url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
intros h₁
Γ : Ctx f g : Form ⊢ BProof (insert f Γ) g → (l : List Form) × (_ : { x | x ∈ l } ⊆ Γ) ×' BProof {Form.conjoinList f l} g
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g ⊢ (l : List Form) × (_ : { x | x ∈ l } ⊆ Γ) ×' BProof {Form.conjoinList f l} g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
have ⟨s₁,h₂,prf₁⟩ := BProof.compactness h₁
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g ⊢ (l : List Form) × (_ : { x | x ∈ l } ⊆ Γ) ×' BProof {Form.conjoinList f l} g
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g ⊢ (l : List Form) × (_ : { x | x ∈ l } ⊆ Γ) ×' BProof {Form.conjoinList f l} g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
let lst₁ := (Finset.erase s₁ f).toList
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g ⊢ (l : List Form) × (_ : { x | x ∈ l } ⊆ Γ) ×' BProof {Form.conjoinList f l} g
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) ⊢ (l : List Form) × (_ : { x | x ∈ l } ⊆ Γ) ×' BProof {Form.conjoinList f l} g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
have l₁ : ↑s₁ ⊆ {h : Form | h = f ∨ h ∈ lst₁} := by intros k h₂ cases decEq f k case isTrue h₃ => rw [h₃]; exact Or.inl rfl case isFalse h₃ => have l₂ : k ∈ lst₁ := by apply Finset.mem_toList.mpr exact Finset.mem_erase.mpr ⟨h₃ ∘ Eq.symm, h₂⟩ exact Or.inr l₂
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) ⊢ (l : List Form) × (_ : { x | x ∈ l } ⊆ Γ) ×' BProof {Form.conjoinList f l} g
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) l₁ : ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ } ⊢ (l : List Form) × (_ : { x | x ∈ l } ⊆ Γ) ×' BProof {Form.conjoinList f l} g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
have prf₂ := BProof.listCompression $ BProof.monotone l₁ prf₁
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) l₁ : ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ } ⊢ (l : List Form) × (_ : { x | x ∈ l } ⊆ Γ) ×' BProof {Form.conjoinList f l} g
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) l₁ : ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ } prf₂ : BProof {Form.conjoinList f lst₁} g ⊢ (l : List Form) × (_ : { x | x ∈ l } ⊆ Γ) ×' BProof {Form.conjoinList f l} g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
refine ⟨lst₁,?_,prf₂⟩
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) l₁ : ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ } prf₂ : BProof {Form.conjoinList f lst₁} g ⊢ (l : List Form) × (_ : { x | x ∈ l } ⊆ Γ) ×' BProof {Form.conjoinList f l} g
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) l₁ : ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ } prf₂ : BProof {Form.conjoinList f lst₁} g ⊢ { x | x ∈ lst₁ } ⊆ Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
intros k h₃
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) l₁ : ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ } prf₂ : BProof {Form.conjoinList f lst₁} g ⊢ { x | x ∈ lst₁ } ⊆ Γ
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) l₁ : ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ } prf₂ : BProof {Form.conjoinList f lst₁} g k : Form h₃ : k ∈ { x | x ∈ lst₁ } ⊢ k ∈ Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
have : k ∈ Finset.erase s₁ f := Finset.mem_toList.mp h₃
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) l₁ : ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ } prf₂ : BProof {Form.conjoinList f lst₁} g k : Form h₃ : k ∈ { x | x ∈ lst₁ } ⊢ k ∈ Γ
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) l₁ : ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ } prf₂ : BProof {Form.conjoinList f lst₁} g k : Form h₃ : k ∈ { x | x ∈ lst₁ } this : k ∈ Finset.erase s₁ f ⊢ k ∈ Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
have ⟨l₅,l₆⟩: k ≠ f ∧ k ∈ s₁ := Finset.mem_erase.mp this
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) l₁ : ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ } prf₂ : BProof {Form.conjoinList f lst₁} g k : Form h₃ : k ∈ { x | x ∈ lst₁ } this : k ∈ Finset.erase s₁ f ⊢ k ∈ Γ
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) l₁ : ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ } prf₂ : BProof {Form.conjoinList f lst₁} g k : Form h₃ : k ∈ { x | x ∈ lst₁ } this : k ∈ Finset.erase s₁ f l₅ : k ≠ f l₆ : k ∈ s₁ ⊢ k ∈ Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
have : k ∈ insert f Γ := h₂ $ Finset.mem_coe.mpr l₆
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) l₁ : ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ } prf₂ : BProof {Form.conjoinList f lst₁} g k : Form h₃ : k ∈ { x | x ∈ lst₁ } this : k ∈ Finset.erase s₁ f l₅ : k ≠ f l₆ : k ∈ s₁ ⊢ k ∈ Γ
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) l₁ : ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ } prf₂ : BProof {Form.conjoinList f lst₁} g k : Form h₃ : k ∈ { x | x ∈ lst₁ } this✝ : k ∈ Finset.erase s₁ f l₅ : k ≠ f l₆ : k ∈ s₁ this : k ∈ insert f Γ ⊢ k ∈ Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
exact Set.mem_of_mem_insert_of_ne this l₅
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) l₁ : ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ } prf₂ : BProof {Form.conjoinList f lst₁} g k : Form h₃ : k ∈ { x | x ∈ lst₁ } this✝ : k ∈ Finset.erase s₁ f l₅ : k ≠ f l₆ : k ∈ s₁ this : k ∈ insert f Γ ⊢ k ∈ Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
intros k h₂
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) ⊢ ↑s₁ ⊆ { h | h = f ∨ h ∈ lst₁ }
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ ⊢ k ∈ { h | h = f ∨ h ∈ lst₁ }
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
cases decEq f k
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ ⊢ k ∈ { h | h = f ∨ h ∈ lst₁ }
case isFalse Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ h✝ : ¬f = k ⊢ k ∈ { h | h = f ∨ h ∈ lst₁ } case isTrue Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ h✝ : f = k ⊢ k ∈ { h | h = f ∨ h ∈ lst₁ }
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
case isTrue h₃ => rw [h₃]; exact Or.inl rfl
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ h₃ : f = k ⊢ k ∈ { h | h = f ∨ h ∈ lst₁ }
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
case isFalse h₃ => have l₂ : k ∈ lst₁ := by apply Finset.mem_toList.mpr exact Finset.mem_erase.mpr ⟨h₃ ∘ Eq.symm, h₂⟩ exact Or.inr l₂
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ h₃ : ¬f = k ⊢ k ∈ { h | h = f ∨ h ∈ lst₁ }
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
rw [h₃]
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ h₃ : f = k ⊢ k ∈ { h | h = f ∨ h ∈ lst₁ }
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ h₃ : f = k ⊢ k ∈ { h | h = k ∨ h ∈ lst₁ }
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
exact Or.inl rfl
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ h₃ : f = k ⊢ k ∈ { h | h = k ∨ h ∈ lst₁ }
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
have l₂ : k ∈ lst₁ := by apply Finset.mem_toList.mpr exact Finset.mem_erase.mpr ⟨h₃ ∘ Eq.symm, h₂⟩
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ h₃ : ¬f = k ⊢ k ∈ { h | h = f ∨ h ∈ lst₁ }
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ h₃ : ¬f = k l₂ : k ∈ lst₁ ⊢ k ∈ { h | h = f ∨ h ∈ lst₁ }
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
exact Or.inr l₂
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ h₃ : ¬f = k l₂ : k ∈ lst₁ ⊢ k ∈ { h | h = f ∨ h ∈ lst₁ }
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
apply Finset.mem_toList.mpr
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ h₃ : ¬f = k ⊢ k ∈ lst₁
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ h₃ : ¬f = k ⊢ k ∈ Finset.erase s₁ f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.sentenceCompactness
[209, 1]
[228, 44]
exact Finset.mem_erase.mpr ⟨h₃ ∘ Eq.symm, h₂⟩
Γ : Ctx f g : Form h₁ : BProof (insert f Γ) g s₁ : Finset Form h₂✝ : ↑s₁ ⊆ insert f Γ prf₁ : BProof (↑s₁) g lst₁ : List Form := Finset.toList (Finset.erase s₁ f) k : Form h₂ : k ∈ ↑s₁ h₃ : ¬f = k ⊢ k ∈ Finset.erase s₁ f
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
intros h₁
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α ⊢ Monotone fam → ↑fin ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fin ⊆ fam n
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam ⊢ ↑fin ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fin ⊆ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
apply @Finset.induction_on α (λfs => ↑fs ⊆ {x : α | ∃n : β, x ∈ fam n } → ∃n : β, ↑fs ⊆ fam n) instDec fin
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam ⊢ ↑fin ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fin ⊆ fam n
case empty α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam ⊢ ↑∅ ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑∅ ⊆ fam n case insert α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam ⊢ ∀ ⦃a : α⦄ {s : Finset α}, ¬a ∈ s → (↑s ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑s ⊆ fam n) → ↑(insert a s) ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑(insert a s) ⊆ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
case empty => intros _ refine ⟨default,?_⟩ intros h₂ h₃ contradiction
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam ⊢ ↑∅ ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑∅ ⊆ fam n
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
case insert => intros x fs _ h₃ h₄ have l₁ : x ∈ {x : α | ∃n : β, x ∈ fam n } := h₄ $ Finset.mem_insert_self x fs have ⟨n, l₂⟩ := l₁ have l₃ : ↑fs ⊆ {x : α | ∃n : β, x ∈ fam n } := by intros y h₅ exact h₄ $ Finset.mem_insert_of_mem (Finset.mem_coe.mp h₅) have ⟨m, l₄⟩ := h₃ l₃ cases le_total n m case inl leqthan => have l₅ := (h₁ leqthan) l₂ refine ⟨m,?_⟩ intros y h₄ cases Finset.mem_insert.mp h₄ case inl h₅ => rw [h₅]; assumption case inr h₅ => exact l₄ h₅ case inr geqthan => have l₅ := le_trans l₄ (h₁ geqthan) refine ⟨n,?_⟩ intros y h₄ cases Finset.mem_insert.mp h₄ case inl h₅ => rw [h₅]; assumption case inr h₅ => exact l₅ h₅
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam ⊢ ∀ ⦃a : α⦄ {s : Finset α}, ¬a ∈ s → (↑s ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑s ⊆ fam n) → ↑(insert a s) ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑(insert a s) ⊆ fam n
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
intros _
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam ⊢ ↑∅ ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑∅ ⊆ fam n
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam a✝ : ↑∅ ⊆ { x | ∃ n, x ∈ fam n } ⊢ ∃ n, ↑∅ ⊆ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
refine ⟨default,?_⟩
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam a✝ : ↑∅ ⊆ { x | ∃ n, x ∈ fam n } ⊢ ∃ n, ↑∅ ⊆ fam n
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam a✝ : ↑∅ ⊆ { x | ∃ n, x ∈ fam n } ⊢ ↑∅ ⊆ fam default
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
intros h₂ h₃
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam a✝ : ↑∅ ⊆ { x | ∃ n, x ∈ fam n } ⊢ ↑∅ ⊆ fam default
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam a✝ : ↑∅ ⊆ { x | ∃ n, x ∈ fam n } h₂ : α h₃ : h₂ ∈ ↑∅ ⊢ h₂ ∈ fam default
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
contradiction
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam a✝ : ↑∅ ⊆ { x | ∃ n, x ∈ fam n } h₂ : α h₃ : h₂ ∈ ↑∅ ⊢ h₂ ∈ fam default
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
intros x fs _ h₃ h₄
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam ⊢ ∀ ⦃a : α⦄ {s : Finset α}, ¬a ∈ s → (↑s ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑s ⊆ fam n) → ↑(insert a s) ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑(insert a s) ⊆ fam n
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
have l₁ : x ∈ {x : α | ∃n : β, x ∈ fam n } := h₄ $ Finset.mem_insert_self x fs
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
have ⟨n, l₂⟩ := l₁
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
have l₃ : ↑fs ⊆ {x : α | ∃n : β, x ∈ fam n } := by intros y h₅ exact h₄ $ Finset.mem_insert_of_mem (Finset.mem_coe.mp h₅)
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
have ⟨m, l₄⟩ := h₃ l₃
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
cases le_total n m
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
case inl α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m h✝ : n ≤ m ⊢ ∃ n, ↑(insert x fs) ⊆ fam n case inr α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m h✝ : m ≤ n ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
case inl leqthan => have l₅ := (h₁ leqthan) l₂ refine ⟨m,?_⟩ intros y h₄ cases Finset.mem_insert.mp h₄ case inl h₅ => rw [h₅]; assumption case inr h₅ => exact l₄ h₅
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
case inr geqthan => have l₅ := le_trans l₄ (h₁ geqthan) refine ⟨n,?_⟩ intros y h₄ cases Finset.mem_insert.mp h₄ case inl h₅ => rw [h₅]; assumption case inr h₅ => exact l₅ h₅
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
intros y h₅
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n ⊢ ↑fs ⊆ { x | ∃ n, x ∈ fam n }
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n y : α h₅ : y ∈ ↑fs ⊢ y ∈ { x | ∃ n, x ∈ fam n }
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
exact h₄ $ Finset.mem_insert_of_mem (Finset.mem_coe.mp h₅)
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n y : α h₅ : y ∈ ↑fs ⊢ y ∈ { x | ∃ n, x ∈ fam n }
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
have l₅ := (h₁ leqthan) l₂
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m l₅ : x ∈ fam m ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
refine ⟨m,?_⟩
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m l₅ : x ∈ fam m ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m l₅ : x ∈ fam m ⊢ ↑(insert x fs) ⊆ fam m
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
intros y h₄
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m l₅ : x ∈ fam m ⊢ ↑(insert x fs) ⊆ fam m
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m l₅ : x ∈ fam m y : α h₄ : y ∈ ↑(insert x fs) ⊢ y ∈ fam m
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
cases Finset.mem_insert.mp h₄
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m l₅ : x ∈ fam m y : α h₄ : y ∈ ↑(insert x fs) ⊢ y ∈ fam m
case inl α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m l₅ : x ∈ fam m y : α h₄ : y ∈ ↑(insert x fs) h✝ : y = x ⊢ y ∈ fam m case inr α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m l₅ : x ∈ fam m y : α h₄ : y ∈ ↑(insert x fs) h✝ : y ∈ fs ⊢ y ∈ fam m
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
case inl h₅ => rw [h₅]; assumption
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m l₅ : x ∈ fam m y : α h₄ : y ∈ ↑(insert x fs) h₅ : y = x ⊢ y ∈ fam m
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
case inr h₅ => exact l₄ h₅
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m l₅ : x ∈ fam m y : α h₄ : y ∈ ↑(insert x fs) h₅ : y ∈ fs ⊢ y ∈ fam m
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
rw [h₅]
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m l₅ : x ∈ fam m y : α h₄ : y ∈ ↑(insert x fs) h₅ : y = x ⊢ y ∈ fam m
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m l₅ : x ∈ fam m y : α h₄ : y ∈ ↑(insert x fs) h₅ : y = x ⊢ x ∈ fam m
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
assumption
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m l₅ : x ∈ fam m y : α h₄ : y ∈ ↑(insert x fs) h₅ : y = x ⊢ x ∈ fam m
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
exact l₄ h₅
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m leqthan : n ≤ m l₅ : x ∈ fam m y : α h₄ : y ∈ ↑(insert x fs) h₅ : y ∈ fs ⊢ y ∈ fam m
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
have l₅ := le_trans l₄ (h₁ geqthan)
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n l₅ : ↑fs ≤ fam n ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
refine ⟨n,?_⟩
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n l₅ : ↑fs ≤ fam n ⊢ ∃ n, ↑(insert x fs) ⊆ fam n
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n l₅ : ↑fs ≤ fam n ⊢ ↑(insert x fs) ⊆ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
intros y h₄
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n l₅ : ↑fs ≤ fam n ⊢ ↑(insert x fs) ⊆ fam n
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n l₅ : ↑fs ≤ fam n y : α h₄ : y ∈ ↑(insert x fs) ⊢ y ∈ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
cases Finset.mem_insert.mp h₄
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n l₅ : ↑fs ≤ fam n y : α h₄ : y ∈ ↑(insert x fs) ⊢ y ∈ fam n
case inl α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n l₅ : ↑fs ≤ fam n y : α h₄ : y ∈ ↑(insert x fs) h✝ : y = x ⊢ y ∈ fam n case inr α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n l₅ : ↑fs ≤ fam n y : α h₄ : y ∈ ↑(insert x fs) h✝ : y ∈ fs ⊢ y ∈ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
case inl h₅ => rw [h₅]; assumption
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n l₅ : ↑fs ≤ fam n y : α h₄ : y ∈ ↑(insert x fs) h₅ : y = x ⊢ y ∈ fam n
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
case inr h₅ => exact l₅ h₅
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n l₅ : ↑fs ≤ fam n y : α h₄ : y ∈ ↑(insert x fs) h₅ : y ∈ fs ⊢ y ∈ fam n
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
rw [h₅]
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n l₅ : ↑fs ≤ fam n y : α h₄ : y ∈ ↑(insert x fs) h₅ : y = x ⊢ y ∈ fam n
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n l₅ : ↑fs ≤ fam n y : α h₄ : y ∈ ↑(insert x fs) h₅ : y = x ⊢ x ∈ fam n
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
assumption
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n l₅ : ↑fs ≤ fam n y : α h₄ : y ∈ ↑(insert x fs) h₅ : y = x ⊢ x ∈ fam n
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/util.lean
finiteExhaustion
[4, 1]
[35, 35]
exact l₅ h₅
α : Type u_1 β : Type u_2 instDec : DecidableEq α inst✝¹ : LinearOrder β inst✝ : Inhabited β fam : β → Set α fin : Finset α h₁ : Monotone fam x : α fs : Finset α a✝ : ¬x ∈ fs h₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } → ∃ n, ↑fs ⊆ fam n h₄✝ : ↑(insert x fs) ⊆ { x | ∃ n, x ∈ fam n } l₁ : x ∈ { x | ∃ n, x ∈ fam n } n : β l₂ : x ∈ fam n l₃ : ↑fs ⊆ { x | ∃ n, x ∈ fam n } m : β l₄ : ↑fs ⊆ fam m geqthan : m ≤ n l₅ : ↑fs ≤ fam n y : α h₄ : y ∈ ↑(insert x fs) h₅ : y ∈ fs ⊢ y ∈ fam n
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/ConsExp.lean
ConsExp.decode_encode
[49, 1]
[64, 15]
induction c
c : ConsExp ⊢ decode (encode c) = c
case nat a✝ : ℕ ⊢ decode (encode (nat a✝)) = nat a✝ case cons a✝¹ a✝ : ConsExp a_ih✝¹ : decode (encode a✝¹) = a✝¹ a_ih✝ : decode (encode a✝) = a✝ ⊢ decode (encode (cons a✝¹ a✝)) = cons a✝¹ a✝
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/ConsExp.lean
ConsExp.decode_encode
[49, 1]
[64, 15]
next hf hg => rw [encode, decode] split next h => simp at h next h => simp [Nat.div2_val] at h cases h simp [*]
case cons a✝¹ a✝ : ConsExp a_ih✝¹ : decode (encode a✝¹) = a✝¹ a_ih✝ : decode (encode a✝) = a✝ ⊢ decode (encode (cons a✝¹ a✝)) = cons a✝¹ a✝
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/ConsExp.lean
ConsExp.decode_encode
[49, 1]
[64, 15]
simp [Nat.div2_val] at h
a✝ m✝ : ℕ h : Nat.boddDiv2 (2 * a✝) = (false, m✝) ⊢ nat m✝ = nat a✝
a✝ m✝ : ℕ h : a✝ = m✝ ⊢ nat m✝ = nat a✝
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/ConsExp.lean
ConsExp.decode_encode
[49, 1]
[64, 15]
simp [*]
a✝ m✝ : ℕ h : a✝ = m✝ ⊢ nat m✝ = nat a✝
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/ConsExp.lean
ConsExp.decode_encode
[49, 1]
[64, 15]
simp at h
a✝ m✝ : ℕ h : Nat.boddDiv2 (2 * a✝) = (true, m✝) ⊢ (match hm : Nat.unpair m✝ with | (f, g) => let_fun hn' := (_ : 1 ≤ 2 * a✝); let_fun this := (_ : m✝ < 2 * a✝); let_fun this_1 := (_ : f < 2 * a✝); let_fun this := (_ : g < 2 * a✝); cons (decode f) (decode g)) = nat a✝
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/ConsExp.lean
ConsExp.decode_encode
[49, 1]
[64, 15]
rw [encode, decode]
a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ ⊢ decode (encode (cons a✝¹ a✝)) = cons a✝¹ a✝
a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ ⊢ (match hn : Nat.boddDiv2 (2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1) with | (false, m) => nat m | (true, m) => match hm : Nat.unpair m with | (f, g) => let_fun hn' := (_ : 1 ≤ 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : m < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this_1 := (_ : f < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : g < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); cons (decode f) (decode g)) = cons a✝¹ a✝
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/ConsExp.lean
ConsExp.decode_encode
[49, 1]
[64, 15]
split
a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ ⊢ (match hn : Nat.boddDiv2 (2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1) with | (false, m) => nat m | (true, m) => match hm : Nat.unpair m with | (f, g) => let_fun hn' := (_ : 1 ≤ 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : m < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this_1 := (_ : f < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : g < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); cons (decode f) (decode g)) = cons a✝¹ a✝
case h_1 a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ m✝ : ℕ heq✝ : Nat.boddDiv2 (2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1) = (false, m✝) ⊢ nat m✝ = cons a✝¹ a✝ case h_2 a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ m✝ : ℕ heq✝ : Nat.boddDiv2 (2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1) = (true, m✝) ⊢ (match hm : Nat.unpair m✝ with | (f, g) => let_fun hn' := (_ : 1 ≤ 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : m✝ < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this_1 := (_ : f < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : g < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); cons (decode f) (decode g)) = cons a✝¹ a✝
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/ConsExp.lean
ConsExp.decode_encode
[49, 1]
[64, 15]
next h => simp at h
case h_1 a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ m✝ : ℕ heq✝ : Nat.boddDiv2 (2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1) = (false, m✝) ⊢ nat m✝ = cons a✝¹ a✝ case h_2 a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ m✝ : ℕ heq✝ : Nat.boddDiv2 (2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1) = (true, m✝) ⊢ (match hm : Nat.unpair m✝ with | (f, g) => let_fun hn' := (_ : 1 ≤ 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : m✝ < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this_1 := (_ : f < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : g < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); cons (decode f) (decode g)) = cons a✝¹ a✝
case h_2 a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ m✝ : ℕ heq✝ : Nat.boddDiv2 (2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1) = (true, m✝) ⊢ (match hm : Nat.unpair m✝ with | (f, g) => let_fun hn' := (_ : 1 ≤ 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : m✝ < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this_1 := (_ : f < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : g < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); cons (decode f) (decode g)) = cons a✝¹ a✝
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/ConsExp.lean
ConsExp.decode_encode
[49, 1]
[64, 15]
next h => simp [Nat.div2_val] at h cases h simp [*]
case h_2 a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ m✝ : ℕ heq✝ : Nat.boddDiv2 (2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1) = (true, m✝) ⊢ (match hm : Nat.unpair m✝ with | (f, g) => let_fun hn' := (_ : 1 ≤ 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : m✝ < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this_1 := (_ : f < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : g < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); cons (decode f) (decode g)) = cons a✝¹ a✝
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/ConsExp.lean
ConsExp.decode_encode
[49, 1]
[64, 15]
simp at h
a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ m✝ : ℕ h : Nat.boddDiv2 (2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1) = (false, m✝) ⊢ nat m✝ = cons a✝¹ a✝
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/ConsExp.lean
ConsExp.decode_encode
[49, 1]
[64, 15]
simp [Nat.div2_val] at h
a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ m✝ : ℕ h : Nat.boddDiv2 (2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1) = (true, m✝) ⊢ (match hm : Nat.unpair m✝ with | (f, g) => let_fun hn' := (_ : 1 ≤ 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : m✝ < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this_1 := (_ : f < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : g < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); cons (decode f) (decode g)) = cons a✝¹ a✝
a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ m✝ : ℕ h✝ : Nat.boddDiv2 (2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1) = (true, m✝) h : Nat.mkpair (encode a✝¹) (encode a✝) = m✝ ⊢ (match hm : Nat.unpair m✝ with | (f, g) => let_fun hn' := (_ : 1 ≤ 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : m✝ < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this_1 := (_ : f < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : g < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); cons (decode f) (decode g)) = cons a✝¹ a✝
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/ConsExp.lean
ConsExp.decode_encode
[49, 1]
[64, 15]
cases h
a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ m✝ : ℕ h✝ : Nat.boddDiv2 (2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1) = (true, m✝) h : Nat.mkpair (encode a✝¹) (encode a✝) = m✝ ⊢ (match hm : Nat.unpair m✝ with | (f, g) => let_fun hn' := (_ : 1 ≤ 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : m✝ < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this_1 := (_ : f < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : g < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); cons (decode f) (decode g)) = cons a✝¹ a✝
case refl a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ h : Nat.boddDiv2 (2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1) = (true, Nat.mkpair (encode a✝¹) (encode a✝)) ⊢ (match hm : Nat.unpair (Nat.mkpair (encode a✝¹) (encode a✝)) with | (f, g) => let_fun hn' := (_ : 1 ≤ 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : Nat.mkpair (encode a✝¹) (encode a✝) < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this_1 := (_ : f < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : g < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); cons (decode f) (decode g)) = cons a✝¹ a✝
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Util/ConsExp.lean
ConsExp.decode_encode
[49, 1]
[64, 15]
simp [*]
case refl a✝¹ a✝ : ConsExp hf : decode (encode a✝¹) = a✝¹ hg : decode (encode a✝) = a✝ h : Nat.boddDiv2 (2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1) = (true, Nat.mkpair (encode a✝¹) (encode a✝)) ⊢ (match hm : Nat.unpair (Nat.mkpair (encode a✝¹) (encode a✝)) with | (f, g) => let_fun hn' := (_ : 1 ≤ 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : Nat.mkpair (encode a✝¹) (encode a✝) < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this_1 := (_ : f < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); let_fun this := (_ : g < 2 * Nat.mkpair (encode a✝¹) (encode a✝) + 1); cons (decode f) (decode g)) = cons a✝¹ a✝
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
have hr : 0 < r := dist_nonneg.trans_lt hz₀
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 ⊢ cindex c r f = 1
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r ⊢ cindex c r f = 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
set g := dslope f z₀
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r ⊢ cindex c r f = 1
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ ⊢ cindex c r f = 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
have h1 : DifferentiableOn ℂ g U := (differentiableOn_dslope (hU.mem_nhds (hcr (ball_subset_closedBall hz₀)))).2 hf
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ ⊢ cindex c r f = 1
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U ⊢ cindex c r f = 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
have h2 : ∀ z ∈ closedBall c r, g z ≠ 0 := by rintro z hz by_cases h : z = z₀ case pos => simp [g, dslope, h, Function.update, hf'z₀] case neg => simp [g, dslope, h, Function.update, slope, sub_ne_zero.2 h, hfz₀, hfz z hz h]
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U ⊢ cindex c r f = 1
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 ⊢ cindex c r f = 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
have h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 := λ z hz => sub_ne_zero.2 (sphere_disjoint_ball.ne_of_mem hz hz₀)
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 ⊢ cindex c r f = 1
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 ⊢ cindex c r f = 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
suffices this : cindex c r f = ((2 * Real.pi * I)⁻¹ * ∮ z in C(c, r), (z - z₀)⁻¹) + cindex c r g by rw [this, integral_sub_inv_of_mem_ball hz₀, cindex_eq_zero hU hr hcr h1 h2] field_simp [two_ne_zero, Real.pi_ne_zero, I_ne_zero]
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 ⊢ cindex c r f = 1
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 ⊢ cindex c r f = ((2 * ↑Real.pi * I)⁻¹ * ∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹) + cindex c r g
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
have h6 : ∀ z ∈ sphere c r, deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z := by rintro z hz have h3 : ∀ z ∈ U, f z = (z - z₀) * g z := λ z _ => by simpa only [smul_eq_mul, hfz₀, sub_zero] using (sub_smul_dslope f z₀ z).symm have hz' : z ∈ U := hcr (sphere_subset_closedBall hz) have e0 : U ∈ 𝓝 z := hU.mem_nhds hz' have h4 : deriv f z = deriv (λ w => (w - z₀) * g w) z := EventuallyEq.deriv_eq (eventually_of_mem e0 h3) have e1 : DifferentiableAt ℂ (λ y => y - z₀) z := differentiableAt_id.sub_const z₀ have e2 : DifferentiableAt ℂ g z := h1.differentiableAt e0 have h5 : deriv f z = g z + (z - z₀) * deriv g z := by have : deriv (fun y => y - z₀) z = 1 := by change deriv (fun y => id y - z₀) z = 1 simp [deriv_sub_const] simp [h4, deriv_mul e1 e2, this] have e3 : g z ≠ 0 := h2 z (sphere_subset_closedBall hz) field_simp [h3 z hz', h5, mul_comm, h10 z hz]
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 ⊢ cindex c r f = ((2 * ↑Real.pi * I)⁻¹ * ∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹) + cindex c r g
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 h6 : ∀ z ∈ sphere c r, deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z ⊢ cindex c r f = ((2 * ↑Real.pi * I)⁻¹ * ∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹) + cindex c r g
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
simp only [cindex, integral_congr hr.le h6, ← mul_add]
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 h6 : ∀ z ∈ sphere c r, deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z ⊢ cindex c r f = ((2 * ↑Real.pi * I)⁻¹ * ∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹) + cindex c r g
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 h6 : ∀ z ∈ sphere c r, deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z ⊢ ((2 * ↑Real.pi * I)⁻¹ * ∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹ + deriv g z / g z) = (2 * ↑Real.pi * I)⁻¹ * ((∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹) + ∮ (z : ℂ) in C(c, r), deriv g z / g z)
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
congr
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 h6 : ∀ z ∈ sphere c r, deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z ⊢ ((2 * ↑Real.pi * I)⁻¹ * ∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹ + deriv g z / g z) = (2 * ↑Real.pi * I)⁻¹ * ((∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹) + ∮ (z : ℂ) in C(c, r), deriv g z / g z)
case e_a ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 h6 : ∀ z ∈ sphere c r, deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z ⊢ (∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹ + deriv g z / g z) = (∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹) + ∮ (z : ℂ) in C(c, r), deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
apply circleIntegral.integral_add
case e_a ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 h6 : ∀ z ∈ sphere c r, deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z ⊢ (∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹ + deriv g z / g z) = (∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹) + ∮ (z : ℂ) in C(c, r), deriv g z / g z
case e_a.hf ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 h6 : ∀ z ∈ sphere c r, deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z ⊢ CircleIntegrable (fun z => (z - z₀)⁻¹) c r case e_a.hg ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 h6 : ∀ z ∈ sphere c r, deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z ⊢ CircleIntegrable (fun z => deriv g z / g z) c r
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
rintro z hz
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U ⊢ ∀ z ∈ closedBall c r, g z ≠ 0
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U z : ℂ hz : z ∈ closedBall c r ⊢ g z ≠ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
by_cases h : z = z₀
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U z : ℂ hz : z ∈ closedBall c r ⊢ g z ≠ 0
case pos ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U z : ℂ hz : z ∈ closedBall c r h : z = z₀ ⊢ g z ≠ 0 case neg ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U z : ℂ hz : z ∈ closedBall c r h : ¬z = z₀ ⊢ g z ≠ 0
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
case pos => simp [g, dslope, h, Function.update, hf'z₀]
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U z : ℂ hz : z ∈ closedBall c r h : z = z₀ ⊢ g z ≠ 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
case neg => simp [g, dslope, h, Function.update, slope, sub_ne_zero.2 h, hfz₀, hfz z hz h]
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U z : ℂ hz : z ∈ closedBall c r h : ¬z = z₀ ⊢ g z ≠ 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
simp [g, dslope, h, Function.update, hf'z₀]
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U z : ℂ hz : z ∈ closedBall c r h : z = z₀ ⊢ g z ≠ 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
simp [g, dslope, h, Function.update, slope, sub_ne_zero.2 h, hfz₀, hfz z hz h]
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U z : ℂ hz : z ∈ closedBall c r h : ¬z = z₀ ⊢ g z ≠ 0
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
rw [this, integral_sub_inv_of_mem_ball hz₀, cindex_eq_zero hU hr hcr h1 h2]
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 this : cindex c r f = ((2 * ↑Real.pi * I)⁻¹ * ∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹) + cindex c r g ⊢ cindex c r f = 1
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 this : cindex c r f = ((2 * ↑Real.pi * I)⁻¹ * ∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹) + cindex c r g ⊢ (2 * ↑Real.pi * I)⁻¹ * (2 * ↑Real.pi * I) + 0 = 1
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
field_simp [two_ne_zero, Real.pi_ne_zero, I_ne_zero]
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 this : cindex c r f = ((2 * ↑Real.pi * I)⁻¹ * ∮ (z : ℂ) in C(c, r), (z - z₀)⁻¹) + cindex c r g ⊢ (2 * ↑Real.pi * I)⁻¹ * (2 * ↑Real.pi * I) + 0 = 1
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
rintro z hz
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 ⊢ ∀ z ∈ sphere c r, deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
have h3 : ∀ z ∈ U, f z = (z - z₀) * g z := λ z _ => by simpa only [smul_eq_mul, hfz₀, sub_zero] using (sub_smul_dslope f z₀ z).symm
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
have hz' : z ∈ U := hcr (sphere_subset_closedBall hz)
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
have e0 : U ∈ 𝓝 z := hU.mem_nhds hz'
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
have h4 : deriv f z = deriv (λ w => (w - z₀) * g w) z := EventuallyEq.deriv_eq (eventually_of_mem e0 h3)
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - z₀) * g w) z ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
have e1 : DifferentiableAt ℂ (λ y => y - z₀) z := differentiableAt_id.sub_const z₀
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - z₀) * g w) z ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - z₀) * g w) z e1 : DifferentiableAt ℂ (fun y => y - z₀) z ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
have e2 : DifferentiableAt ℂ g z := h1.differentiableAt e0
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - z₀) * g w) z e1 : DifferentiableAt ℂ (fun y => y - z₀) z ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - z₀) * g w) z e1 : DifferentiableAt ℂ (fun y => y - z₀) z e2 : DifferentiableAt ℂ g z ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
have h5 : deriv f z = g z + (z - z₀) * deriv g z := by have : deriv (fun y => y - z₀) z = 1 := by change deriv (fun y => id y - z₀) z = 1 simp [deriv_sub_const] simp [h4, deriv_mul e1 e2, this]
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - z₀) * g w) z e1 : DifferentiableAt ℂ (fun y => y - z₀) z e2 : DifferentiableAt ℂ g z ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - z₀) * g w) z e1 : DifferentiableAt ℂ (fun y => y - z₀) z e2 : DifferentiableAt ℂ g z h5 : deriv f z = g z + (z - z₀) * deriv g z ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
have e3 : g z ≠ 0 := h2 z (sphere_subset_closedBall hz)
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - z₀) * g w) z e1 : DifferentiableAt ℂ (fun y => y - z₀) z e2 : DifferentiableAt ℂ g z h5 : deriv f z = g z + (z - z₀) * deriv g z ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - z₀) * g w) z e1 : DifferentiableAt ℂ (fun y => y - z₀) z e2 : DifferentiableAt ℂ g z h5 : deriv f z = g z + (z - z₀) * deriv g z e3 : g z ≠ 0 ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
field_simp [h3 z hz', h5, mul_comm, h10 z hz]
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - z₀) * g w) z e1 : DifferentiableAt ℂ (fun y => y - z₀) z e2 : DifferentiableAt ℂ g z h5 : deriv f z = g z + (z - z₀) * deriv g z e3 : g z ≠ 0 ⊢ deriv f z / f z = (z - z₀)⁻¹ + deriv g z / g z
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
simpa only [smul_eq_mul, hfz₀, sub_zero] using (sub_smul_dslope f z₀ z).symm
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z✝ : ℂ hz : z✝ ∈ sphere c r z : ℂ x✝ : z ∈ U ⊢ f z = (z - z₀) * g z
no goals
https://github.com/vbeffara/RMT4.git
c2a092d029d0e6d29a381ac4ad9e85b10d97391c
RMT4/deriv_inj.lean
crucial
[7, 1]
[49, 57]
have : deriv (fun y => y - z₀) z = 1 := by change deriv (fun y => id y - z₀) z = 1 simp [deriv_sub_const]
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - z₀) * g w) z e1 : DifferentiableAt ℂ (fun y => y - z₀) z e2 : DifferentiableAt ℂ g z ⊢ deriv f z = g z + (z - z₀) * deriv g z
ι : Type u_1 α : Type u_2 β : Type u_3 U : Set ℂ c z₀ : ℂ r : ℝ f g✝ : ℂ → ℂ hU : IsOpen U hcr : closedBall c r ⊆ U hz₀ : z₀ ∈ ball c r hf : DifferentiableOn ℂ f U hfz₀ : f z₀ = 0 hf'z₀ : deriv f z₀ ≠ 0 hfz : ∀ z ∈ closedBall c r, z ≠ z₀ → f z ≠ 0 hr : 0 < r g : ℂ → ℂ := dslope f z₀ h1 : DifferentiableOn ℂ g U h2 : ∀ z ∈ closedBall c r, g z ≠ 0 h10 : ∀ z ∈ sphere c r, z - z₀ ≠ 0 z : ℂ hz : z ∈ sphere c r h3 : ∀ z ∈ U, f z = (z - z₀) * g z hz' : z ∈ U e0 : U ∈ 𝓝 z h4 : deriv f z = deriv (fun w => (w - z₀) * g w) z e1 : DifferentiableAt ℂ (fun y => y - z₀) z e2 : DifferentiableAt ℂ g z this : deriv (fun y => y - z₀) z = 1 ⊢ deriv f z = g z + (z - z₀) * deriv g z