url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | crucial | [7, 1] | [49, 57] | simp [h4, deriv_mul e1 e2, this] | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ : β β β
hU : IsOpen U
hcr : closedBall c r β U
hzβ : zβ β ball c r
hf : DifferentiableOn β f U
hfzβ : f zβ = 0
hf'zβ : deriv f zβ β 0
hfz : β z β closedBall c r, z β zβ β f z β 0
hr : 0 < r
g : β β β := dslope f zβ
h1 : DifferentiableOn β g U
h2 : β z β closedBall c r, g z β 0
h10 : β z β sphere c r, z - zβ β 0
z : β
hz : z β sphere c r
h3 : β z β U, f z = (z - zβ) * g z
hz' : z β U
e0 : U β π z
h4 : deriv f z = deriv (fun w => (w - zβ) * g w) z
e1 : DifferentiableAt β (fun y => y - zβ) z
e2 : DifferentiableAt β g z
this : deriv (fun y => y - zβ) z = 1
β’ deriv f z = g z + (z - zβ) * deriv g z | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | crucial | [7, 1] | [49, 57] | change deriv (fun y => id y - zβ) z = 1 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ : β β β
hU : IsOpen U
hcr : closedBall c r β U
hzβ : zβ β ball c r
hf : DifferentiableOn β f U
hfzβ : f zβ = 0
hf'zβ : deriv f zβ β 0
hfz : β z β closedBall c r, z β zβ β f z β 0
hr : 0 < r
g : β β β := dslope f zβ
h1 : DifferentiableOn β g U
h2 : β z β closedBall c r, g z β 0
h10 : β z β sphere c r, z - zβ β 0
z : β
hz : z β sphere c r
h3 : β z β U, f z = (z - zβ) * g z
hz' : z β U
e0 : U β π z
h4 : deriv f z = deriv (fun w => (w - zβ) * g w) z
e1 : DifferentiableAt β (fun y => y - zβ) z
e2 : DifferentiableAt β g z
β’ deriv (fun y => y - zβ) z = 1 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ : β β β
hU : IsOpen U
hcr : closedBall c r β U
hzβ : zβ β ball c r
hf : DifferentiableOn β f U
hfzβ : f zβ = 0
hf'zβ : deriv f zβ β 0
hfz : β z β closedBall c r, z β zβ β f z β 0
hr : 0 < r
g : β β β := dslope f zβ
h1 : DifferentiableOn β g U
h2 : β z β closedBall c r, g z β 0
h10 : β z β sphere c r, z - zβ β 0
z : β
hz : z β sphere c r
h3 : β z β U, f z = (z - zβ) * g z
hz' : z β U
e0 : U β π z
h4 : deriv f z = deriv (fun w => (w - zβ) * g w) z
e1 : DifferentiableAt β (fun y => y - zβ) z
e2 : DifferentiableAt β g z
β’ deriv (fun y => id y - zβ) z = 1 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | crucial | [7, 1] | [49, 57] | simp [deriv_sub_const] | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ : β β β
hU : IsOpen U
hcr : closedBall c r β U
hzβ : zβ β ball c r
hf : DifferentiableOn β f U
hfzβ : f zβ = 0
hf'zβ : deriv f zβ β 0
hfz : β z β closedBall c r, z β zβ β f z β 0
hr : 0 < r
g : β β β := dslope f zβ
h1 : DifferentiableOn β g U
h2 : β z β closedBall c r, g z β 0
h10 : β z β sphere c r, z - zβ β 0
z : β
hz : z β sphere c r
h3 : β z β U, f z = (z - zβ) * g z
hz' : z β U
e0 : U β π z
h4 : deriv f z = deriv (fun w => (w - zβ) * g w) z
e1 : DifferentiableAt β (fun y => y - zβ) z
e2 : DifferentiableAt β g z
β’ deriv (fun y => id y - zβ) z = 1 | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | crucial | [7, 1] | [49, 57] | rw [circleIntegrable_sub_inv_iff, abs_eq_self.2 hr.le] | case e_a.hf
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ : β β β
hU : IsOpen U
hcr : closedBall c r β U
hzβ : zβ β ball c r
hf : DifferentiableOn β f U
hfzβ : f zβ = 0
hf'zβ : deriv f zβ β 0
hfz : β z β closedBall c r, z β zβ β f z β 0
hr : 0 < r
g : β β β := dslope f zβ
h1 : DifferentiableOn β g U
h2 : β z β closedBall c r, g z β 0
h10 : β z β sphere c r, z - zβ β 0
h6 : β z β sphere c r, deriv f z / f z = (z - zβ)β»ΒΉ + deriv g z / g z
β’ CircleIntegrable (fun z => (z - zβ)β»ΒΉ) c r | case e_a.hf
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ : β β β
hU : IsOpen U
hcr : closedBall c r β U
hzβ : zβ β ball c r
hf : DifferentiableOn β f U
hfzβ : f zβ = 0
hf'zβ : deriv f zβ β 0
hfz : β z β closedBall c r, z β zβ β f z β 0
hr : 0 < r
g : β β β := dslope f zβ
h1 : DifferentiableOn β g U
h2 : β z β closedBall c r, g z β 0
h10 : β z β sphere c r, z - zβ β 0
h6 : β z β sphere c r, deriv f z / f z = (z - zβ)β»ΒΉ + deriv g z / g z
β’ r = 0 β¨ zβ β sphere c r |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | crucial | [7, 1] | [49, 57] | exact Or.inr (disjoint_right.1 sphere_disjoint_ball hzβ) | case e_a.hf
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ : β β β
hU : IsOpen U
hcr : closedBall c r β U
hzβ : zβ β ball c r
hf : DifferentiableOn β f U
hfzβ : f zβ = 0
hf'zβ : deriv f zβ β 0
hfz : β z β closedBall c r, z β zβ β f z β 0
hr : 0 < r
g : β β β := dslope f zβ
h1 : DifferentiableOn β g U
h2 : β z β closedBall c r, g z β 0
h10 : β z β sphere c r, z - zβ β 0
h6 : β z β sphere c r, deriv f z / f z = (z - zβ)β»ΒΉ + deriv g z / g z
β’ r = 0 β¨ zβ β sphere c r | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | crucial | [7, 1] | [49, 57] | refine (ContinuousOn.div ?_ ?_ ?_).circleIntegrable hr.le | case e_a.hg
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ : β β β
hU : IsOpen U
hcr : closedBall c r β U
hzβ : zβ β ball c r
hf : DifferentiableOn β f U
hfzβ : f zβ = 0
hf'zβ : deriv f zβ β 0
hfz : β z β closedBall c r, z β zβ β f z β 0
hr : 0 < r
g : β β β := dslope f zβ
h1 : DifferentiableOn β g U
h2 : β z β closedBall c r, g z β 0
h10 : β z β sphere c r, z - zβ β 0
h6 : β z β sphere c r, deriv f z / f z = (z - zβ)β»ΒΉ + deriv g z / g z
β’ CircleIntegrable (fun z => deriv g z / g z) c r | case e_a.hg.refine_1
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ : β β β
hU : IsOpen U
hcr : closedBall c r β U
hzβ : zβ β ball c r
hf : DifferentiableOn β f U
hfzβ : f zβ = 0
hf'zβ : deriv f zβ β 0
hfz : β z β closedBall c r, z β zβ β f z β 0
hr : 0 < r
g : β β β := dslope f zβ
h1 : DifferentiableOn β g U
h2 : β z β closedBall c r, g z β 0
h10 : β z β sphere c r, z - zβ β 0
h6 : β z β sphere c r, deriv f z / f z = (z - zβ)β»ΒΉ + deriv g z / g z
β’ ContinuousOn (fun z => deriv g z) (sphere c r)
case e_a.hg.refine_2
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ : β β β
hU : IsOpen U
hcr : closedBall c r β U
hzβ : zβ β ball c r
hf : DifferentiableOn β f U
hfzβ : f zβ = 0
hf'zβ : deriv f zβ β 0
hfz : β z β closedBall c r, z β zβ β f z β 0
hr : 0 < r
g : β β β := dslope f zβ
h1 : DifferentiableOn β g U
h2 : β z β closedBall c r, g z β 0
h10 : β z β sphere c r, z - zβ β 0
h6 : β z β sphere c r, deriv f z / f z = (z - zβ)β»ΒΉ + deriv g z / g z
β’ ContinuousOn (fun z => g z) (sphere c r)
case e_a.hg.refine_3
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ : β β β
hU : IsOpen U
hcr : closedBall c r β U
hzβ : zβ β ball c r
hf : DifferentiableOn β f U
hfzβ : f zβ = 0
hf'zβ : deriv f zβ β 0
hfz : β z β closedBall c r, z β zβ β f z β 0
hr : 0 < r
g : β β β := dslope f zβ
h1 : DifferentiableOn β g U
h2 : β z β closedBall c r, g z β 0
h10 : β z β sphere c r, z - zβ β 0
h6 : β z β sphere c r, deriv f z / f z = (z - zβ)β»ΒΉ + deriv g z / g z
β’ β x β sphere c r, g x β 0 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | crucial | [7, 1] | [49, 57] | exact (h1.deriv hU).continuousOn.mono (sphere_subset_closedBall.trans hcr) | case e_a.hg.refine_1
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ : β β β
hU : IsOpen U
hcr : closedBall c r β U
hzβ : zβ β ball c r
hf : DifferentiableOn β f U
hfzβ : f zβ = 0
hf'zβ : deriv f zβ β 0
hfz : β z β closedBall c r, z β zβ β f z β 0
hr : 0 < r
g : β β β := dslope f zβ
h1 : DifferentiableOn β g U
h2 : β z β closedBall c r, g z β 0
h10 : β z β sphere c r, z - zβ β 0
h6 : β z β sphere c r, deriv f z / f z = (z - zβ)β»ΒΉ + deriv g z / g z
β’ ContinuousOn (fun z => deriv g z) (sphere c r) | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | crucial | [7, 1] | [49, 57] | exact h1.continuousOn.mono (sphere_subset_closedBall.trans hcr) | case e_a.hg.refine_2
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ : β β β
hU : IsOpen U
hcr : closedBall c r β U
hzβ : zβ β ball c r
hf : DifferentiableOn β f U
hfzβ : f zβ = 0
hf'zβ : deriv f zβ β 0
hfz : β z β closedBall c r, z β zβ β f z β 0
hr : 0 < r
g : β β β := dslope f zβ
h1 : DifferentiableOn β g U
h2 : β z β closedBall c r, g z β 0
h10 : β z β sphere c r, z - zβ β 0
h6 : β z β sphere c r, deriv f z / f z = (z - zβ)β»ΒΉ + deriv g z / g z
β’ ContinuousOn (fun z => g z) (sphere c r) | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | crucial | [7, 1] | [49, 57] | exact Ξ» z hz => h2 z (sphere_subset_closedBall hz) | case e_a.hg.refine_3
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ : β β β
hU : IsOpen U
hcr : closedBall c r β U
hzβ : zβ β ball c r
hf : DifferentiableOn β f U
hfzβ : f zβ = 0
hf'zβ : deriv f zβ β 0
hfz : β z β closedBall c r, z β zβ β f z β 0
hr : 0 < r
g : β β β := dslope f zβ
h1 : DifferentiableOn β g U
h2 : β z β closedBall c r, g z β 0
h10 : β z β sphere c r, z - zβ β 0
h6 : β z β sphere c r, deriv f z / f z = (z - zβ)β»ΒΉ + deriv g z / g z
β’ β x β sphere c r, g x β 0 | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | bla | [55, 1] | [67, 95] | have h1 : βαΆ z in π zβ, AnalyticAt β f z := (isOpen_analyticAt β f).mem_nhds hf | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
β’ βαΆ (z : β) in π zβ, f z = f zβ | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
β’ βαΆ (z : β) in π zβ, f z = f zβ |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | bla | [55, 1] | [67, 95] | obtain β¨Ξ΅, hΞ΅, hβ© := Metric.mem_nhds_iff.1 (h1.and hf'.eventually_eq_zero) | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
β’ βαΆ (z : β) in π zβ, f z = f zβ | case intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
β’ βαΆ (z : β) in π zβ, f z = f zβ |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | bla | [55, 1] | [67, 95] | refine Metric.mem_nhds_iff.2 β¨Ξ΅, hΞ΅, Ξ» z hz => ?_β© | case intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
β’ βαΆ (z : β) in π zβ, f z = f zβ | case intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
z : β
hz : z β ball zβ Ξ΅
β’ z β {x | (fun z => f z = f zβ) x} |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | bla | [55, 1] | [67, 95] | have h3 : β z β ball zβ Ξ΅, fderivWithin β f (ball zβ Ξ΅) z = 0 := by
rintro z hz
rw [fderivWithin_eq_fderiv (isOpen_ball.uniqueDiffWithinAt hz) ((h hz).1.differentiableAt)]
ext1
simpa [fderiv_deriv] using (h hz).2 | case intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
z : β
hz : z β ball zβ Ξ΅
β’ z β {x | (fun z => f z = f zβ) x} | case intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
z : β
hz : z β ball zβ Ξ΅
h3 : β z β ball zβ Ξ΅, fderivWithin β f (ball zβ Ξ΅) z = 0
β’ z β {x | (fun z => f z = f zβ) x} |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | bla | [55, 1] | [67, 95] | have h4 : DifferentiableOn β f (ball zβ Ξ΅) := Ξ» z hz => (h hz).1.differentiableWithinAt | case intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
z : β
hz : z β ball zβ Ξ΅
h3 : β z β ball zβ Ξ΅, fderivWithin β f (ball zβ Ξ΅) z = 0
β’ z β {x | (fun z => f z = f zβ) x} | case intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
z : β
hz : z β ball zβ Ξ΅
h3 : β z β ball zβ Ξ΅, fderivWithin β f (ball zβ Ξ΅) z = 0
h4 : DifferentiableOn β f (ball zβ Ξ΅)
β’ z β {x | (fun z => f z = f zβ) x} |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | bla | [55, 1] | [67, 95] | exact Convex.is_const_of_fderivWithin_eq_zero (convex_ball zβ Ξ΅) h4 h3 hz (mem_ball_self hΞ΅) | case intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
z : β
hz : z β ball zβ Ξ΅
h3 : β z β ball zβ Ξ΅, fderivWithin β f (ball zβ Ξ΅) z = 0
h4 : DifferentiableOn β f (ball zβ Ξ΅)
β’ z β {x | (fun z => f z = f zβ) x} | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | bla | [55, 1] | [67, 95] | rintro z hz | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
z : β
hz : z β ball zβ Ξ΅
β’ β z β ball zβ Ξ΅, fderivWithin β f (ball zβ Ξ΅) z = 0 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
zβ : β
hzβ : zβ β ball zβ Ξ΅
z : β
hz : z β ball zβ Ξ΅
β’ fderivWithin β f (ball zβ Ξ΅) z = 0 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | bla | [55, 1] | [67, 95] | rw [fderivWithin_eq_fderiv (isOpen_ball.uniqueDiffWithinAt hz) ((h hz).1.differentiableAt)] | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
zβ : β
hzβ : zβ β ball zβ Ξ΅
z : β
hz : z β ball zβ Ξ΅
β’ fderivWithin β f (ball zβ Ξ΅) z = 0 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
zβ : β
hzβ : zβ β ball zβ Ξ΅
z : β
hz : z β ball zβ Ξ΅
β’ fderiv β f z = 0 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | bla | [55, 1] | [67, 95] | ext1 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
zβ : β
hzβ : zβ β ball zβ Ξ΅
z : β
hz : z β ball zβ Ξ΅
β’ fderiv β f z = 0 | case h
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
zβ : β
hzβ : zβ β ball zβ Ξ΅
z : β
hz : z β ball zβ Ξ΅
β’ (fderiv β f z) 1 = 0 1 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | bla | [55, 1] | [67, 95] | simpa [fderiv_deriv] using (h hz).2 | case h
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
hf : AnalyticAt β f zβ
hf' : HasFPowerSeriesAt (deriv f) 0 zβ
h1 : βαΆ (z : β) in π zβ, AnalyticAt β f z
Ξ΅ : β
hΞ΅ : Ξ΅ > 0
h : ball zβ Ξ΅ β {x | (fun x => AnalyticAt β f x β§ deriv f x = 0) x}
zβ : β
hzβ : zβ β ball zβ Ξ΅
z : β
hz : z β ball zβ Ξ΅
β’ (fderiv β f z) 1 = 0 1 | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | classical
have h1 : p.coeff 1 = 0 := by simpa only [hg'] using hgp.deriv.symm
have h2 : p 0 = 0 := by ext1 x; simpa only [hg] using hgp.coeff_zero x
have h3 : p 1 = 0 := by ext1; simp [h1]
rw [FormalMultilinearSeries.order_eq_find' hp, Nat.le_find_iff]
intro n hn
cases n
case zero => simp [h2]
case succ n =>
cases n
case zero => simpa using h3
case succ => linarith | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
β’ 2 β€ FormalMultilinearSeries.order p | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | have h1 : p.coeff 1 = 0 := by simpa only [hg'] using hgp.deriv.symm | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
β’ 2 β€ FormalMultilinearSeries.order p | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
β’ 2 β€ FormalMultilinearSeries.order p |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | have h2 : p 0 = 0 := by ext1 x; simpa only [hg] using hgp.coeff_zero x | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
β’ 2 β€ FormalMultilinearSeries.order p | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
β’ 2 β€ FormalMultilinearSeries.order p |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | have h3 : p 1 = 0 := by ext1; simp [h1] | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
β’ 2 β€ FormalMultilinearSeries.order p | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
β’ 2 β€ FormalMultilinearSeries.order p |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | rw [FormalMultilinearSeries.order_eq_find' hp, Nat.le_find_iff] | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
β’ 2 β€ FormalMultilinearSeries.order p | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
β’ β m < 2, Β¬p m β 0 m |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | intro n hn | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
β’ β m < 2, Β¬p m β 0 m | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
n : β
hn : n < 2
β’ Β¬p n β 0 n |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | cases n | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
n : β
hn : n < 2
β’ Β¬p n β 0 n | case zero
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
hn : Nat.zero < 2
β’ Β¬p Nat.zero β 0 Nat.zero
case succ
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
nβ : β
hn : Nat.succ nβ < 2
β’ Β¬p (Nat.succ nβ) β 0 (Nat.succ nβ) |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | case zero => simp [h2] | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
hn : Nat.zero < 2
β’ Β¬p Nat.zero β 0 Nat.zero | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | case succ n =>
cases n
case zero => simpa using h3
case succ => linarith | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
n : β
hn : Nat.succ n < 2
β’ Β¬p (Nat.succ n) β 0 (Nat.succ n) | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | simpa only [hg'] using hgp.deriv.symm | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
β’ FormalMultilinearSeries.coeff p 1 = 0 | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | ext1 x | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
β’ p 0 = 0 | case H
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
x : Fin 0 β β
β’ (p 0) x = 0 x |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | simpa only [hg] using hgp.coeff_zero x | case H
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
x : Fin 0 β β
β’ (p 0) x = 0 x | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | ext1 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
β’ p 1 = 0 | case H
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
xβ : Fin 1 β β
β’ (p 1) xβ = 0 xβ |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | simp [h1] | case H
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
xβ : Fin 1 β β
β’ (p 1) xβ = 0 xβ | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | simp [h2] | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
hn : Nat.zero < 2
β’ Β¬p Nat.zero β 0 Nat.zero | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | cases n | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
n : β
hn : Nat.succ n < 2
β’ Β¬p (Nat.succ n) β 0 (Nat.succ n) | case zero
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
hn : Nat.succ Nat.zero < 2
β’ Β¬p (Nat.succ Nat.zero) β 0 (Nat.succ Nat.zero)
case succ
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
nβ : β
hn : Nat.succ (Nat.succ nβ) < 2
β’ Β¬p (Nat.succ (Nat.succ nβ)) β 0 (Nat.succ (Nat.succ nβ)) |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | case zero => simpa using h3 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
hn : Nat.succ Nat.zero < 2
β’ Β¬p (Nat.succ Nat.zero) β 0 (Nat.succ Nat.zero) | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | case succ => linarith | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
nβ : β
hn : Nat.succ (Nat.succ nβ) < 2
β’ Β¬p (Nat.succ (Nat.succ nβ)) β 0 (Nat.succ (Nat.succ nβ)) | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | simpa using h3 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
hn : Nat.succ Nat.zero < 2
β’ Β¬p (Nat.succ Nat.zero) β 0 (Nat.succ Nat.zero) | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | two_le_order_of_deriv_eq_zero | [69, 1] | [83, 26] | linarith | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
p : FormalMultilinearSeries β β β
hgp : HasFPowerSeriesAt g p zβ
hp : p β 0
hg : g zβ = 0
hg' : deriv g zβ = 0
h1 : FormalMultilinearSeries.coeff p 1 = 0
h2 : p 0 = 0
h3 : p 1 = 0
nβ : β
hn : Nat.succ (Nat.succ nβ) < 2
β’ Β¬p (Nat.succ (Nat.succ nβ)) β 0 (Nat.succ (Nat.succ nβ)) | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | tendsto_uniformly_on_add_const | [85, 1] | [89, 50] | have : Tendsto id (π[β ] (0 : β)) (π 0) := nhdsWithin_le_nhds | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
β’ TendstoUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
this : Tendsto id (π[β ] 0) (π 0)
β’ TendstoUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | tendsto_uniformly_on_add_const | [85, 1] | [89, 50] | have : TendstoUniformlyOn (Ξ» (Ξ΅ _ : β) => Ξ΅) 0 (π[β ] 0) U := this.tendstoUniformlyOn_const U | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
this : Tendsto id (π[β ] 0) (π 0)
β’ TendstoUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
thisβ : Tendsto id (π[β ] 0) (π 0)
this : TendstoUniformlyOn (fun Ξ΅ x => Ξ΅) 0 (π[β ] 0) U
β’ TendstoUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | tendsto_uniformly_on_add_const | [85, 1] | [89, 50] | simpa using tendsto_uniformly_on_const.add this | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f g : β β β
thisβ : Tendsto id (π[β ] 0) (π 0)
this : TendstoUniformlyOn (fun Ξ΅ x => Ξ΅) 0 (π[β ] 0) U
β’ TendstoUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | obtain β¨p, hpβ© : AnalyticAt β g zβ := hg.analyticAt (hU.mem_nhds hzβ) | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
β’ deriv g zβ β 0 | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
β’ deriv g zβ β 0 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have h25 : βαΆ z in π[β ] zβ, g z β 0 := by
simp only [eventually_nhdsWithin_iff]
filter_upwards [hU.eventually_mem hzβ] with z hz hzzβ
simpa only [hgzβ] using hi.ne hz hzβ hzzβ | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
β’ deriv g zβ β 0 | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
β’ deriv g zβ β 0 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have h17 : p β 0 := by
simpa [β hp.locally_zero_iff.not] using h25.frequently.filter_mono nhdsWithin_le_nhds | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
β’ deriv g zβ β 0 | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
β’ deriv g zβ β 0 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | by_contra h | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
β’ deriv g zβ β 0 | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
β’ False |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have h6 : 2 β€ p.order := two_le_order_of_deriv_eq_zero hp h17 hgzβ h | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
β’ False | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
β’ False |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | obtain β¨r, h7, h8, h14, h21, h20β© : β r > 0,
cindex zβ r g = p.order β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§
(β z β closedBall zβ r, z β zβ β g z β 0) β§
closedBall zβ r β U | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
β’ False | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U
case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
β’ False |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have h22 : β z β sphere zβ r, g z β 0 :=
Ξ» z hz => h21 z (sphere_subset_closedBall hz) (ne_of_mem_sphere hz h7.lt.ne.symm) | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
β’ False | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
β’ False |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have h18 : β Ξ΅, DifferentiableOn β (Ξ» z => g z + Ξ΅) U := Ξ» Ξ΅ => hg.add_const Ξ΅ | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
β’ False | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
β’ False |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have h19 : TendstoLocallyUniformlyOn (Ξ» Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U :=
tendsto_uniformly_on_add_const.tendstoLocallyUniformlyOn | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
β’ False | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
β’ False |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have h9 : βαΆ Ξ΅ in π[β ] 0, cindex zβ r (Ξ» z => g z + Ξ΅) = 1 := by
have h24 : p.order β 0 := by linarith
have := hurwitz2 hU (eventually_of_forall h18) h19 h7 h20 h22 (by simp [h8, h24])
simp only [eventually_nhdsWithin_iff] at this β’
filter_upwards [this] with Ξ΅ h hΞ΅
obtain β¨z, hz, hgzβ© := h hΞ΅
have e1 : z β zβ := by rintro rfl; rw [hgzβ, zero_add] at hgz; exact hΞ΅ hgz
have e2 : deriv (Ξ» z => g z + Ξ΅) z β 0 := by simpa using h14 z (ball_subset_closedBall hz) e1
refine crucial hU h20 hz (h18 Ξ΅) hgz e2 (Ξ» w hw hwz => ?_)
contrapose! hwz
exact hi (h20 hw) ((ball_subset_closedBall.trans h20) hz) (add_right_cancel (hwz.trans hgz.symm)) | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
β’ False | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h9 : βαΆ (Ξ΅ : β) in π[β ] 0, (cindex zβ r fun z => g z + Ξ΅) = 1
β’ False |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have h10 : Tendsto (Ξ» Ξ΅ => cindex zβ r (Ξ» z => g z + Ξ΅)) (π[β ] 0) (π (cindex zβ r g)) :=
hurwitz2_2 hU (eventually_of_forall h18) h19 h7 (sphere_subset_closedBall.trans h20) h22 | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h9 : βαΆ (Ξ΅ : β) in π[β ] 0, (cindex zβ r fun z => g z + Ξ΅) = 1
β’ False | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h9 : βαΆ (Ξ΅ : β) in π[β ] 0, (cindex zβ r fun z => g z + Ξ΅) = 1
h10 : Tendsto (fun Ξ΅ => cindex zβ r fun z => g z + Ξ΅) (π[β ] 0) (π (cindex zβ r g))
β’ False |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | rw [tendsto_nhds_unique (Tendsto.congr' h9 h10) tendsto_const_nhds] at h8 | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h9 : βαΆ (Ξ΅ : β) in π[β ] 0, (cindex zβ r fun z => g z + Ξ΅) = 1
h10 : Tendsto (fun Ξ΅ => cindex zβ r fun z => g z + Ξ΅) (π[β ] 0) (π (cindex zβ r g))
β’ False | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : 1 = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h9 : βαΆ (Ξ΅ : β) in π[β ] 0, (cindex zβ r fun z => g z + Ξ΅) = 1
h10 : Tendsto (fun Ξ΅ => cindex zβ r fun z => g z + Ξ΅) (π[β ] 0) (π (cindex zβ r g))
β’ False |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | norm_cast at h8 | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : 1 = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h9 : βαΆ (Ξ΅ : β) in π[β ] 0, (cindex zβ r fun z => g z + Ξ΅) = 1
h10 : Tendsto (fun Ξ΅ => cindex zβ r fun z => g z + Ξ΅) (π[β ] 0) (π (cindex zβ r g))
β’ False | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h9 : βαΆ (Ξ΅ : β) in π[β ] 0, (cindex zβ r fun z => g z + Ξ΅) = 1
h10 : Tendsto (fun Ξ΅ => cindex zβ r fun z => g z + Ξ΅) (π[β ] 0) (π (cindex zβ r g))
h8 : 1 = FormalMultilinearSeries.order p
β’ False |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | linarith | case intro.intro.intro.intro.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h9 : βαΆ (Ξ΅ : β) in π[β ] 0, (cindex zβ r fun z => g z + Ξ΅) = 1
h10 : Tendsto (fun Ξ΅ => cindex zβ r fun z => g z + Ξ΅) (π[β ] 0) (π (cindex zβ r g))
h8 : 1 = FormalMultilinearSeries.order p
β’ False | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | simp only [eventually_nhdsWithin_iff] | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
β’ βαΆ (z : β) in π[β ] zβ, g z β 0 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
β’ βαΆ (x : β) in π zβ, x β {zβ}αΆ β g x β 0 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | filter_upwards [hU.eventually_mem hzβ] with z hz hzzβ | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
β’ βαΆ (x : β) in π zβ, x β {zβ}αΆ β g x β 0 | case h
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
z : β
hz : z β U
hzzβ : z β {zβ}αΆ
β’ g z β 0 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | simpa only [hgzβ] using hi.ne hz hzβ hzzβ | case h
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
z : β
hz : z β U
hzzβ : z β {zβ}αΆ
β’ g z β 0 | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | simpa [β hp.locally_zero_iff.not] using h25.frequently.filter_mono nhdsWithin_le_nhds | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
β’ p β 0 | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | obtain β¨q, hqβ© : AnalyticAt β (deriv g) zβ := (hg.deriv hU).analyticAt (hU.mem_nhds hzβ) | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have h26 : q β 0 := by
rintro rfl
simpa [hgzβ] using (((bla β¨p, hpβ© hq).filter_mono nhdsWithin_le_nhds).and h25).exists | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
h26 : q β 0
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have e1 := cindex_eventually_eq_order hp | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
h26 : q β 0
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
h26 : q β 0
e1 : βαΆ (r : β) in π[>] 0, cindex zβ r g = β(FormalMultilinearSeries.order p)
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have e2 := hp.locally_ne_zero h17 | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
h26 : q β 0
e1 : βαΆ (r : β) in π[>] 0, cindex zβ r g = β(FormalMultilinearSeries.order p)
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
h26 : q β 0
e1 : βαΆ (r : β) in π[>] 0, cindex zβ r g = β(FormalMultilinearSeries.order p)
e2 : βαΆ (z : β) in π[β ] zβ, g z β 0
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have e3 := hq.locally_ne_zero h26 | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
h26 : q β 0
e1 : βαΆ (r : β) in π[>] 0, cindex zβ r g = β(FormalMultilinearSeries.order p)
e2 : βαΆ (z : β) in π[β ] zβ, g z β 0
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
h26 : q β 0
e1 : βαΆ (r : β) in π[>] 0, cindex zβ r g = β(FormalMultilinearSeries.order p)
e2 : βαΆ (z : β) in π[β ] zβ, g z β 0
e3 : βαΆ (z : β) in π[β ] zβ, deriv g z β 0
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have e4 := hU.eventually_mem hzβ | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
h26 : q β 0
e1 : βαΆ (r : β) in π[>] 0, cindex zβ r g = β(FormalMultilinearSeries.order p)
e2 : βαΆ (z : β) in π[β ] zβ, g z β 0
e3 : βαΆ (z : β) in π[β ] zβ, deriv g z β 0
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
h26 : q β 0
e1 : βαΆ (r : β) in π[>] 0, cindex zβ r g = β(FormalMultilinearSeries.order p)
e2 : βαΆ (z : β) in π[β ] zβ, g z β 0
e3 : βαΆ (z : β) in π[β ] zβ, deriv g z β 0
e4 : βαΆ (x : β) in π zβ, x β U
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | simp only [eventually_nhdsWithin_iff, mem_compl_singleton_iff] at e2 e3 | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
h26 : q β 0
e1 : βαΆ (r : β) in π[>] 0, cindex zβ r g = β(FormalMultilinearSeries.order p)
e2 : βαΆ (z : β) in π[β ] zβ, g z β 0
e3 : βαΆ (z : β) in π[β ] zβ, deriv g z β 0
e4 : βαΆ (x : β) in π zβ, x β U
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
h26 : q β 0
e1 : βαΆ (r : β) in π[>] 0, cindex zβ r g = β(FormalMultilinearSeries.order p)
e4 : βαΆ (x : β) in π zβ, x β U
e2 : βαΆ (x : β) in π zβ, x β zβ β g x β 0
e3 : βαΆ (x : β) in π zβ, x β zβ β deriv g x β 0
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | simp only [eventually_nhds_iff_eventually_closed_ball] at e2 e3 e4 | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
h26 : q β 0
e1 : βαΆ (r : β) in π[>] 0, cindex zβ r g = β(FormalMultilinearSeries.order p)
e4 : βαΆ (x : β) in π zβ, x β U
e2 : βαΆ (x : β) in π zβ, x β zβ β g x β 0
e3 : βαΆ (x : β) in π zβ, x β zβ β deriv g x β 0
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
h26 : q β 0
e1 : βαΆ (r : β) in π[>] 0, cindex zβ r g = β(FormalMultilinearSeries.order p)
e2 : βαΆ (r : β) in π[>] 0, β z β closedBall zβ r, z β zβ β g z β 0
e3 : βαΆ (r : β) in π[>] 0, β z β closedBall zβ r, z β zβ β deriv g z β 0
e4 : βαΆ (r : β) in π[>] 0, β z β closedBall zβ r, z β U
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | exact (e1.and (e3.and (e2.and e4))).exists' | case intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
h26 : q β 0
e1 : βαΆ (r : β) in π[>] 0, cindex zβ r g = β(FormalMultilinearSeries.order p)
e2 : βαΆ (r : β) in π[>] 0, β z β closedBall zβ r, z β zβ β g z β 0
e3 : βαΆ (r : β) in π[>] 0, β z β closedBall zβ r, z β zβ β deriv g z β 0
e4 : βαΆ (r : β) in π[>] 0, β z β closedBall zβ r, z β U
β’ β r > 0,
cindex zβ r g = β(FormalMultilinearSeries.order p) β§
(β z β closedBall zβ r, z β zβ β deriv g z β 0) β§ (β z β closedBall zβ r, z β zβ β g z β 0) β§ closedBall zβ r β U | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | rintro rfl | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
q : FormalMultilinearSeries β β β
hq : HasFPowerSeriesAt (deriv g) q zβ
β’ q β 0 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
hq : HasFPowerSeriesAt (deriv g) 0 zβ
β’ False |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | simpa [hgzβ] using (((bla β¨p, hpβ© hq).filter_mono nhdsWithin_le_nhds).and h25).exists | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
hq : HasFPowerSeriesAt (deriv g) 0 zβ
β’ False | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have h24 : p.order β 0 := by linarith | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
β’ βαΆ (Ξ΅ : β) in π[β ] 0, (cindex zβ r fun z => g z + Ξ΅) = 1 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
β’ βαΆ (Ξ΅ : β) in π[β ] 0, (cindex zβ r fun z => g z + Ξ΅) = 1 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have := hurwitz2 hU (eventually_of_forall h18) h19 h7 h20 h22 (by simp [h8, h24]) | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
β’ βαΆ (Ξ΅ : β) in π[β ] 0, (cindex zβ r fun z => g z + Ξ΅) = 1 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (n : β) in π[β ] 0, β z β ball zβ r, g z + n = 0
β’ βαΆ (Ξ΅ : β) in π[β ] 0, (cindex zβ r fun z => g z + Ξ΅) = 1 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | simp only [eventually_nhdsWithin_iff] at this β’ | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (n : β) in π[β ] 0, β z β ball zβ r, g z + n = 0
β’ βαΆ (Ξ΅ : β) in π[β ] 0, (cindex zβ r fun z => g z + Ξ΅) = 1 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
β’ βαΆ (x : β) in π 0, x β {0}αΆ β (cindex zβ r fun z => g z + x) = 1 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | filter_upwards [this] with Ξ΅ h hΞ΅ | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
β’ βαΆ (x : β) in π 0, x β {0}αΆ β (cindex zβ r fun z => g z + x) = 1 | case h
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
hβ : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
Ξ΅ : β
h : Ξ΅ β {0}αΆ β β z β ball zβ r, g z + Ξ΅ = 0
hΞ΅ : Ξ΅ β {0}αΆ
β’ (cindex zβ r fun z => g z + Ξ΅) = 1 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | obtain β¨z, hz, hgzβ© := h hΞ΅ | case h
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
hβ : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
Ξ΅ : β
h : Ξ΅ β {0}αΆ β β z β ball zβ r, g z + Ξ΅ = 0
hΞ΅ : Ξ΅ β {0}αΆ
β’ (cindex zβ r fun z => g z + Ξ΅) = 1 | case h.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
hβ : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
Ξ΅ : β
h : Ξ΅ β {0}αΆ β β z β ball zβ r, g z + Ξ΅ = 0
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hz : z β ball zβ r
hgz : g z + Ξ΅ = 0
β’ (cindex zβ r fun z => g z + Ξ΅) = 1 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have e1 : z β zβ := by rintro rfl; rw [hgzβ, zero_add] at hgz; exact hΞ΅ hgz | case h.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
hβ : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
Ξ΅ : β
h : Ξ΅ β {0}αΆ β β z β ball zβ r, g z + Ξ΅ = 0
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hz : z β ball zβ r
hgz : g z + Ξ΅ = 0
β’ (cindex zβ r fun z => g z + Ξ΅) = 1 | case h.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
hβ : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
Ξ΅ : β
h : Ξ΅ β {0}αΆ β β z β ball zβ r, g z + Ξ΅ = 0
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hz : z β ball zβ r
hgz : g z + Ξ΅ = 0
e1 : z β zβ
β’ (cindex zβ r fun z => g z + Ξ΅) = 1 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | have e2 : deriv (Ξ» z => g z + Ξ΅) z β 0 := by simpa using h14 z (ball_subset_closedBall hz) e1 | case h.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
hβ : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
Ξ΅ : β
h : Ξ΅ β {0}αΆ β β z β ball zβ r, g z + Ξ΅ = 0
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hz : z β ball zβ r
hgz : g z + Ξ΅ = 0
e1 : z β zβ
β’ (cindex zβ r fun z => g z + Ξ΅) = 1 | case h.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
hβ : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
Ξ΅ : β
h : Ξ΅ β {0}αΆ β β z β ball zβ r, g z + Ξ΅ = 0
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hz : z β ball zβ r
hgz : g z + Ξ΅ = 0
e1 : z β zβ
e2 : deriv (fun z => g z + Ξ΅) z β 0
β’ (cindex zβ r fun z => g z + Ξ΅) = 1 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | refine crucial hU h20 hz (h18 Ξ΅) hgz e2 (Ξ» w hw hwz => ?_) | case h.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
hβ : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
Ξ΅ : β
h : Ξ΅ β {0}αΆ β β z β ball zβ r, g z + Ξ΅ = 0
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hz : z β ball zβ r
hgz : g z + Ξ΅ = 0
e1 : z β zβ
e2 : deriv (fun z => g z + Ξ΅) z β 0
β’ (cindex zβ r fun z => g z + Ξ΅) = 1 | case h.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
hβ : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
Ξ΅ : β
h : Ξ΅ β {0}αΆ β β z β ball zβ r, g z + Ξ΅ = 0
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hz : z β ball zβ r
hgz : g z + Ξ΅ = 0
e1 : z β zβ
e2 : deriv (fun z => g z + Ξ΅) z β 0
w : β
hw : w β closedBall zβ r
hwz : w β z
β’ g w + Ξ΅ β 0 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | contrapose! hwz | case h.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
hβ : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
Ξ΅ : β
h : Ξ΅ β {0}αΆ β β z β ball zβ r, g z + Ξ΅ = 0
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hz : z β ball zβ r
hgz : g z + Ξ΅ = 0
e1 : z β zβ
e2 : deriv (fun z => g z + Ξ΅) z β 0
w : β
hw : w β closedBall zβ r
hwz : w β z
β’ g w + Ξ΅ β 0 | case h.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
hβ : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
Ξ΅ : β
h : Ξ΅ β {0}αΆ β β z β ball zβ r, g z + Ξ΅ = 0
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hz : z β ball zβ r
hgz : g z + Ξ΅ = 0
e1 : z β zβ
e2 : deriv (fun z => g z + Ξ΅) z β 0
w : β
hw : w β closedBall zβ r
hwz : g w + Ξ΅ = 0
β’ w = z |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | exact hi (h20 hw) ((ball_subset_closedBall.trans h20) hz) (add_right_cancel (hwz.trans hgz.symm)) | case h.intro.intro
ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
hβ : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
Ξ΅ : β
h : Ξ΅ β {0}αΆ β β z β ball zβ r, g z + Ξ΅ = 0
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hz : z β ball zβ r
hgz : g z + Ξ΅ = 0
e1 : z β zβ
e2 : deriv (fun z => g z + Ξ΅) z β 0
w : β
hw : w β closedBall zβ r
hwz : g w + Ξ΅ = 0
β’ w = z | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | linarith | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
β’ FormalMultilinearSeries.order p β 0 | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | simp [h8, h24] | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
h : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
β’ cindex zβ r g β 0 | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | rintro rfl | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
hβ : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
Ξ΅ : β
h : Ξ΅ β {0}αΆ β β z β ball zβ r, g z + Ξ΅ = 0
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hz : z β ball zβ r
hgz : g z + Ξ΅ = 0
β’ z β zβ | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
p : FormalMultilinearSeries β β β
h17 : p β 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
Ξ΅ : β
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hgz : g z + Ξ΅ = 0
hzβ : z β U
hgzβ : g z = 0
hp : HasFPowerSeriesAt g p z
h25 : βαΆ (z : β) in π[β ] z, g z β 0
hβ : deriv g z = 0
h8 : cindex z r g = β(FormalMultilinearSeries.order p)
h14 : β z_1 β closedBall z r, z_1 β z β deriv g z_1 β 0
h21 : β z_1 β closedBall z r, z_1 β z β g z_1 β 0
h20 : closedBall z r β U
h22 : β z_1 β sphere z r, g z_1 β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z_1 β ball z r, g z_1 + x = 0
h : Ξ΅ β {0}αΆ β β z_1 β ball z r, g z_1 + Ξ΅ = 0
hz : z β ball z r
β’ False |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | rw [hgzβ, zero_add] at hgz | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
p : FormalMultilinearSeries β β β
h17 : p β 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
Ξ΅ : β
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hgz : g z + Ξ΅ = 0
hzβ : z β U
hgzβ : g z = 0
hp : HasFPowerSeriesAt g p z
h25 : βαΆ (z : β) in π[β ] z, g z β 0
hβ : deriv g z = 0
h8 : cindex z r g = β(FormalMultilinearSeries.order p)
h14 : β z_1 β closedBall z r, z_1 β z β deriv g z_1 β 0
h21 : β z_1 β closedBall z r, z_1 β z β g z_1 β 0
h20 : closedBall z r β U
h22 : β z_1 β sphere z r, g z_1 β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z_1 β ball z r, g z_1 + x = 0
h : Ξ΅ β {0}αΆ β β z_1 β ball z r, g z_1 + Ξ΅ = 0
hz : z β ball z r
β’ False | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
p : FormalMultilinearSeries β β β
h17 : p β 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
Ξ΅ : β
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hgz : Ξ΅ = 0
hzβ : z β U
hgzβ : g z = 0
hp : HasFPowerSeriesAt g p z
h25 : βαΆ (z : β) in π[β ] z, g z β 0
hβ : deriv g z = 0
h8 : cindex z r g = β(FormalMultilinearSeries.order p)
h14 : β z_1 β closedBall z r, z_1 β z β deriv g z_1 β 0
h21 : β z_1 β closedBall z r, z_1 β z β g z_1 β 0
h20 : closedBall z r β U
h22 : β z_1 β sphere z r, g z_1 β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z_1 β ball z r, g z_1 + x = 0
h : Ξ΅ β {0}αΆ β β z_1 β ball z r, g z_1 + Ξ΅ = 0
hz : z β ball z r
β’ False |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | exact hΞ΅ hgz | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
p : FormalMultilinearSeries β β β
h17 : p β 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
Ξ΅ : β
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hgz : Ξ΅ = 0
hzβ : z β U
hgzβ : g z = 0
hp : HasFPowerSeriesAt g p z
h25 : βαΆ (z : β) in π[β ] z, g z β 0
hβ : deriv g z = 0
h8 : cindex z r g = β(FormalMultilinearSeries.order p)
h14 : β z_1 β closedBall z r, z_1 β z β deriv g z_1 β 0
h21 : β z_1 β closedBall z r, z_1 β z β g z_1 β 0
h20 : closedBall z r β U
h22 : β z_1 β sphere z r, g z_1 β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z_1 β ball z r, g z_1 + x = 0
h : Ξ΅ β {0}αΆ β β z_1 β ball z r, g z_1 + Ξ΅ = 0
hz : z β ball z r
β’ False | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj_aux | [91, 1] | [138, 28] | simpa using h14 z (ball_subset_closedBall hz) e1 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
rβ : β
f gβ g : β β β
hU : IsOpen U
hg : DifferentiableOn β g U
hi : InjOn g U
hzβ : zβ β U
hgzβ : g zβ = 0
p : FormalMultilinearSeries β β β
hp : HasFPowerSeriesAt g p zβ
h25 : βαΆ (z : β) in π[β ] zβ, g z β 0
h17 : p β 0
hβ : deriv g zβ = 0
h6 : 2 β€ FormalMultilinearSeries.order p
r : β
h7 : r > 0
h8 : cindex zβ r g = β(FormalMultilinearSeries.order p)
h14 : β z β closedBall zβ r, z β zβ β deriv g z β 0
h21 : β z β closedBall zβ r, z β zβ β g z β 0
h20 : closedBall zβ r β U
h22 : β z β sphere zβ r, g z β 0
h18 : β (Ξ΅ : β), DifferentiableOn β (fun z => g z + Ξ΅) U
h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (π[β ] 0) U
h24 : FormalMultilinearSeries.order p β 0
this : βαΆ (x : β) in π 0, x β {0}αΆ β β z β ball zβ r, g z + x = 0
Ξ΅ : β
h : Ξ΅ β {0}αΆ β β z β ball zβ r, g z + Ξ΅ = 0
hΞ΅ : Ξ΅ β {0}αΆ
z : β
hz : z β ball zβ r
hgz : g z + Ξ΅ = 0
e1 : z β zβ
β’ deriv (fun z => g z + Ξ΅) z β 0 | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj | [140, 1] | [144, 99] | have : InjOn (Ξ» z => f z - f zβ) U := Ξ» zβ hzβ zβ hzβ h => hi hzβ hzβ (sub_left_inj.1 h) | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
fβ g f : β β β
hU : IsOpen U
hf : DifferentiableOn β f U
hi : InjOn f U
hzβ : zβ β U
β’ deriv f zβ β 0 | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
fβ g f : β β β
hU : IsOpen U
hf : DifferentiableOn β f U
hi : InjOn f U
hzβ : zβ β U
this : InjOn (fun z => f z - f zβ) U
β’ deriv f zβ β 0 |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/deriv_inj.lean | deriv_ne_zero_of_inj | [140, 1] | [144, 99] | simpa [deriv_sub_const] using deriv_ne_zero_of_inj_aux hU (hf.sub_const _) this hzβ (sub_self _) | ΞΉ : Type u_1
Ξ± : Type u_2
Ξ² : Type u_3
U : Set β
c zβ : β
r : β
fβ g f : β β β
hU : IsOpen U
hf : DifferentiableOn β f U
hi : InjOn f U
hzβ : zβ β U
this : InjOn (fun z => f z - f zβ) U
β’ deriv f zβ β 0 | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/Spaces.lean | tendsto_π_iff | [15, 1] | [18, 65] | simp [UniformOnFun.tendsto_iff_tendstoUniformlyOn, _root_.compacts] | U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
F : ΞΉ β π U
f : π U
β’ Tendsto F l (π f) β TendstoLocallyUniformlyOn F f l U | U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
F : ΞΉ β π U
f : π U
β’ (β s β U,
IsCompact s β
TendstoUniformlyOn (β(UniformOnFun.toFun {K | K β U β§ IsCompact K}) β F)
((UniformOnFun.toFun {K | K β U β§ IsCompact K}) f) l s) β
TendstoLocallyUniformlyOn F f l U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/Spaces.lean | tendsto_π_iff | [15, 1] | [18, 65] | exact (tendstoLocallyUniformlyOn_iff_forall_isCompact hU).symm | U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
F : ΞΉ β π U
f : π U
β’ (β s β U,
IsCompact s β
TendstoUniformlyOn (β(UniformOnFun.toFun {K | K β U β§ IsCompact K}) β F)
((UniformOnFun.toFun {K | K β U β§ IsCompact K}) f) l s) β
TendstoLocallyUniformlyOn F f l U | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/Spaces.lean | isClosed_π | [24, 1] | [28, 79] | refine isClosed_iff_clusterPt.2 (Ξ» f hf => ?_) | U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
β’ IsClosed (π U) | U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
hf : ClusterPt f (π (π U))
β’ f β π U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/Spaces.lean | isClosed_π | [24, 1] | [28, 79] | refine @TendstoLocallyUniformlyOn.differentiableOn _ _ _ _ _ _ _ id f hf ?_ ?_ hU | U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
hf : ClusterPt f (π (π U))
β’ f β π U | case refine_1
U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
hf : ClusterPt f (π (π U))
β’ TendstoLocallyUniformlyOn id f (π f β π (π U)) U
case refine_2
U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
hf : ClusterPt f (π (π U))
β’ βαΆ (n : β β β) in π f β π (π U), DifferentiableOn β (id n) U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/Spaces.lean | isClosed_π | [24, 1] | [28, 79] | simp [β tendsto_π_iff hU, Tendsto] | case refine_1
U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
hf : ClusterPt f (π (π U))
β’ TendstoLocallyUniformlyOn id f (π f β π (π U)) U | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/Spaces.lean | isClosed_π | [24, 1] | [28, 79] | simp [eventually_inf_principal, π] | case refine_2
U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
hf : ClusterPt f (π (π U))
β’ βαΆ (n : β β β) in π f β π (π U), DifferentiableOn β (id n) U | case refine_2
U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
hf : ClusterPt f (π (π U))
β’ βαΆ (x : β β β) in π f, x β {f | DifferentiableOn β f U} β DifferentiableOn β x U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/Spaces.lean | isClosed_π | [24, 1] | [28, 79] | exact eventually_of_forall (Ξ» g => id) | case refine_2
U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
hf : ClusterPt f (π (π U))
β’ βαΆ (x : β β β) in π f, x β {f | DifferentiableOn β f U} β DifferentiableOn β x U | no goals |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/Spaces.lean | ContinuousOn_uderiv | [30, 1] | [35, 27] | rintro f - | U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
β’ ContinuousOn uderiv (π U) | U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
β’ ContinuousWithinAt uderiv (π U) f |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/Spaces.lean | ContinuousOn_uderiv | [30, 1] | [35, 27] | refine (tendsto_π_iff hU).2 ?_ | U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
β’ ContinuousWithinAt uderiv (π U) f | U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
β’ TendstoLocallyUniformlyOn uderiv (uderiv f) (π[π U] f) U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/Spaces.lean | ContinuousOn_uderiv | [30, 1] | [35, 27] | refine TendstoLocallyUniformlyOn.deriv ?_ eventually_mem_nhdsWithin hU | U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
β’ TendstoLocallyUniformlyOn uderiv (uderiv f) (π[π U] f) U | U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
β’ TendstoLocallyUniformlyOn (fun f => f) f (π[π U] f) U |
https://github.com/vbeffara/RMT4.git | c2a092d029d0e6d29a381ac4ad9e85b10d97391c | RMT4/Spaces.lean | ContinuousOn_uderiv | [30, 1] | [35, 27] | apply (tendsto_π_iff hU).1 | U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
β’ TendstoLocallyUniformlyOn (fun f => f) f (π[π U] f) U | U : Set β
Q : Set β β Set β
ΞΉ : Type u_1
l : Filter ΞΉ
hU : IsOpen U
f : π U
β’ Tendsto (fun f => f) (π[π U] f) (π f) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.