U Γ—Λ’ U' hx'1 : x.1 βˆ‰ ball 0 Ξ· hx'2 : x.2 βˆ‰ ball 0 Ξ·' ⊒ (fun x => (x.1⁻¹, x.2⁻¹)) x ∈ u
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x✝ y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u x : π•œ Γ— π•œ hx1 : x ∈ {p | dist p.1 p.2 < Ξ΅ * (Ξ· * Ξ·')} hx2 : x ∈ U Γ—Λ’ U' hx'1 : x.1 βˆ‰ ball 0 Ξ· hx'2 : x.2 βˆ‰ ball 0 Ξ·' ⊒ dist x.1 x.2 / (Ξ· * Ξ·') < Ξ΅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
convert (div_lt_div_right hΞ·Ξ·').mpr hx1
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x✝ y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u x : π•œ Γ— π•œ hx1 : x ∈ {p | dist p.1 p.2 < Ξ΅ * (Ξ· * Ξ·')} hx2 : x ∈ U Γ—Λ’ U' hx'1 : x.1 βˆ‰ ball 0 Ξ· hx'2 : x.2 βˆ‰ ball 0 Ξ·' ⊒ dist x.1 x.2 / (Ξ· * Ξ·') < Ξ΅
case h.e'_4 π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x✝ y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u x : π•œ Γ— π•œ hx1 : x ∈ {p | dist p.1 p.2 < Ξ΅ * (Ξ· * Ξ·')} hx2 : x ∈ U Γ—Λ’ U' hx'1 : x.1 βˆ‰ ball 0 Ξ· hx'2 : x.2 βˆ‰ ball 0 Ξ·' ⊒ Ξ΅ = Ξ΅ * (Ξ· * Ξ·') / (Ξ· * Ξ·')
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
titi
[41, 1]
[59, 45]
field_simp [hΞ·.lt.ne.symm, hΞ·'.lt.ne.symm]
case h.e'_4 π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x✝ y : π•œ η✝ Ξ·'✝ : ℝ p✝ : Filter ΞΉ mf mg : ℝ p q : Filter π•œ hp : p βŠ“ 𝓝 0 = βŠ₯ hq : q βŠ“ 𝓝 0 = βŠ₯ U : Set π•œ hU : U ∈ p V : Set π•œ hV✝ : V ∈ 𝓝 0 hUV : U ∩ V = βˆ… U' : Set π•œ hU' : U' ∈ q V' : Set π•œ hV'✝ : V' ∈ 𝓝 0 hUV' : U' ∩ V' = βˆ… Ξ· : ℝ hΞ· : Ξ· > 0 hV : ball 0 Ξ· βŠ† V Ξ·' : ℝ hΞ·' : Ξ·' > 0 hV' : ball 0 Ξ·' βŠ† V' hΞ·Ξ·' : 0 < Ξ· * Ξ·' u : Set (π•œ Γ— π•œ) hu✝ : u ∈ 𝓀 π•œ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 hu : βˆ€ {a b : π•œ}, dist a b < Ξ΅ β†’ (a, b) ∈ u x : π•œ Γ— π•œ hx1 : x ∈ {p | dist p.1 p.2 < Ξ΅ * (Ξ· * Ξ·')} hx2 : x ∈ U Γ—Λ’ U' hx'1 : x.1 βˆ‰ ball 0 Ξ· hx'2 : x.2 βˆ‰ ball 0 Ξ·' ⊒ Ξ΅ = Ξ΅ * (Ξ· * Ξ·') / (Ξ· * Ξ·')
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
uniform_ContinuousOn_inv
[61, 1]
[63, 89]
simpa only [UniformContinuousOn, Tendsto, ← prod_principal_principal] using titi hs hs
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s✝ K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ s : Set π•œ hs : π“Ÿ s βŠ“ 𝓝 0 = βŠ₯ ⊒ UniformContinuousOn Inv.inv s
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.inv
[65, 1]
[72, 63]
have : π“α΅˜ (f '' s) βŠ“ 𝓝 0 = βŠ₯ := by rw [inf_comm] at hf ⊒ exact UniformSpace.nhds_inf_uniform_nhds_eq_bot hf
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hf : π“Ÿ (f '' s) βŠ“ 𝓝 0 = βŠ₯ ⊒ TendstoUniformlyOn F⁻¹ f⁻¹ p s
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hf : π“Ÿ (f '' s) βŠ“ 𝓝 0 = βŠ₯ this : π“α΅˜ (f '' s) βŠ“ 𝓝 0 = βŠ₯ ⊒ TendstoUniformlyOn F⁻¹ f⁻¹ p s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.inv
[65, 1]
[72, 63]
have h1 := lemma1 hF
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hf : π“Ÿ (f '' s) βŠ“ 𝓝 0 = βŠ₯ this : π“α΅˜ (f '' s) βŠ“ 𝓝 0 = βŠ₯ ⊒ TendstoUniformlyOn F⁻¹ f⁻¹ p s
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hf : π“Ÿ (f '' s) βŠ“ 𝓝 0 = βŠ₯ this : π“α΅˜ (f '' s) βŠ“ 𝓝 0 = βŠ₯ h1 : Tendsto (fun q => (f q.2, F q.1 q.2)) (p Γ—Λ’ π“Ÿ s) (π“Ÿ (f '' s) Γ—Λ’ π“α΅˜ (f '' s)) ⊒ TendstoUniformlyOn F⁻¹ f⁻¹ p s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.inv
[65, 1]
[72, 63]
rw [tendstoUniformlyOn_iff_tendsto] at hF ⊒
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hf : π“Ÿ (f '' s) βŠ“ 𝓝 0 = βŠ₯ this : π“α΅˜ (f '' s) βŠ“ 𝓝 0 = βŠ₯ h1 : Tendsto (fun q => (f q.2, F q.1 q.2)) (p Γ—Λ’ π“Ÿ s) (π“Ÿ (f '' s) Γ—Λ’ π“α΅˜ (f '' s)) ⊒ TendstoUniformlyOn F⁻¹ f⁻¹ p s
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : Tendsto (fun q => (f q.2, F q.1 q.2)) (p Γ—Λ’ π“Ÿ s) (𝓀 π•œ) hf : π“Ÿ (f '' s) βŠ“ 𝓝 0 = βŠ₯ this : π“α΅˜ (f '' s) βŠ“ 𝓝 0 = βŠ₯ h1 : Tendsto (fun q => (f q.2, F q.1 q.2)) (p Γ—Λ’ π“Ÿ s) (π“Ÿ (f '' s) Γ—Λ’ π“α΅˜ (f '' s)) ⊒ Tendsto (fun q => (f⁻¹ q.2, F⁻¹ q.1 q.2)) (p Γ—Λ’ π“Ÿ s) (𝓀 π•œ)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.inv
[65, 1]
[72, 63]
refine (Filter.map_mono (le_inf hF h1)).trans (titi hf this)
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : Tendsto (fun q => (f q.2, F q.1 q.2)) (p Γ—Λ’ π“Ÿ s) (𝓀 π•œ) hf : π“Ÿ (f '' s) βŠ“ 𝓝 0 = βŠ₯ this : π“α΅˜ (f '' s) βŠ“ 𝓝 0 = βŠ₯ h1 : Tendsto (fun q => (f q.2, F q.1 q.2)) (p Γ—Λ’ π“Ÿ s) (π“Ÿ (f '' s) Γ—Λ’ π“α΅˜ (f '' s)) ⊒ Tendsto (fun q => (f⁻¹ q.2, F⁻¹ q.1 q.2)) (p Γ—Λ’ π“Ÿ s) (𝓀 π•œ)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.inv
[65, 1]
[72, 63]
rw [inf_comm] at hf ⊒
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hf : π“Ÿ (f '' s) βŠ“ 𝓝 0 = βŠ₯ ⊒ π“α΅˜ (f '' s) βŠ“ 𝓝 0 = βŠ₯
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hf : 𝓝 0 βŠ“ π“Ÿ (f '' s) = βŠ₯ ⊒ 𝓝 0 βŠ“ π“α΅˜ (f '' s) = βŠ₯
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.inv
[65, 1]
[72, 63]
exact UniformSpace.nhds_inf_uniform_nhds_eq_bot hf
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hf : 𝓝 0 βŠ“ π“Ÿ (f '' s) = βŠ₯ ⊒ 𝓝 0 βŠ“ π“α΅˜ (f '' s) = βŠ₯
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
lxyab
[74, 1]
[74, 81]
ring
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x✝ y✝ : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ x y a b : π•œ ⊒ x * a - y * b = (x - y) * a + y * (a - b)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
by_cases h : NeBot p
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg ⊒ TendstoUniformlyOn (F * G) (f * g) p s
case pos π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : NeBot p ⊒ TendstoUniformlyOn (F * G) (f * g) p s case neg π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : Β¬NeBot p ⊒ TendstoUniformlyOn (F * G) (f * g) p s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
case neg => simp at h; simp [h, TendstoUniformlyOn]
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : Β¬NeBot p ⊒ TendstoUniformlyOn (F * G) (f * g) p s
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
case pos => set Mf := |mf| + 1 set Mg := |mg| + 1 have hMf : 0 < Mf := by positivity have hMg : 0 < Mg := by positivity replace hf : βˆ€αΆ  i in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ Mf := by filter_upwards [hf] with i hF x hx using (hF x hx).trans ((le_abs_self mf).trans (lt_add_one _).le) replace hg : βˆ€αΆ  i in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ Mg := by filter_upwards [hg] with i hG x hx using (hG x hx).trans ((le_abs_self mg).trans (lt_add_one _).le) have h1 : βˆ€ x ∈ s, β€–g xβ€– ≀ Mg := by intro x hx refine le_of_tendsto ((continuous_norm.tendsto (g x)).comp (hG.tendsto_at hx)) ?_ filter_upwards [hg] with i hg using hg x hx simp_rw [Metric.tendstoUniformlyOn_iff, dist_eq_norm] at hF hG ⊒ intro Ξ΅ hΞ΅ filter_upwards [hf, hF (Ξ΅ / (2 * Mg)) (by positivity), hG (Ξ΅ / (2 * Mf)) (by positivity)] with i hf hF hG x hx have h2 : β€–(f x - F i x) * g xβ€– < Ξ΅ / 2 := by rw [norm_mul] by_cases h : g x = 0 case pos => simp [h, half_pos hΞ΅] case neg => convert mul_lt_mul (hF x hx) (h1 x hx) (norm_pos_iff.mpr h) (by positivity) using 1 simp only [div_mul, mul_div_cancel, hMg.ne.symm, Ne.def, not_false_iff] have h3 : β€–F i x * (g x - G i x)β€– < Ξ΅ / 2 := by rw [norm_mul] by_cases h : F i x = 0 case pos => simp [h, half_pos hΞ΅] case neg => convert mul_lt_mul' (hf x hx) (hG x hx) (norm_nonneg _) hMf using 1 field_simp [hMf.ne.symm]; ring simp_rw [Pi.mul_apply, lxyab] exact (norm_add_le _ _).trans_lt (add_halves' Ξ΅ β–Έ add_lt_add h2 h3)
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : NeBot p ⊒ TendstoUniformlyOn (F * G) (f * g) p s
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
simp at h
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : Β¬NeBot p ⊒ TendstoUniformlyOn (F * G) (f * g) p s
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : p = βŠ₯ ⊒ TendstoUniformlyOn (F * G) (f * g) p s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
simp [h, TendstoUniformlyOn]
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : p = βŠ₯ ⊒ TendstoUniformlyOn (F * G) (f * g) p s
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
set Mf := |mf| + 1
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : NeBot p ⊒ TendstoUniformlyOn (F * G) (f * g) p s
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : NeBot p Mf : ℝ := |mf| + 1 ⊒ TendstoUniformlyOn (F * G) (f * g) p s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
set Mg := |mg| + 1
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : NeBot p Mf : ℝ := |mf| + 1 ⊒ TendstoUniformlyOn (F * G) (f * g) p s
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 ⊒ TendstoUniformlyOn (F * G) (f * g) p s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
have hMf : 0 < Mf := by positivity
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 ⊒ TendstoUniformlyOn (F * G) (f * g) p s
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf ⊒ TendstoUniformlyOn (F * G) (f * g) p s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
have hMg : 0 < Mg := by positivity
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf ⊒ TendstoUniformlyOn (F * G) (f * g) p s
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg ⊒ TendstoUniformlyOn (F * G) (f * g) p s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
replace hf : βˆ€αΆ  i in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ Mf := by filter_upwards [hf] with i hF x hx using (hF x hx).trans ((le_abs_self mf).trans (lt_add_one _).le)
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg ⊒ TendstoUniformlyOn (F * G) (f * g) p s
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ Mf ⊒ TendstoUniformlyOn (F * G) (f * g) p s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
replace hg : βˆ€αΆ  i in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ Mg := by filter_upwards [hg] with i hG x hx using (hG x hx).trans ((le_abs_self mg).trans (lt_add_one _).le)
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ mg h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ Mf ⊒ TendstoUniformlyOn (F * G) (f * g) p s
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ Mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ Mg ⊒ TendstoUniformlyOn (F * G) (f * g) p s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
have h1 : βˆ€ x ∈ s, β€–g xβ€– ≀ Mg := by intro x hx refine le_of_tendsto ((continuous_norm.tendsto (g x)).comp (hG.tendsto_at hx)) ?_ filter_upwards [hg] with i hg using hg x hx
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ Mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ Mg ⊒ TendstoUniformlyOn (F * G) (f * g) p s
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ Mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ Mg h1 : βˆ€ x ∈ s, β€–g xβ€– ≀ Mg ⊒ TendstoUniformlyOn (F * G) (f * g) p s
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
simp_rw [Metric.tendstoUniformlyOn_iff, dist_eq_norm] at hF hG ⊒
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ hF : TendstoUniformlyOn F f p s hG : TendstoUniformlyOn G g p s h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ Mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ Mg h1 : βˆ€ x ∈ s, β€–g xβ€– ≀ Mg ⊒ TendstoUniformlyOn (F * G) (f * g) p s
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ Mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ Mg h1 : βˆ€ x ∈ s, β€–g xβ€– ≀ Mg hF : βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : ΞΉ) in p, βˆ€ x ∈ s, β€–f x - F n xβ€– < Ξ΅ hG : βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : ΞΉ) in p, βˆ€ x ∈ s, β€–g x - G n xβ€– < Ξ΅ ⊒ βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : ΞΉ) in p, βˆ€ x ∈ s, β€–(f * g) x - (F * G) n xβ€– < Ξ΅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
intro Ξ΅ hΞ΅
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ Mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ Mg h1 : βˆ€ x ∈ s, β€–g xβ€– ≀ Mg hF : βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : ΞΉ) in p, βˆ€ x ∈ s, β€–f x - F n xβ€– < Ξ΅ hG : βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : ΞΉ) in p, βˆ€ x ∈ s, β€–g x - G n xβ€– < Ξ΅ ⊒ βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : ΞΉ) in p, βˆ€ x ∈ s, β€–(f * g) x - (F * G) n xβ€– < Ξ΅
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ Mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ Mg h1 : βˆ€ x ∈ s, β€–g xβ€– ≀ Mg hF : βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : ΞΉ) in p, βˆ€ x ∈ s, β€–f x - F n xβ€– < Ξ΅ hG : βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : ΞΉ) in p, βˆ€ x ∈ s, β€–g x - G n xβ€– < Ξ΅ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 ⊒ βˆ€αΆ  (n : ΞΉ) in p, βˆ€ x ∈ s, β€–(f * g) x - (F * G) n xβ€– < Ξ΅
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/hurwitz.lean
TendstoUniformlyOn.mul_of_le
[76, 1]
[113, 72]
filter_upwards [hf, hF (Ξ΅ / (2 * Mg)) (by positivity), hG (Ξ΅ / (2 * Mf)) (by positivity)] with i hf hF hG x hx
π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ Mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ Mg h1 : βˆ€ x ∈ s, β€–g xβ€– ≀ Mg hF : βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : ΞΉ) in p, βˆ€ x ∈ s, β€–f x - F n xβ€– < Ξ΅ hG : βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : ΞΉ) in p, βˆ€ x ∈ s, β€–g x - G n xβ€– < Ξ΅ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 ⊒ βˆ€αΆ  (n : ΞΉ) in p, βˆ€ x ∈ s, β€–(f * g) x - (F * G) n xβ€– < Ξ΅
case h π•œ : Type u_1 ΞΉ : Type u_2 Ξ± : Type u_3 s K : Set Ξ± inst✝ : NormedField π•œ F G : ΞΉ β†’ Ξ± β†’ π•œ f g : Ξ± β†’ π•œ x✝ y : π•œ Ξ· Ξ·' : ℝ p : Filter ΞΉ mf mg : ℝ h : NeBot p Mf : ℝ := |mf| + 1 Mg : ℝ := |mg| + 1 hMf : 0 < Mf hMg : 0 < Mg hf✝ : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–F i xβ€– ≀ Mf hg : βˆ€αΆ  (i : ΞΉ) in p, βˆ€ x ∈ s, β€–G i xβ€– ≀ Mg h1 : βˆ€ x ∈ s, β€–g xβ€– ≀ Mg hF✝ : βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : ΞΉ) in p, βˆ€ x ∈ s, β€–f x - F n xβ€– < Ξ΅ hG✝ : βˆ€ Ξ΅ > 0, βˆ€αΆ  (n : ΞΉ) in p, βˆ€ x ∈ s, β€–g x - G n xβ€– < Ξ΅ Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 i : ΞΉ hf : βˆ€ x ∈ s, β€–F i xβ€– ≀ Mf hF : βˆ€ x ∈ s, β€–f x - F i xβ€– < Ξ΅ / (2 * Mg) hG : βˆ€ x ∈ s, β€–g x - G i xβ€– < Ξ΅ / (2 * Mf) x : Ξ± hx : x ∈ s ⊒ β€–(f * g) x - (F * G) i xβ€– < Ξ΅