url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
simp [h4, deriv_mul e1 e2, this]
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ : β„‚ β†’ β„‚ hU : IsOpen U hcr : closedBall c r βŠ† U hzβ‚€ : zβ‚€ ∈ ball c r hf : DifferentiableOn β„‚ f U hfzβ‚€ : f zβ‚€ = 0 hf'zβ‚€ : deriv f zβ‚€ β‰  0 hfz : βˆ€ z ∈ closedBall c r, z β‰  zβ‚€ β†’ f z β‰  0 hr : 0 < r g : β„‚ β†’ β„‚ := dslope f zβ‚€ h1 : DifferentiableOn β„‚ g U h2 : βˆ€ z ∈ closedBall c r, g z β‰  0 h10 : βˆ€ z ∈ sphere c r, z - zβ‚€ β‰  0 z : β„‚ hz : z ∈ sphere c r h3 : βˆ€ z ∈ U, f z = (z - zβ‚€) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - zβ‚€) * g w) z e1 : DifferentiableAt β„‚ (fun y => y - zβ‚€) z e2 : DifferentiableAt β„‚ g z this : deriv (fun y => y - zβ‚€) z = 1 ⊒ deriv f z = g z + (z - zβ‚€) * deriv g z
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
change deriv (fun y => id y - zβ‚€) z = 1
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ : β„‚ β†’ β„‚ hU : IsOpen U hcr : closedBall c r βŠ† U hzβ‚€ : zβ‚€ ∈ ball c r hf : DifferentiableOn β„‚ f U hfzβ‚€ : f zβ‚€ = 0 hf'zβ‚€ : deriv f zβ‚€ β‰  0 hfz : βˆ€ z ∈ closedBall c r, z β‰  zβ‚€ β†’ f z β‰  0 hr : 0 < r g : β„‚ β†’ β„‚ := dslope f zβ‚€ h1 : DifferentiableOn β„‚ g U h2 : βˆ€ z ∈ closedBall c r, g z β‰  0 h10 : βˆ€ z ∈ sphere c r, z - zβ‚€ β‰  0 z : β„‚ hz : z ∈ sphere c r h3 : βˆ€ z ∈ U, f z = (z - zβ‚€) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - zβ‚€) * g w) z e1 : DifferentiableAt β„‚ (fun y => y - zβ‚€) z e2 : DifferentiableAt β„‚ g z ⊒ deriv (fun y => y - zβ‚€) z = 1
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ : β„‚ β†’ β„‚ hU : IsOpen U hcr : closedBall c r βŠ† U hzβ‚€ : zβ‚€ ∈ ball c r hf : DifferentiableOn β„‚ f U hfzβ‚€ : f zβ‚€ = 0 hf'zβ‚€ : deriv f zβ‚€ β‰  0 hfz : βˆ€ z ∈ closedBall c r, z β‰  zβ‚€ β†’ f z β‰  0 hr : 0 < r g : β„‚ β†’ β„‚ := dslope f zβ‚€ h1 : DifferentiableOn β„‚ g U h2 : βˆ€ z ∈ closedBall c r, g z β‰  0 h10 : βˆ€ z ∈ sphere c r, z - zβ‚€ β‰  0 z : β„‚ hz : z ∈ sphere c r h3 : βˆ€ z ∈ U, f z = (z - zβ‚€) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - zβ‚€) * g w) z e1 : DifferentiableAt β„‚ (fun y => y - zβ‚€) z e2 : DifferentiableAt β„‚ g z ⊒ deriv (fun y => id y - zβ‚€) z = 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
simp [deriv_sub_const]
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ : β„‚ β†’ β„‚ hU : IsOpen U hcr : closedBall c r βŠ† U hzβ‚€ : zβ‚€ ∈ ball c r hf : DifferentiableOn β„‚ f U hfzβ‚€ : f zβ‚€ = 0 hf'zβ‚€ : deriv f zβ‚€ β‰  0 hfz : βˆ€ z ∈ closedBall c r, z β‰  zβ‚€ β†’ f z β‰  0 hr : 0 < r g : β„‚ β†’ β„‚ := dslope f zβ‚€ h1 : DifferentiableOn β„‚ g U h2 : βˆ€ z ∈ closedBall c r, g z β‰  0 h10 : βˆ€ z ∈ sphere c r, z - zβ‚€ β‰  0 z : β„‚ hz : z ∈ sphere c r h3 : βˆ€ z ∈ U, f z = (z - zβ‚€) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - zβ‚€) * g w) z e1 : DifferentiableAt β„‚ (fun y => y - zβ‚€) z e2 : DifferentiableAt β„‚ g z ⊒ deriv (fun y => id y - zβ‚€) z = 1
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
rw [circleIntegrable_sub_inv_iff, abs_eq_self.2 hr.le]
case e_a.hf ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ : β„‚ β†’ β„‚ hU : IsOpen U hcr : closedBall c r βŠ† U hzβ‚€ : zβ‚€ ∈ ball c r hf : DifferentiableOn β„‚ f U hfzβ‚€ : f zβ‚€ = 0 hf'zβ‚€ : deriv f zβ‚€ β‰  0 hfz : βˆ€ z ∈ closedBall c r, z β‰  zβ‚€ β†’ f z β‰  0 hr : 0 < r g : β„‚ β†’ β„‚ := dslope f zβ‚€ h1 : DifferentiableOn β„‚ g U h2 : βˆ€ z ∈ closedBall c r, g z β‰  0 h10 : βˆ€ z ∈ sphere c r, z - zβ‚€ β‰  0 h6 : βˆ€ z ∈ sphere c r, deriv f z / f z = (z - zβ‚€)⁻¹ + deriv g z / g z ⊒ CircleIntegrable (fun z => (z - zβ‚€)⁻¹) c r
case e_a.hf ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ : β„‚ β†’ β„‚ hU : IsOpen U hcr : closedBall c r βŠ† U hzβ‚€ : zβ‚€ ∈ ball c r hf : DifferentiableOn β„‚ f U hfzβ‚€ : f zβ‚€ = 0 hf'zβ‚€ : deriv f zβ‚€ β‰  0 hfz : βˆ€ z ∈ closedBall c r, z β‰  zβ‚€ β†’ f z β‰  0 hr : 0 < r g : β„‚ β†’ β„‚ := dslope f zβ‚€ h1 : DifferentiableOn β„‚ g U h2 : βˆ€ z ∈ closedBall c r, g z β‰  0 h10 : βˆ€ z ∈ sphere c r, z - zβ‚€ β‰  0 h6 : βˆ€ z ∈ sphere c r, deriv f z / f z = (z - zβ‚€)⁻¹ + deriv g z / g z ⊒ r = 0 ∨ zβ‚€ βˆ‰ sphere c r
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
exact Or.inr (disjoint_right.1 sphere_disjoint_ball hzβ‚€)
case e_a.hf ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ : β„‚ β†’ β„‚ hU : IsOpen U hcr : closedBall c r βŠ† U hzβ‚€ : zβ‚€ ∈ ball c r hf : DifferentiableOn β„‚ f U hfzβ‚€ : f zβ‚€ = 0 hf'zβ‚€ : deriv f zβ‚€ β‰  0 hfz : βˆ€ z ∈ closedBall c r, z β‰  zβ‚€ β†’ f z β‰  0 hr : 0 < r g : β„‚ β†’ β„‚ := dslope f zβ‚€ h1 : DifferentiableOn β„‚ g U h2 : βˆ€ z ∈ closedBall c r, g z β‰  0 h10 : βˆ€ z ∈ sphere c r, z - zβ‚€ β‰  0 h6 : βˆ€ z ∈ sphere c r, deriv f z / f z = (z - zβ‚€)⁻¹ + deriv g z / g z ⊒ r = 0 ∨ zβ‚€ βˆ‰ sphere c r
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
refine (ContinuousOn.div ?_ ?_ ?_).circleIntegrable hr.le
case e_a.hg ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ : β„‚ β†’ β„‚ hU : IsOpen U hcr : closedBall c r βŠ† U hzβ‚€ : zβ‚€ ∈ ball c r hf : DifferentiableOn β„‚ f U hfzβ‚€ : f zβ‚€ = 0 hf'zβ‚€ : deriv f zβ‚€ β‰  0 hfz : βˆ€ z ∈ closedBall c r, z β‰  zβ‚€ β†’ f z β‰  0 hr : 0 < r g : β„‚ β†’ β„‚ := dslope f zβ‚€ h1 : DifferentiableOn β„‚ g U h2 : βˆ€ z ∈ closedBall c r, g z β‰  0 h10 : βˆ€ z ∈ sphere c r, z - zβ‚€ β‰  0 h6 : βˆ€ z ∈ sphere c r, deriv f z / f z = (z - zβ‚€)⁻¹ + deriv g z / g z ⊒ CircleIntegrable (fun z => deriv g z / g z) c r
case e_a.hg.refine_1 ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ : β„‚ β†’ β„‚ hU : IsOpen U hcr : closedBall c r βŠ† U hzβ‚€ : zβ‚€ ∈ ball c r hf : DifferentiableOn β„‚ f U hfzβ‚€ : f zβ‚€ = 0 hf'zβ‚€ : deriv f zβ‚€ β‰  0 hfz : βˆ€ z ∈ closedBall c r, z β‰  zβ‚€ β†’ f z β‰  0 hr : 0 < r g : β„‚ β†’ β„‚ := dslope f zβ‚€ h1 : DifferentiableOn β„‚ g U h2 : βˆ€ z ∈ closedBall c r, g z β‰  0 h10 : βˆ€ z ∈ sphere c r, z - zβ‚€ β‰  0 h6 : βˆ€ z ∈ sphere c r, deriv f z / f z = (z - zβ‚€)⁻¹ + deriv g z / g z ⊒ ContinuousOn (fun z => deriv g z) (sphere c r) case e_a.hg.refine_2 ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ : β„‚ β†’ β„‚ hU : IsOpen U hcr : closedBall c r βŠ† U hzβ‚€ : zβ‚€ ∈ ball c r hf : DifferentiableOn β„‚ f U hfzβ‚€ : f zβ‚€ = 0 hf'zβ‚€ : deriv f zβ‚€ β‰  0 hfz : βˆ€ z ∈ closedBall c r, z β‰  zβ‚€ β†’ f z β‰  0 hr : 0 < r g : β„‚ β†’ β„‚ := dslope f zβ‚€ h1 : DifferentiableOn β„‚ g U h2 : βˆ€ z ∈ closedBall c r, g z β‰  0 h10 : βˆ€ z ∈ sphere c r, z - zβ‚€ β‰  0 h6 : βˆ€ z ∈ sphere c r, deriv f z / f z = (z - zβ‚€)⁻¹ + deriv g z / g z ⊒ ContinuousOn (fun z => g z) (sphere c r) case e_a.hg.refine_3 ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ : β„‚ β†’ β„‚ hU : IsOpen U hcr : closedBall c r βŠ† U hzβ‚€ : zβ‚€ ∈ ball c r hf : DifferentiableOn β„‚ f U hfzβ‚€ : f zβ‚€ = 0 hf'zβ‚€ : deriv f zβ‚€ β‰  0 hfz : βˆ€ z ∈ closedBall c r, z β‰  zβ‚€ β†’ f z β‰  0 hr : 0 < r g : β„‚ β†’ β„‚ := dslope f zβ‚€ h1 : DifferentiableOn β„‚ g U h2 : βˆ€ z ∈ closedBall c r, g z β‰  0 h10 : βˆ€ z ∈ sphere c r, z - zβ‚€ β‰  0 h6 : βˆ€ z ∈ sphere c r, deriv f z / f z = (z - zβ‚€)⁻¹ + deriv g z / g z ⊒ βˆ€ x ∈ sphere c r, g x β‰  0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
exact (h1.deriv hU).continuousOn.mono (sphere_subset_closedBall.trans hcr)
case e_a.hg.refine_1 ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ : β„‚ β†’ β„‚ hU : IsOpen U hcr : closedBall c r βŠ† U hzβ‚€ : zβ‚€ ∈ ball c r hf : DifferentiableOn β„‚ f U hfzβ‚€ : f zβ‚€ = 0 hf'zβ‚€ : deriv f zβ‚€ β‰  0 hfz : βˆ€ z ∈ closedBall c r, z β‰  zβ‚€ β†’ f z β‰  0 hr : 0 < r g : β„‚ β†’ β„‚ := dslope f zβ‚€ h1 : DifferentiableOn β„‚ g U h2 : βˆ€ z ∈ closedBall c r, g z β‰  0 h10 : βˆ€ z ∈ sphere c r, z - zβ‚€ β‰  0 h6 : βˆ€ z ∈ sphere c r, deriv f z / f z = (z - zβ‚€)⁻¹ + deriv g z / g z ⊒ ContinuousOn (fun z => deriv g z) (sphere c r)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
exact h1.continuousOn.mono (sphere_subset_closedBall.trans hcr)
case e_a.hg.refine_2 ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ : β„‚ β†’ β„‚ hU : IsOpen U hcr : closedBall c r βŠ† U hzβ‚€ : zβ‚€ ∈ ball c r hf : DifferentiableOn β„‚ f U hfzβ‚€ : f zβ‚€ = 0 hf'zβ‚€ : deriv f zβ‚€ β‰  0 hfz : βˆ€ z ∈ closedBall c r, z β‰  zβ‚€ β†’ f z β‰  0 hr : 0 < r g : β„‚ β†’ β„‚ := dslope f zβ‚€ h1 : DifferentiableOn β„‚ g U h2 : βˆ€ z ∈ closedBall c r, g z β‰  0 h10 : βˆ€ z ∈ sphere c r, z - zβ‚€ β‰  0 h6 : βˆ€ z ∈ sphere c r, deriv f z / f z = (z - zβ‚€)⁻¹ + deriv g z / g z ⊒ ContinuousOn (fun z => g z) (sphere c r)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
exact Ξ» z hz => h2 z (sphere_subset_closedBall hz)
case e_a.hg.refine_3 ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ : β„‚ β†’ β„‚ hU : IsOpen U hcr : closedBall c r βŠ† U hzβ‚€ : zβ‚€ ∈ ball c r hf : DifferentiableOn β„‚ f U hfzβ‚€ : f zβ‚€ = 0 hf'zβ‚€ : deriv f zβ‚€ β‰  0 hfz : βˆ€ z ∈ closedBall c r, z β‰  zβ‚€ β†’ f z β‰  0 hr : 0 < r g : β„‚ β†’ β„‚ := dslope f zβ‚€ h1 : DifferentiableOn β„‚ g U h2 : βˆ€ z ∈ closedBall c r, g z β‰  0 h10 : βˆ€ z ∈ sphere c r, z - zβ‚€ β‰  0 h6 : βˆ€ z ∈ sphere c r, deriv f z / f z = (z - zβ‚€)⁻¹ + deriv g z / g z ⊒ βˆ€ x ∈ sphere c r, g x β‰  0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
bla
[55, 1]
[67, 95]
have h1 : βˆ€αΆ  z in 𝓝 zβ‚€, AnalyticAt β„‚ f z := (isOpen_analyticAt β„‚ f).mem_nhds hf
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ ⊒ βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, f z = f zβ‚€
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z ⊒ βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, f z = f zβ‚€
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
bla
[55, 1]
[67, 95]
obtain ⟨Ρ, hΡ, h⟩ := Metric.mem_nhds_iff.1 (h1.and hf'.eventually_eq_zero)
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z ⊒ βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, f z = f zβ‚€
case intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} ⊒ βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, f z = f zβ‚€
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
bla
[55, 1]
[67, 95]
refine Metric.mem_nhds_iff.2 ⟨Ρ, hΡ, λ z hz => ?_⟩
case intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} ⊒ βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, f z = f zβ‚€
case intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} z : β„‚ hz : z ∈ ball zβ‚€ Ξ΅ ⊒ z ∈ {x | (fun z => f z = f zβ‚€) x}
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
bla
[55, 1]
[67, 95]
have h3 : βˆ€ z ∈ ball zβ‚€ Ξ΅, fderivWithin β„‚ f (ball zβ‚€ Ξ΅) z = 0 := by rintro z hz rw [fderivWithin_eq_fderiv (isOpen_ball.uniqueDiffWithinAt hz) ((h hz).1.differentiableAt)] ext1 simpa [fderiv_deriv] using (h hz).2
case intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} z : β„‚ hz : z ∈ ball zβ‚€ Ξ΅ ⊒ z ∈ {x | (fun z => f z = f zβ‚€) x}
case intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} z : β„‚ hz : z ∈ ball zβ‚€ Ξ΅ h3 : βˆ€ z ∈ ball zβ‚€ Ξ΅, fderivWithin β„‚ f (ball zβ‚€ Ξ΅) z = 0 ⊒ z ∈ {x | (fun z => f z = f zβ‚€) x}
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
bla
[55, 1]
[67, 95]
have h4 : DifferentiableOn β„‚ f (ball zβ‚€ Ξ΅) := Ξ» z hz => (h hz).1.differentiableWithinAt
case intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} z : β„‚ hz : z ∈ ball zβ‚€ Ξ΅ h3 : βˆ€ z ∈ ball zβ‚€ Ξ΅, fderivWithin β„‚ f (ball zβ‚€ Ξ΅) z = 0 ⊒ z ∈ {x | (fun z => f z = f zβ‚€) x}
case intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} z : β„‚ hz : z ∈ ball zβ‚€ Ξ΅ h3 : βˆ€ z ∈ ball zβ‚€ Ξ΅, fderivWithin β„‚ f (ball zβ‚€ Ξ΅) z = 0 h4 : DifferentiableOn β„‚ f (ball zβ‚€ Ξ΅) ⊒ z ∈ {x | (fun z => f z = f zβ‚€) x}
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
bla
[55, 1]
[67, 95]
exact Convex.is_const_of_fderivWithin_eq_zero (convex_ball zβ‚€ Ξ΅) h4 h3 hz (mem_ball_self hΞ΅)
case intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} z : β„‚ hz : z ∈ ball zβ‚€ Ξ΅ h3 : βˆ€ z ∈ ball zβ‚€ Ξ΅, fderivWithin β„‚ f (ball zβ‚€ Ξ΅) z = 0 h4 : DifferentiableOn β„‚ f (ball zβ‚€ Ξ΅) ⊒ z ∈ {x | (fun z => f z = f zβ‚€) x}
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
bla
[55, 1]
[67, 95]
rintro z hz
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} z : β„‚ hz : z ∈ ball zβ‚€ Ξ΅ ⊒ βˆ€ z ∈ ball zβ‚€ Ξ΅, fderivWithin β„‚ f (ball zβ‚€ Ξ΅) z = 0
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} z✝ : β„‚ hz✝ : z✝ ∈ ball zβ‚€ Ξ΅ z : β„‚ hz : z ∈ ball zβ‚€ Ξ΅ ⊒ fderivWithin β„‚ f (ball zβ‚€ Ξ΅) z = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
bla
[55, 1]
[67, 95]
rw [fderivWithin_eq_fderiv (isOpen_ball.uniqueDiffWithinAt hz) ((h hz).1.differentiableAt)]
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} z✝ : β„‚ hz✝ : z✝ ∈ ball zβ‚€ Ξ΅ z : β„‚ hz : z ∈ ball zβ‚€ Ξ΅ ⊒ fderivWithin β„‚ f (ball zβ‚€ Ξ΅) z = 0
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} z✝ : β„‚ hz✝ : z✝ ∈ ball zβ‚€ Ξ΅ z : β„‚ hz : z ∈ ball zβ‚€ Ξ΅ ⊒ fderiv β„‚ f z = 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
bla
[55, 1]
[67, 95]
ext1
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} z✝ : β„‚ hz✝ : z✝ ∈ ball zβ‚€ Ξ΅ z : β„‚ hz : z ∈ ball zβ‚€ Ξ΅ ⊒ fderiv β„‚ f z = 0
case h ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} z✝ : β„‚ hz✝ : z✝ ∈ ball zβ‚€ Ξ΅ z : β„‚ hz : z ∈ ball zβ‚€ Ξ΅ ⊒ (fderiv β„‚ f z) 1 = 0 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
bla
[55, 1]
[67, 95]
simpa [fderiv_deriv] using (h hz).2
case h ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ hf : AnalyticAt β„‚ f zβ‚€ hf' : HasFPowerSeriesAt (deriv f) 0 zβ‚€ h1 : βˆ€αΆ  (z : β„‚) in 𝓝 zβ‚€, AnalyticAt β„‚ f z Ξ΅ : ℝ hΞ΅ : Ξ΅ > 0 h : ball zβ‚€ Ξ΅ βŠ† {x | (fun x => AnalyticAt β„‚ f x ∧ deriv f x = 0) x} z✝ : β„‚ hz✝ : z✝ ∈ ball zβ‚€ Ξ΅ z : β„‚ hz : z ∈ ball zβ‚€ Ξ΅ ⊒ (fderiv β„‚ f z) 1 = 0 1
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
classical have h1 : p.coeff 1 = 0 := by simpa only [hg'] using hgp.deriv.symm have h2 : p 0 = 0 := by ext1 x; simpa only [hg] using hgp.coeff_zero x have h3 : p 1 = 0 := by ext1; simp [h1] rw [FormalMultilinearSeries.order_eq_find' hp, Nat.le_find_iff] intro n hn cases n case zero => simp [h2] case succ n => cases n case zero => simpa using h3 case succ => linarith
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 ⊒ 2 ≀ FormalMultilinearSeries.order p
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
have h1 : p.coeff 1 = 0 := by simpa only [hg'] using hgp.deriv.symm
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 ⊒ 2 ≀ FormalMultilinearSeries.order p
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 ⊒ 2 ≀ FormalMultilinearSeries.order p
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
have h2 : p 0 = 0 := by ext1 x; simpa only [hg] using hgp.coeff_zero x
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 ⊒ 2 ≀ FormalMultilinearSeries.order p
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 ⊒ 2 ≀ FormalMultilinearSeries.order p
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
have h3 : p 1 = 0 := by ext1; simp [h1]
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 ⊒ 2 ≀ FormalMultilinearSeries.order p
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 ⊒ 2 ≀ FormalMultilinearSeries.order p
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
rw [FormalMultilinearSeries.order_eq_find' hp, Nat.le_find_iff]
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 ⊒ 2 ≀ FormalMultilinearSeries.order p
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 ⊒ βˆ€ m < 2, Β¬p m β‰  0 m
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
intro n hn
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 ⊒ βˆ€ m < 2, Β¬p m β‰  0 m
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 n : β„• hn : n < 2 ⊒ Β¬p n β‰  0 n
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
cases n
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 n : β„• hn : n < 2 ⊒ Β¬p n β‰  0 n
case zero ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 hn : Nat.zero < 2 ⊒ Β¬p Nat.zero β‰  0 Nat.zero case succ ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 n✝ : β„• hn : Nat.succ n✝ < 2 ⊒ Β¬p (Nat.succ n✝) β‰  0 (Nat.succ n✝)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
case zero => simp [h2]
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 hn : Nat.zero < 2 ⊒ Β¬p Nat.zero β‰  0 Nat.zero
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
case succ n => cases n case zero => simpa using h3 case succ => linarith
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 n : β„• hn : Nat.succ n < 2 ⊒ Β¬p (Nat.succ n) β‰  0 (Nat.succ n)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
simpa only [hg'] using hgp.deriv.symm
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 ⊒ FormalMultilinearSeries.coeff p 1 = 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
ext1 x
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 ⊒ p 0 = 0
case H ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 x : Fin 0 β†’ β„‚ ⊒ (p 0) x = 0 x
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
simpa only [hg] using hgp.coeff_zero x
case H ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 x : Fin 0 β†’ β„‚ ⊒ (p 0) x = 0 x
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
ext1
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 ⊒ p 1 = 0
case H ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 x✝ : Fin 1 β†’ β„‚ ⊒ (p 1) x✝ = 0 x✝
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
simp [h1]
case H ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 x✝ : Fin 1 β†’ β„‚ ⊒ (p 1) x✝ = 0 x✝
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
simp [h2]
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 hn : Nat.zero < 2 ⊒ Β¬p Nat.zero β‰  0 Nat.zero
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
cases n
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 n : β„• hn : Nat.succ n < 2 ⊒ Β¬p (Nat.succ n) β‰  0 (Nat.succ n)
case zero ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 hn : Nat.succ Nat.zero < 2 ⊒ Β¬p (Nat.succ Nat.zero) β‰  0 (Nat.succ Nat.zero) case succ ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 n✝ : β„• hn : Nat.succ (Nat.succ n✝) < 2 ⊒ Β¬p (Nat.succ (Nat.succ n✝)) β‰  0 (Nat.succ (Nat.succ n✝))
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
case zero => simpa using h3
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 hn : Nat.succ Nat.zero < 2 ⊒ Β¬p (Nat.succ Nat.zero) β‰  0 (Nat.succ Nat.zero)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
case succ => linarith
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 n✝ : β„• hn : Nat.succ (Nat.succ n✝) < 2 ⊒ Β¬p (Nat.succ (Nat.succ n✝)) β‰  0 (Nat.succ (Nat.succ n✝))
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
simpa using h3
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 hn : Nat.succ Nat.zero < 2 ⊒ Β¬p (Nat.succ Nat.zero) β‰  0 (Nat.succ Nat.zero)
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
two_le_order_of_deriv_eq_zero
[69, 1]
[83, 26]
linarith
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ p : FormalMultilinearSeries β„‚ β„‚ β„‚ hgp : HasFPowerSeriesAt g p zβ‚€ hp : p β‰  0 hg : g zβ‚€ = 0 hg' : deriv g zβ‚€ = 0 h1 : FormalMultilinearSeries.coeff p 1 = 0 h2 : p 0 = 0 h3 : p 1 = 0 n✝ : β„• hn : Nat.succ (Nat.succ n✝) < 2 ⊒ Β¬p (Nat.succ (Nat.succ n✝)) β‰  0 (Nat.succ (Nat.succ n✝))
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
tendsto_uniformly_on_add_const
[85, 1]
[89, 50]
have : Tendsto id (𝓝[β‰ ] (0 : β„‚)) (𝓝 0) := nhdsWithin_le_nhds
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ ⊒ TendstoUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ this : Tendsto id (𝓝[β‰ ] 0) (𝓝 0) ⊒ TendstoUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
tendsto_uniformly_on_add_const
[85, 1]
[89, 50]
have : TendstoUniformlyOn (Ξ» (Ξ΅ _ : β„‚) => Ξ΅) 0 (𝓝[β‰ ] 0) U := this.tendstoUniformlyOn_const U
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ this : Tendsto id (𝓝[β‰ ] 0) (𝓝 0) ⊒ TendstoUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ this✝ : Tendsto id (𝓝[β‰ ] 0) (𝓝 0) this : TendstoUniformlyOn (fun Ξ΅ x => Ξ΅) 0 (𝓝[β‰ ] 0) U ⊒ TendstoUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
tendsto_uniformly_on_add_const
[85, 1]
[89, 50]
simpa using tendsto_uniformly_on_const.add this
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g : β„‚ β†’ β„‚ this✝ : Tendsto id (𝓝[β‰ ] 0) (𝓝 0) this : TendstoUniformlyOn (fun Ξ΅ x => Ξ΅) 0 (𝓝[β‰ ] 0) U ⊒ TendstoUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
obtain ⟨p, hp⟩ : AnalyticAt β„‚ g zβ‚€ := hg.analyticAt (hU.mem_nhds hzβ‚€)
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 ⊒ deriv g zβ‚€ β‰  0
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ ⊒ deriv g zβ‚€ β‰  0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have h25 : βˆ€αΆ  z in 𝓝[β‰ ] zβ‚€, g z β‰  0 := by simp only [eventually_nhdsWithin_iff] filter_upwards [hU.eventually_mem hzβ‚€] with z hz hzzβ‚€ simpa only [hgzβ‚€] using hi.ne hz hzβ‚€ hzzβ‚€
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ ⊒ deriv g zβ‚€ β‰  0
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 ⊒ deriv g zβ‚€ β‰  0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have h17 : p β‰  0 := by simpa [← hp.locally_zero_iff.not] using h25.frequently.filter_mono nhdsWithin_le_nhds
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 ⊒ deriv g zβ‚€ β‰  0
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 ⊒ deriv g zβ‚€ β‰  0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
by_contra h
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 ⊒ deriv g zβ‚€ β‰  0
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have h6 : 2 ≀ p.order := two_le_order_of_deriv_eq_zero hp h17 hgzβ‚€ h
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 ⊒ False
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
obtain ⟨r, h7, h8, h14, h21, h20⟩ : βˆƒ r > 0, cindex zβ‚€ r g = p.order ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p ⊒ False
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 := Ξ» z hz => h21 z (sphere_subset_closedBall hz) (ne_of_mem_sphere hz h7.lt.ne.symm)
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U ⊒ False
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have h18 : βˆ€ Ξ΅, DifferentiableOn β„‚ (Ξ» z => g z + Ξ΅) U := Ξ» Ξ΅ => hg.add_const Ξ΅
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 ⊒ False
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have h19 : TendstoLocallyUniformlyOn (Ξ» Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U := tendsto_uniformly_on_add_const.tendstoLocallyUniformlyOn
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U ⊒ False
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have h9 : βˆ€αΆ  Ξ΅ in 𝓝[β‰ ] 0, cindex zβ‚€ r (Ξ» z => g z + Ξ΅) = 1 := by have h24 : p.order β‰  0 := by linarith have := hurwitz2 hU (eventually_of_forall h18) h19 h7 h20 h22 (by simp [h8, h24]) simp only [eventually_nhdsWithin_iff] at this ⊒ filter_upwards [this] with Ξ΅ h hΞ΅ obtain ⟨z, hz, hgz⟩ := h hΞ΅ have e1 : z β‰  zβ‚€ := by rintro rfl; rw [hgzβ‚€, zero_add] at hgz; exact hΞ΅ hgz have e2 : deriv (Ξ» z => g z + Ξ΅) z β‰  0 := by simpa using h14 z (ball_subset_closedBall hz) e1 refine crucial hU h20 hz (h18 Ξ΅) hgz e2 (Ξ» w hw hwz => ?_) contrapose! hwz exact hi (h20 hw) ((ball_subset_closedBall.trans h20) hz) (add_right_cancel (hwz.trans hgz.symm))
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U ⊒ False
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h9 : βˆ€αΆ  (Ξ΅ : β„‚) in 𝓝[β‰ ] 0, (cindex zβ‚€ r fun z => g z + Ξ΅) = 1 ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have h10 : Tendsto (Ξ» Ξ΅ => cindex zβ‚€ r (Ξ» z => g z + Ξ΅)) (𝓝[β‰ ] 0) (𝓝 (cindex zβ‚€ r g)) := hurwitz2_2 hU (eventually_of_forall h18) h19 h7 (sphere_subset_closedBall.trans h20) h22
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h9 : βˆ€αΆ  (Ξ΅ : β„‚) in 𝓝[β‰ ] 0, (cindex zβ‚€ r fun z => g z + Ξ΅) = 1 ⊒ False
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h9 : βˆ€αΆ  (Ξ΅ : β„‚) in 𝓝[β‰ ] 0, (cindex zβ‚€ r fun z => g z + Ξ΅) = 1 h10 : Tendsto (fun Ξ΅ => cindex zβ‚€ r fun z => g z + Ξ΅) (𝓝[β‰ ] 0) (𝓝 (cindex zβ‚€ r g)) ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
rw [tendsto_nhds_unique (Tendsto.congr' h9 h10) tendsto_const_nhds] at h8
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h9 : βˆ€αΆ  (Ξ΅ : β„‚) in 𝓝[β‰ ] 0, (cindex zβ‚€ r fun z => g z + Ξ΅) = 1 h10 : Tendsto (fun Ξ΅ => cindex zβ‚€ r fun z => g z + Ξ΅) (𝓝[β‰ ] 0) (𝓝 (cindex zβ‚€ r g)) ⊒ False
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : 1 = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h9 : βˆ€αΆ  (Ξ΅ : β„‚) in 𝓝[β‰ ] 0, (cindex zβ‚€ r fun z => g z + Ξ΅) = 1 h10 : Tendsto (fun Ξ΅ => cindex zβ‚€ r fun z => g z + Ξ΅) (𝓝[β‰ ] 0) (𝓝 (cindex zβ‚€ r g)) ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
norm_cast at h8
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : 1 = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h9 : βˆ€αΆ  (Ξ΅ : β„‚) in 𝓝[β‰ ] 0, (cindex zβ‚€ r fun z => g z + Ξ΅) = 1 h10 : Tendsto (fun Ξ΅ => cindex zβ‚€ r fun z => g z + Ξ΅) (𝓝[β‰ ] 0) (𝓝 (cindex zβ‚€ r g)) ⊒ False
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h9 : βˆ€αΆ  (Ξ΅ : β„‚) in 𝓝[β‰ ] 0, (cindex zβ‚€ r fun z => g z + Ξ΅) = 1 h10 : Tendsto (fun Ξ΅ => cindex zβ‚€ r fun z => g z + Ξ΅) (𝓝[β‰ ] 0) (𝓝 (cindex zβ‚€ r g)) h8 : 1 = FormalMultilinearSeries.order p ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
linarith
case intro.intro.intro.intro.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h9 : βˆ€αΆ  (Ξ΅ : β„‚) in 𝓝[β‰ ] 0, (cindex zβ‚€ r fun z => g z + Ξ΅) = 1 h10 : Tendsto (fun Ξ΅ => cindex zβ‚€ r fun z => g z + Ξ΅) (𝓝[β‰ ] 0) (𝓝 (cindex zβ‚€ r g)) h8 : 1 = FormalMultilinearSeries.order p ⊒ False
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
simp only [eventually_nhdsWithin_iff]
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ ⊒ βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ ⊒ βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, x ∈ {zβ‚€}ᢜ β†’ g x β‰  0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
filter_upwards [hU.eventually_mem hzβ‚€] with z hz hzzβ‚€
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ ⊒ βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, x ∈ {zβ‚€}ᢜ β†’ g x β‰  0
case h ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ z : β„‚ hz : z ∈ U hzzβ‚€ : z ∈ {zβ‚€}ᢜ ⊒ g z β‰  0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
simpa only [hgzβ‚€] using hi.ne hz hzβ‚€ hzzβ‚€
case h ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ z : β„‚ hz : z ∈ U hzzβ‚€ : z ∈ {zβ‚€}ᢜ ⊒ g z β‰  0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
simpa [← hp.locally_zero_iff.not] using h25.frequently.filter_mono nhdsWithin_le_nhds
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 ⊒ p β‰  0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
obtain ⟨q, hq⟩ : AnalyticAt β„‚ (deriv g) zβ‚€ := (hg.deriv hU).analyticAt (hU.mem_nhds hzβ‚€)
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have h26 : q β‰  0 := by rintro rfl simpa [hgzβ‚€] using (((bla ⟨p, hp⟩ hq).filter_mono nhdsWithin_le_nhds).and h25).exists
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ h26 : q β‰  0 ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have e1 := cindex_eventually_eq_order hp
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ h26 : q β‰  0 ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ h26 : q β‰  0 e1 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have e2 := hp.locally_ne_zero h17
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ h26 : q β‰  0 e1 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ h26 : q β‰  0 e1 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) e2 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have e3 := hq.locally_ne_zero h26
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ h26 : q β‰  0 e1 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) e2 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ h26 : q β‰  0 e1 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) e2 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 e3 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, deriv g z β‰  0 ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have e4 := hU.eventually_mem hzβ‚€
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ h26 : q β‰  0 e1 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) e2 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 e3 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, deriv g z β‰  0 ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ h26 : q β‰  0 e1 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) e2 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 e3 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, deriv g z β‰  0 e4 : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, x ∈ U ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
simp only [eventually_nhdsWithin_iff, mem_compl_singleton_iff] at e2 e3
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ h26 : q β‰  0 e1 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) e2 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 e3 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, deriv g z β‰  0 e4 : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, x ∈ U ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ h26 : q β‰  0 e1 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) e4 : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, x ∈ U e2 : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, x β‰  zβ‚€ β†’ g x β‰  0 e3 : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, x β‰  zβ‚€ β†’ deriv g x β‰  0 ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
simp only [eventually_nhds_iff_eventually_closed_ball] at e2 e3 e4
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ h26 : q β‰  0 e1 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) e4 : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, x ∈ U e2 : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, x β‰  zβ‚€ β†’ g x β‰  0 e3 : βˆ€αΆ  (x : β„‚) in 𝓝 zβ‚€, x β‰  zβ‚€ β†’ deriv g x β‰  0 ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ h26 : q β‰  0 e1 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) e2 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 e3 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 e4 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, βˆ€ z ∈ closedBall zβ‚€ r, z ∈ U ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
exact (e1.and (e3.and (e2.and e4))).exists'
case intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ h26 : q β‰  0 e1 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) e2 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 e3 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 e4 : βˆ€αΆ  (r : ℝ) in 𝓝[>] 0, βˆ€ z ∈ closedBall zβ‚€ r, z ∈ U ⊒ βˆƒ r > 0, cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0) ∧ (βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0) ∧ closedBall zβ‚€ r βŠ† U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
rintro rfl
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p q : FormalMultilinearSeries β„‚ β„‚ β„‚ hq : HasFPowerSeriesAt (deriv g) q zβ‚€ ⊒ q β‰  0
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p hq : HasFPowerSeriesAt (deriv g) 0 zβ‚€ ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
simpa [hgzβ‚€] using (((bla ⟨p, hp⟩ hq).filter_mono nhdsWithin_le_nhds).and h25).exists
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p hq : HasFPowerSeriesAt (deriv g) 0 zβ‚€ ⊒ False
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have h24 : p.order β‰  0 := by linarith
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U ⊒ βˆ€αΆ  (Ξ΅ : β„‚) in 𝓝[β‰ ] 0, (cindex zβ‚€ r fun z => g z + Ξ΅) = 1
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 ⊒ βˆ€αΆ  (Ξ΅ : β„‚) in 𝓝[β‰ ] 0, (cindex zβ‚€ r fun z => g z + Ξ΅) = 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have := hurwitz2 hU (eventually_of_forall h18) h19 h7 h20 h22 (by simp [h8, h24])
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 ⊒ βˆ€αΆ  (Ξ΅ : β„‚) in 𝓝[β‰ ] 0, (cindex zβ‚€ r fun z => g z + Ξ΅) = 1
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (n : β„‚) in 𝓝[β‰ ] 0, βˆƒ z ∈ ball zβ‚€ r, g z + n = 0 ⊒ βˆ€αΆ  (Ξ΅ : β„‚) in 𝓝[β‰ ] 0, (cindex zβ‚€ r fun z => g z + Ξ΅) = 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
simp only [eventually_nhdsWithin_iff] at this ⊒
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (n : β„‚) in 𝓝[β‰ ] 0, βˆƒ z ∈ ball zβ‚€ r, g z + n = 0 ⊒ βˆ€αΆ  (Ξ΅ : β„‚) in 𝓝[β‰ ] 0, (cindex zβ‚€ r fun z => g z + Ξ΅) = 1
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 ⊒ βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ (cindex zβ‚€ r fun z => g z + x) = 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
filter_upwards [this] with Ξ΅ h hΞ΅
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 ⊒ βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ (cindex zβ‚€ r fun z => g z + x) = 1
case h ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h✝ : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 Ξ΅ : β„‚ h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + Ξ΅ = 0 hΞ΅ : Ξ΅ ∈ {0}ᢜ ⊒ (cindex zβ‚€ r fun z => g z + Ξ΅) = 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
obtain ⟨z, hz, hgz⟩ := h hΡ
case h ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h✝ : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 Ξ΅ : β„‚ h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + Ξ΅ = 0 hΞ΅ : Ξ΅ ∈ {0}ᢜ ⊒ (cindex zβ‚€ r fun z => g z + Ξ΅) = 1
case h.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h✝ : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 Ξ΅ : β„‚ h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + Ξ΅ = 0 hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hz : z ∈ ball zβ‚€ r hgz : g z + Ξ΅ = 0 ⊒ (cindex zβ‚€ r fun z => g z + Ξ΅) = 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have e1 : z β‰  zβ‚€ := by rintro rfl; rw [hgzβ‚€, zero_add] at hgz; exact hΞ΅ hgz
case h.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h✝ : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 Ξ΅ : β„‚ h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + Ξ΅ = 0 hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hz : z ∈ ball zβ‚€ r hgz : g z + Ξ΅ = 0 ⊒ (cindex zβ‚€ r fun z => g z + Ξ΅) = 1
case h.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h✝ : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 Ξ΅ : β„‚ h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + Ξ΅ = 0 hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hz : z ∈ ball zβ‚€ r hgz : g z + Ξ΅ = 0 e1 : z β‰  zβ‚€ ⊒ (cindex zβ‚€ r fun z => g z + Ξ΅) = 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
have e2 : deriv (Ξ» z => g z + Ξ΅) z β‰  0 := by simpa using h14 z (ball_subset_closedBall hz) e1
case h.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h✝ : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 Ξ΅ : β„‚ h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + Ξ΅ = 0 hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hz : z ∈ ball zβ‚€ r hgz : g z + Ξ΅ = 0 e1 : z β‰  zβ‚€ ⊒ (cindex zβ‚€ r fun z => g z + Ξ΅) = 1
case h.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h✝ : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 Ξ΅ : β„‚ h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + Ξ΅ = 0 hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hz : z ∈ ball zβ‚€ r hgz : g z + Ξ΅ = 0 e1 : z β‰  zβ‚€ e2 : deriv (fun z => g z + Ξ΅) z β‰  0 ⊒ (cindex zβ‚€ r fun z => g z + Ξ΅) = 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
refine crucial hU h20 hz (h18 Ξ΅) hgz e2 (Ξ» w hw hwz => ?_)
case h.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h✝ : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 Ξ΅ : β„‚ h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + Ξ΅ = 0 hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hz : z ∈ ball zβ‚€ r hgz : g z + Ξ΅ = 0 e1 : z β‰  zβ‚€ e2 : deriv (fun z => g z + Ξ΅) z β‰  0 ⊒ (cindex zβ‚€ r fun z => g z + Ξ΅) = 1
case h.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h✝ : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 Ξ΅ : β„‚ h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + Ξ΅ = 0 hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hz : z ∈ ball zβ‚€ r hgz : g z + Ξ΅ = 0 e1 : z β‰  zβ‚€ e2 : deriv (fun z => g z + Ξ΅) z β‰  0 w : β„‚ hw : w ∈ closedBall zβ‚€ r hwz : w β‰  z ⊒ g w + Ξ΅ β‰  0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
contrapose! hwz
case h.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h✝ : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 Ξ΅ : β„‚ h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + Ξ΅ = 0 hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hz : z ∈ ball zβ‚€ r hgz : g z + Ξ΅ = 0 e1 : z β‰  zβ‚€ e2 : deriv (fun z => g z + Ξ΅) z β‰  0 w : β„‚ hw : w ∈ closedBall zβ‚€ r hwz : w β‰  z ⊒ g w + Ξ΅ β‰  0
case h.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h✝ : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 Ξ΅ : β„‚ h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + Ξ΅ = 0 hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hz : z ∈ ball zβ‚€ r hgz : g z + Ξ΅ = 0 e1 : z β‰  zβ‚€ e2 : deriv (fun z => g z + Ξ΅) z β‰  0 w : β„‚ hw : w ∈ closedBall zβ‚€ r hwz : g w + Ξ΅ = 0 ⊒ w = z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
exact hi (h20 hw) ((ball_subset_closedBall.trans h20) hz) (add_right_cancel (hwz.trans hgz.symm))
case h.intro.intro ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h✝ : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 Ξ΅ : β„‚ h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + Ξ΅ = 0 hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hz : z ∈ ball zβ‚€ r hgz : g z + Ξ΅ = 0 e1 : z β‰  zβ‚€ e2 : deriv (fun z => g z + Ξ΅) z β‰  0 w : β„‚ hw : w ∈ closedBall zβ‚€ r hwz : g w + Ξ΅ = 0 ⊒ w = z
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
linarith
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U ⊒ FormalMultilinearSeries.order p β‰  0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
simp [h8, h24]
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 ⊒ cindex zβ‚€ r g β‰  0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
rintro rfl
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h✝ : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 Ξ΅ : β„‚ h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + Ξ΅ = 0 hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hz : z ∈ ball zβ‚€ r hgz : g z + Ξ΅ = 0 ⊒ z β‰  zβ‚€
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U p : FormalMultilinearSeries β„‚ β„‚ β„‚ h17 : p β‰  0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 Ξ΅ : β„‚ hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hgz : g z + Ξ΅ = 0 hzβ‚€ : z ∈ U hgzβ‚€ : g z = 0 hp : HasFPowerSeriesAt g p z h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] z, g z β‰  0 h✝ : deriv g z = 0 h8 : cindex z r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z_1 ∈ closedBall z r, z_1 β‰  z β†’ deriv g z_1 β‰  0 h21 : βˆ€ z_1 ∈ closedBall z r, z_1 β‰  z β†’ g z_1 β‰  0 h20 : closedBall z r βŠ† U h22 : βˆ€ z_1 ∈ sphere z r, g z_1 β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z_1 ∈ ball z r, g z_1 + x = 0 h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z_1 ∈ ball z r, g z_1 + Ξ΅ = 0 hz : z ∈ ball z r ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
rw [hgzβ‚€, zero_add] at hgz
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U p : FormalMultilinearSeries β„‚ β„‚ β„‚ h17 : p β‰  0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 Ξ΅ : β„‚ hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hgz : g z + Ξ΅ = 0 hzβ‚€ : z ∈ U hgzβ‚€ : g z = 0 hp : HasFPowerSeriesAt g p z h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] z, g z β‰  0 h✝ : deriv g z = 0 h8 : cindex z r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z_1 ∈ closedBall z r, z_1 β‰  z β†’ deriv g z_1 β‰  0 h21 : βˆ€ z_1 ∈ closedBall z r, z_1 β‰  z β†’ g z_1 β‰  0 h20 : closedBall z r βŠ† U h22 : βˆ€ z_1 ∈ sphere z r, g z_1 β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z_1 ∈ ball z r, g z_1 + x = 0 h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z_1 ∈ ball z r, g z_1 + Ξ΅ = 0 hz : z ∈ ball z r ⊒ False
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U p : FormalMultilinearSeries β„‚ β„‚ β„‚ h17 : p β‰  0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 Ξ΅ : β„‚ hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hgz : Ξ΅ = 0 hzβ‚€ : z ∈ U hgzβ‚€ : g z = 0 hp : HasFPowerSeriesAt g p z h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] z, g z β‰  0 h✝ : deriv g z = 0 h8 : cindex z r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z_1 ∈ closedBall z r, z_1 β‰  z β†’ deriv g z_1 β‰  0 h21 : βˆ€ z_1 ∈ closedBall z r, z_1 β‰  z β†’ g z_1 β‰  0 h20 : closedBall z r βŠ† U h22 : βˆ€ z_1 ∈ sphere z r, g z_1 β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z_1 ∈ ball z r, g z_1 + x = 0 h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z_1 ∈ ball z r, g z_1 + Ξ΅ = 0 hz : z ∈ ball z r ⊒ False
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
exact hΞ΅ hgz
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U p : FormalMultilinearSeries β„‚ β„‚ β„‚ h17 : p β‰  0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 Ξ΅ : β„‚ hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hgz : Ξ΅ = 0 hzβ‚€ : z ∈ U hgzβ‚€ : g z = 0 hp : HasFPowerSeriesAt g p z h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] z, g z β‰  0 h✝ : deriv g z = 0 h8 : cindex z r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z_1 ∈ closedBall z r, z_1 β‰  z β†’ deriv g z_1 β‰  0 h21 : βˆ€ z_1 ∈ closedBall z r, z_1 β‰  z β†’ g z_1 β‰  0 h20 : closedBall z r βŠ† U h22 : βˆ€ z_1 ∈ sphere z r, g z_1 β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z_1 ∈ ball z r, g z_1 + x = 0 h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z_1 ∈ ball z r, g z_1 + Ξ΅ = 0 hz : z ∈ ball z r ⊒ False
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj_aux
[91, 1]
[138, 28]
simpa using h14 z (ball_subset_closedBall hz) e1
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r✝ : ℝ f g✝ g : β„‚ β†’ β„‚ hU : IsOpen U hg : DifferentiableOn β„‚ g U hi : InjOn g U hzβ‚€ : zβ‚€ ∈ U hgzβ‚€ : g zβ‚€ = 0 p : FormalMultilinearSeries β„‚ β„‚ β„‚ hp : HasFPowerSeriesAt g p zβ‚€ h25 : βˆ€αΆ  (z : β„‚) in 𝓝[β‰ ] zβ‚€, g z β‰  0 h17 : p β‰  0 h✝ : deriv g zβ‚€ = 0 h6 : 2 ≀ FormalMultilinearSeries.order p r : ℝ h7 : r > 0 h8 : cindex zβ‚€ r g = ↑(FormalMultilinearSeries.order p) h14 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ deriv g z β‰  0 h21 : βˆ€ z ∈ closedBall zβ‚€ r, z β‰  zβ‚€ β†’ g z β‰  0 h20 : closedBall zβ‚€ r βŠ† U h22 : βˆ€ z ∈ sphere zβ‚€ r, g z β‰  0 h18 : βˆ€ (Ξ΅ : β„‚), DifferentiableOn β„‚ (fun z => g z + Ξ΅) U h19 : TendstoLocallyUniformlyOn (fun Ξ΅ z => g z + Ξ΅) g (𝓝[β‰ ] 0) U h24 : FormalMultilinearSeries.order p β‰  0 this : βˆ€αΆ  (x : β„‚) in 𝓝 0, x ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + x = 0 Ξ΅ : β„‚ h : Ξ΅ ∈ {0}ᢜ β†’ βˆƒ z ∈ ball zβ‚€ r, g z + Ξ΅ = 0 hΞ΅ : Ξ΅ ∈ {0}ᢜ z : β„‚ hz : z ∈ ball zβ‚€ r hgz : g z + Ξ΅ = 0 e1 : z β‰  zβ‚€ ⊒ deriv (fun z => g z + Ξ΅) z β‰  0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj
[140, 1]
[144, 99]
have : InjOn (Ξ» z => f z - f zβ‚€) U := Ξ» z₁ hz₁ zβ‚‚ hzβ‚‚ h => hi hz₁ hzβ‚‚ (sub_left_inj.1 h)
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f✝ g f : β„‚ β†’ β„‚ hU : IsOpen U hf : DifferentiableOn β„‚ f U hi : InjOn f U hzβ‚€ : zβ‚€ ∈ U ⊒ deriv f zβ‚€ β‰  0
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f✝ g f : β„‚ β†’ β„‚ hU : IsOpen U hf : DifferentiableOn β„‚ f U hi : InjOn f U hzβ‚€ : zβ‚€ ∈ U this : InjOn (fun z => f z - f zβ‚€) U ⊒ deriv f zβ‚€ β‰  0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
deriv_ne_zero_of_inj
[140, 1]
[144, 99]
simpa [deriv_sub_const] using deriv_ne_zero_of_inj_aux hU (hf.sub_const _) this hzβ‚€ (sub_self _)
ΞΉ : Type u_1 Ξ± : Type u_2 Ξ² : Type u_3 U : Set β„‚ c zβ‚€ : β„‚ r : ℝ f✝ g f : β„‚ β†’ β„‚ hU : IsOpen U hf : DifferentiableOn β„‚ f U hi : InjOn f U hzβ‚€ : zβ‚€ ∈ U this : InjOn (fun z => f z - f zβ‚€) U ⊒ deriv f zβ‚€ β‰  0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
tendsto_𝓒_iff
[15, 1]
[18, 65]
simp [UniformOnFun.tendsto_iff_tendstoUniformlyOn, _root_.compacts]
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U F : ΞΉ β†’ 𝓒 U f : 𝓒 U ⊒ Tendsto F l (𝓝 f) ↔ TendstoLocallyUniformlyOn F f l U
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U F : ΞΉ β†’ 𝓒 U f : 𝓒 U ⊒ (βˆ€ s βŠ† U, IsCompact s β†’ TendstoUniformlyOn (⇑(UniformOnFun.toFun {K | K βŠ† U ∧ IsCompact K}) ∘ F) ((UniformOnFun.toFun {K | K βŠ† U ∧ IsCompact K}) f) l s) ↔ TendstoLocallyUniformlyOn F f l U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
tendsto_𝓒_iff
[15, 1]
[18, 65]
exact (tendstoLocallyUniformlyOn_iff_forall_isCompact hU).symm
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U F : ΞΉ β†’ 𝓒 U f : 𝓒 U ⊒ (βˆ€ s βŠ† U, IsCompact s β†’ TendstoUniformlyOn (⇑(UniformOnFun.toFun {K | K βŠ† U ∧ IsCompact K}) ∘ F) ((UniformOnFun.toFun {K | K βŠ† U ∧ IsCompact K}) f) l s) ↔ TendstoLocallyUniformlyOn F f l U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
isClosed_𝓗
[24, 1]
[28, 79]
refine isClosed_iff_clusterPt.2 (Ξ» f hf => ?_)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U ⊒ IsClosed (𝓗 U)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U hf : ClusterPt f (π“Ÿ (𝓗 U)) ⊒ f ∈ 𝓗 U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
isClosed_𝓗
[24, 1]
[28, 79]
refine @TendstoLocallyUniformlyOn.differentiableOn _ _ _ _ _ _ _ id f hf ?_ ?_ hU
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U hf : ClusterPt f (π“Ÿ (𝓗 U)) ⊒ f ∈ 𝓗 U
case refine_1 U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U hf : ClusterPt f (π“Ÿ (𝓗 U)) ⊒ TendstoLocallyUniformlyOn id f (𝓝 f βŠ“ π“Ÿ (𝓗 U)) U case refine_2 U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U hf : ClusterPt f (π“Ÿ (𝓗 U)) ⊒ βˆ€αΆ  (n : β„‚ β†’ β„‚) in 𝓝 f βŠ“ π“Ÿ (𝓗 U), DifferentiableOn β„‚ (id n) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
isClosed_𝓗
[24, 1]
[28, 79]
simp [← tendsto_𝓒_iff hU, Tendsto]
case refine_1 U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U hf : ClusterPt f (π“Ÿ (𝓗 U)) ⊒ TendstoLocallyUniformlyOn id f (𝓝 f βŠ“ π“Ÿ (𝓗 U)) U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
isClosed_𝓗
[24, 1]
[28, 79]
simp [eventually_inf_principal, 𝓗]
case refine_2 U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U hf : ClusterPt f (π“Ÿ (𝓗 U)) ⊒ βˆ€αΆ  (n : β„‚ β†’ β„‚) in 𝓝 f βŠ“ π“Ÿ (𝓗 U), DifferentiableOn β„‚ (id n) U
case refine_2 U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U hf : ClusterPt f (π“Ÿ (𝓗 U)) ⊒ βˆ€αΆ  (x : β„‚ β†’ β„‚) in 𝓝 f, x ∈ {f | DifferentiableOn β„‚ f U} β†’ DifferentiableOn β„‚ x U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
isClosed_𝓗
[24, 1]
[28, 79]
exact eventually_of_forall (Ξ» g => id)
case refine_2 U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U hf : ClusterPt f (π“Ÿ (𝓗 U)) ⊒ βˆ€αΆ  (x : β„‚ β†’ β„‚) in 𝓝 f, x ∈ {f | DifferentiableOn β„‚ f U} β†’ DifferentiableOn β„‚ x U
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
ContinuousOn_uderiv
[30, 1]
[35, 27]
rintro f -
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U ⊒ ContinuousOn uderiv (𝓗 U)
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U ⊒ ContinuousWithinAt uderiv (𝓗 U) f
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
ContinuousOn_uderiv
[30, 1]
[35, 27]
refine (tendsto_𝓒_iff hU).2 ?_
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U ⊒ ContinuousWithinAt uderiv (𝓗 U) f
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U ⊒ TendstoLocallyUniformlyOn uderiv (uderiv f) (𝓝[𝓗 U] f) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
ContinuousOn_uderiv
[30, 1]
[35, 27]
refine TendstoLocallyUniformlyOn.deriv ?_ eventually_mem_nhdsWithin hU
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U ⊒ TendstoLocallyUniformlyOn uderiv (uderiv f) (𝓝[𝓗 U] f) U
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U ⊒ TendstoLocallyUniformlyOn (fun f => f) f (𝓝[𝓗 U] f) U
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/Spaces.lean
ContinuousOn_uderiv
[30, 1]
[35, 27]
apply (tendsto_𝓒_iff hU).1
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U ⊒ TendstoLocallyUniformlyOn (fun f => f) f (𝓝[𝓗 U] f) U
U : Set β„‚ Q : Set β„‚ β†’ Set β„‚ ΞΉ : Type u_1 l : Filter ΞΉ hU : IsOpen U f : 𝓒 U ⊒ Tendsto (fun f => f) (𝓝[𝓗 U] f) (𝓝 f)