url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
have prf₂ := BProof.monotone (le_trans l₂ l₃) fprf
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f s : Finset Form l₁ : ↑s ⊆ lindenbaumExtension t Δ fprf : BProof (↑s) f i j : ℕ l₂ : ↑s ⊆ lindenbaumSequence t Δ (i, j) l₃ : lindenbaumSequence t Δ (i, j) ⊆ lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) ⊢ f ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f s : Finset Form l₁ : ↑s ⊆ lindenbaumExtension t Δ fprf : BProof (↑s) f i j : ℕ l₂ : ↑s ⊆ lindenbaumSequence t Δ (i, j) l₃ : lindenbaumSequence t Δ (i, j) ⊆ lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) prf₂ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) f ⊢ f ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
have prf₃ : BProof (lindenbaumSequence t Δ ⟨i+1,Encodable.encode (f,f)⟩) (f ¦ f) := BProof.mp prf₂ BTheorem.orI₁
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f s : Finset Form l₁ : ↑s ⊆ lindenbaumExtension t Δ fprf : BProof (↑s) f i j : ℕ l₂ : ↑s ⊆ lindenbaumSequence t Δ (i, j) l₃ : lindenbaumSequence t Δ (i, j) ⊆ lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) prf₂ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) f ⊢ f ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f s : Finset Form l₁ : ↑s ⊆ lindenbaumExtension t Δ fprf : BProof (↑s) f i j : ℕ l₂ : ↑s ⊆ lindenbaumSequence t Δ (i, j) l₃ : lindenbaumSequence t Δ (i, j) ⊆ lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) prf₂ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) f prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) ⊢ f ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
clear s h₁ l₁ l₂ l₃ fprf prf₁ prf₂
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f s : Finset Form l₁ : ↑s ⊆ lindenbaumExtension t Δ fprf : BProof (↑s) f i j : ℕ l₂ : ↑s ⊆ lindenbaumSequence t Δ (i, j) l₃ : lindenbaumSequence t Δ (i, j) ⊆ lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) prf₂ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) f prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) ⊢ f ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) ⊢ f ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
have l₄ : f ∈ lindenbaumSequence t Δ ⟨i + 1, Encodable.encode (f,f) + 1⟩ := by unfold lindenbaumSequence change let prev := lindenbaumSequence t Δ (i + 1, Encodable.encode (f,f)); let l := (Denumerable.ofNat (Form × Form) (Encodable.encode (f,f))).fst; let r := (Denumerable.ofNat (Form × Form) (Encodable.encode (f,f))).snd; f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev intros prev l r have l₅ : l = f := by change (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst = f rw [Denumerable.ofNat_encode (f,f)] have l₆ : r = f := by change (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd = f rw [Denumerable.ofNat_encode (f,f)] split case inl h₂ => split . rw [l₅]; exact Or.inr rfl . rw [l₆]; exact Or.inr rfl case inr h₂ => apply False.elim have l₇ : f¦f ∈ ▲prev := ⟨prf₃⟩ rw [l₅,l₆] at h₂ exact h₂ l₇
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) ⊢ f ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) l₄ : f ∈ lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f) + 1) ⊢ f ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
exact ⟨⟨i + 1, Encodable.encode (f,f) + 1⟩, l₄⟩
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) l₄ : f ∈ lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f) + 1) ⊢ f ∈ lindenbaumExtension t Δ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
apply lindenbaumSequenceMonotone
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f s : Finset Form l₁ : ↑s ⊆ lindenbaumExtension t Δ fprf : BProof (↑s) f i j : ℕ l₂ : ↑s ⊆ lindenbaumSequence t Δ (i, j) ⊢ lindenbaumSequence t Δ (i, j) ⊆ lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))
case a t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f s : Finset Form l₁ : ↑s ⊆ lindenbaumExtension t Δ fprf : BProof (↑s) f i j : ℕ l₂ : ↑s ⊆ lindenbaumSequence t Δ (i, j) ⊢ (i, j) ≤ (i + 1, Encodable.encode (f, f))
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
apply (Prod.Lex.le_iff (i,j) (i + 1,Encodable.encode (f,f))).mpr $ Or.inl $ Nat.lt_succ_self i
case a t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f s : Finset Form l₁ : ↑s ⊆ lindenbaumExtension t Δ fprf : BProof (↑s) f i j : ℕ l₂ : ↑s ⊆ lindenbaumSequence t Δ (i, j) ⊢ (i, j) ≤ (i + 1, Encodable.encode (f, f))
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
unfold lindenbaumSequence
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) ⊢ f ∈ lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f) + 1)
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) ⊢ f ∈ let prev := lindenbaumSequence t Δ (Nat.succ (Nat.add i 0), Nat.add (Encodable.encode (f, f)) 0); let l := (Denumerable.ofNat (Form × Form) (Nat.add (Encodable.encode (f, f)) 0)).fst; let r := (Denumerable.ofNat (Form × Form) (Nat.add (Encodable.encode (f, f)) 0)).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
change let prev := lindenbaumSequence t Δ (i + 1, Encodable.encode (f,f)); let l := (Denumerable.ofNat (Form × Form) (Encodable.encode (f,f))).fst; let r := (Denumerable.ofNat (Form × Form) (Encodable.encode (f,f))).snd; f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) ⊢ f ∈ let prev := lindenbaumSequence t Δ (Nat.succ (Nat.add i 0), Nat.add (Encodable.encode (f, f)) 0); let l := (Denumerable.ofNat (Form × Form) (Nat.add (Encodable.encode (f, f)) 0)).fst; let r := (Denumerable.ofNat (Form × Form) (Nat.add (Encodable.encode (f, f)) 0)).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) ⊢ let prev := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)); let l := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst; let r := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd; f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
intros prev l r
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) ⊢ let prev := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)); let l := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst; let r := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd; f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd ⊢ f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
have l₅ : l = f := by change (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst = f rw [Denumerable.ofNat_encode (f,f)]
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd ⊢ f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f ⊢ f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
have l₆ : r = f := by change (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd = f rw [Denumerable.ofNat_encode (f,f)]
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f ⊢ f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f ⊢ f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
split
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f ⊢ f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
case inl t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h✝ : l¦r ∈ ▲prev ⊢ f ∈ if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} case inr t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h✝ : ¬l¦r ∈ ▲prev ⊢ f ∈ prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
case inl h₂ => split . rw [l₅]; exact Or.inr rfl . rw [l₆]; exact Or.inr rfl
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : l¦r ∈ ▲prev ⊢ f ∈ if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r}
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
case inr h₂ => apply False.elim have l₇ : f¦f ∈ ▲prev := ⟨prf₃⟩ rw [l₅,l₆] at h₂ exact h₂ l₇
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : ¬l¦r ∈ ▲prev ⊢ f ∈ prev
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
change (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst = f
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd ⊢ l = f
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd ⊢ (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst = f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
rw [Denumerable.ofNat_encode (f,f)]
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd ⊢ (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst = f
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
change (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd = f
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f ⊢ r = f
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f ⊢ (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd = f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
rw [Denumerable.ofNat_encode (f,f)]
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f ⊢ (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd = f
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
split
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : l¦r ∈ ▲prev ⊢ f ∈ if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r}
case inl t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : l¦r ∈ ▲prev h✝ : ▲(prev ∪ {l}) ∩ Δ = ∅ ⊢ f ∈ prev ∪ {l} case inr t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : l¦r ∈ ▲prev h✝ : ¬▲(prev ∪ {l}) ∩ Δ = ∅ ⊢ f ∈ prev ∪ {r}
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
. rw [l₅]; exact Or.inr rfl
case inl t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : l¦r ∈ ▲prev h✝ : ▲(prev ∪ {l}) ∩ Δ = ∅ ⊢ f ∈ prev ∪ {l} case inr t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : l¦r ∈ ▲prev h✝ : ¬▲(prev ∪ {l}) ∩ Δ = ∅ ⊢ f ∈ prev ∪ {r}
case inr t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : l¦r ∈ ▲prev h✝ : ¬▲(prev ∪ {l}) ∩ Δ = ∅ ⊢ f ∈ prev ∪ {r}
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
. rw [l₆]; exact Or.inr rfl
case inr t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : l¦r ∈ ▲prev h✝ : ¬▲(prev ∪ {l}) ∩ Δ = ∅ ⊢ f ∈ prev ∪ {r}
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
apply False.elim
t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : ¬l¦r ∈ ▲prev ⊢ f ∈ prev
case h t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : ¬l¦r ∈ ▲prev ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
have l₇ : f¦f ∈ ▲prev := ⟨prf₃⟩
case h t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : ¬l¦r ∈ ▲prev ⊢ False
case h t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : ¬l¦r ∈ ▲prev l₇ : f¦f ∈ ▲prev ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
rw [l₅,l₆] at h₂
case h t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : ¬l¦r ∈ ▲prev l₇ : f¦f ∈ ▲prev ⊢ False
case h t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : ¬f¦f ∈ ▲prev l₇ : f¦f ∈ ▲prev ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
exact h₂ l₇
case h t : Th Δ : Ctx f : Form i j : ℕ prf₃ : BProof (lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))) (f¦f) prev : Ctx := lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) l : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst r : Form := (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd l₅ : l = f l₆ : r = f h₂ : ¬f¦f ∈ ▲prev l₇ : f¦f ∈ ▲prev ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
intros f g h₁
t : Th Δ : Ctx ⊢ isPrimeTheory (lindenbaumExtension t Δ)
t : Th Δ : Ctx f g : Form h₁ : f¦g ∈ lindenbaumExtension t Δ ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
have ⟨⟨i,j⟩,h₂⟩ := h₁
t : Th Δ : Ctx f g : Form h₁ : f¦g ∈ lindenbaumExtension t Δ ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f g : Form h₁ : f¦g ∈ lindenbaumExtension t Δ i j : ℕ h₂ : f¦g ∈ lindenbaumSequence t Δ (i, j) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
let k := Encodable.encode (f,g)
t : Th Δ : Ctx f g : Form h₁ : f¦g ∈ lindenbaumExtension t Δ i j : ℕ h₂ : f¦g ∈ lindenbaumSequence t Δ (i, j) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f g : Form h₁ : f¦g ∈ lindenbaumExtension t Δ i j : ℕ h₂ : f¦g ∈ lindenbaumSequence t Δ (i, j) k : ℕ := Encodable.encode (f, g) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
have l₁ : lindenbaumSequence t Δ ⟨i,j⟩ ⊆ lindenbaumSequence t Δ ⟨i + 1,k⟩ := by apply lindenbaumSequenceMonotone apply (Prod.Lex.le_iff (i,j) (i + 1,k)).mpr $ Or.inl $ Nat.lt_succ_self i
t : Th Δ : Ctx f g : Form h₁ : f¦g ∈ lindenbaumExtension t Δ i j : ℕ h₂ : f¦g ∈ lindenbaumSequence t Δ (i, j) k : ℕ := Encodable.encode (f, g) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f g : Form h₁ : f¦g ∈ lindenbaumExtension t Δ i j : ℕ h₂ : f¦g ∈ lindenbaumSequence t Δ (i, j) k : ℕ := Encodable.encode (f, g) l₁ : lindenbaumSequence t Δ (i, j) ⊆ lindenbaumSequence t Δ (i + 1, k) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
have l₂ : f ¦ g ∈ lindenbaumSequence t Δ ⟨i + 1, k⟩ := l₁ h₂
t : Th Δ : Ctx f g : Form h₁ : f¦g ∈ lindenbaumExtension t Δ i j : ℕ h₂ : f¦g ∈ lindenbaumSequence t Δ (i, j) k : ℕ := Encodable.encode (f, g) l₁ : lindenbaumSequence t Δ (i, j) ⊆ lindenbaumSequence t Δ (i + 1, k) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f g : Form h₁ : f¦g ∈ lindenbaumExtension t Δ i j : ℕ h₂ : f¦g ∈ lindenbaumSequence t Δ (i, j) k : ℕ := Encodable.encode (f, g) l₁ : lindenbaumSequence t Δ (i, j) ⊆ lindenbaumSequence t Δ (i + 1, k) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
clear l₁ h₁ h₂
t : Th Δ : Ctx f g : Form h₁ : f¦g ∈ lindenbaumExtension t Δ i j : ℕ h₂ : f¦g ∈ lindenbaumSequence t Δ (i, j) k : ℕ := Encodable.encode (f, g) l₁ : lindenbaumSequence t Δ (i, j) ⊆ lindenbaumSequence t Δ (i + 1, k) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
have l₃ : f ∈ lindenbaumSequence t Δ ⟨i + 1, k + 1⟩ ∨ g ∈ lindenbaumSequence t Δ ⟨i + 1, k + 1⟩ := by unfold lindenbaumSequence change let prev := lindenbaumSequence t Δ (i + 1, k); let l := (Denumerable.ofNat (Form × Form) k).fst; let r := (Denumerable.ofNat (Form × Form) k).snd; (f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ (g ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) intros prev l r have l₄ : Denumerable.ofNat (Form × Form) k = (f,g) := Denumerable.ofNat_encode (f,g) have l₅ : l = f := by change (Denumerable.ofNat (Form × Form) k).fst = f rw [l₄] have l₆ : r = g := by change (Denumerable.ofNat (Form × Form) k).snd = g rw [l₄] repeat rw [l₅,l₆] clear l r l₅ l₆ cases Classical.em (▲(prev ∪ {f}) ∩ Δ = ∅) case' inl h₁ => apply Or.inl case' inr h₁ => apply Or.inr all_goals split case inl => exact Or.inr rfl case inr h₂ => exact False.elim $ h₂ ⟨BProof.ax l₂⟩
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) l₃ : f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ∨ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
apply Or.elim l₃
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) l₃ : f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ∨ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
case left t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) l₃ : f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ∨ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) ⊢ f ∈ lindenbaumSequence t Δ (i + 1, k + 1) → f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ case right t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) l₃ : f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ∨ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) ⊢ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) → f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
case left => intros h₁; exact Or.inl ⟨⟨i+1,k+1⟩,h₁⟩
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) l₃ : f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ∨ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) ⊢ f ∈ lindenbaumSequence t Δ (i + 1, k + 1) → f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
case right => intros h₁; exact Or.inr ⟨⟨i+1,k+1⟩,h₁⟩
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) l₃ : f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ∨ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) ⊢ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) → f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
apply lindenbaumSequenceMonotone
t : Th Δ : Ctx f g : Form h₁ : f¦g ∈ lindenbaumExtension t Δ i j : ℕ h₂ : f¦g ∈ lindenbaumSequence t Δ (i, j) k : ℕ := Encodable.encode (f, g) ⊢ lindenbaumSequence t Δ (i, j) ⊆ lindenbaumSequence t Δ (i + 1, k)
case a t : Th Δ : Ctx f g : Form h₁ : f¦g ∈ lindenbaumExtension t Δ i j : ℕ h₂ : f¦g ∈ lindenbaumSequence t Δ (i, j) k : ℕ := Encodable.encode (f, g) ⊢ (i, j) ≤ (i + 1, k)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
apply (Prod.Lex.le_iff (i,j) (i + 1,k)).mpr $ Or.inl $ Nat.lt_succ_self i
case a t : Th Δ : Ctx f g : Form h₁ : f¦g ∈ lindenbaumExtension t Δ i j : ℕ h₂ : f¦g ∈ lindenbaumSequence t Δ (i, j) k : ℕ := Encodable.encode (f, g) ⊢ (i, j) ≤ (i + 1, k)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
unfold lindenbaumSequence
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) ⊢ f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ∨ g ∈ lindenbaumSequence t Δ (i + 1, k + 1)
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) ⊢ (f ∈ let prev := lindenbaumSequence t Δ (Nat.succ (Nat.add i 0), Nat.add k 0); let l := (Denumerable.ofNat (Form × Form) (Nat.add k 0)).fst; let r := (Denumerable.ofNat (Form × Form) (Nat.add k 0)).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ g ∈ let prev := lindenbaumSequence t Δ (Nat.succ (Nat.add i 0), Nat.add k 0); let l := (Denumerable.ofNat (Form × Form) (Nat.add k 0)).fst; let r := (Denumerable.ofNat (Form × Form) (Nat.add k 0)).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
change let prev := lindenbaumSequence t Δ (i + 1, k); let l := (Denumerable.ofNat (Form × Form) k).fst; let r := (Denumerable.ofNat (Form × Form) k).snd; (f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ (g ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev)
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) ⊢ (f ∈ let prev := lindenbaumSequence t Δ (Nat.succ (Nat.add i 0), Nat.add k 0); let l := (Denumerable.ofNat (Form × Form) (Nat.add k 0)).fst; let r := (Denumerable.ofNat (Form × Form) (Nat.add k 0)).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ g ∈ let prev := lindenbaumSequence t Δ (Nat.succ (Nat.add i 0), Nat.add k 0); let l := (Denumerable.ofNat (Form × Form) (Nat.add k 0)).fst; let r := (Denumerable.ofNat (Form × Form) (Nat.add k 0)).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) ⊢ let prev := lindenbaumSequence t Δ (i + 1, k); let l := (Denumerable.ofNat (Form × Form) k).fst; let r := (Denumerable.ofNat (Form × Form) k).snd; (f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ g ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
intros prev l r
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) ⊢ let prev := lindenbaumSequence t Δ (i + 1, k); let l := (Denumerable.ofNat (Form × Form) k).fst; let r := (Denumerable.ofNat (Form × Form) k).snd; (f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ g ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd ⊢ (f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ g ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
have l₄ : Denumerable.ofNat (Form × Form) k = (f,g) := Denumerable.ofNat_encode (f,g)
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd ⊢ (f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ g ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) ⊢ (f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ g ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
have l₅ : l = f := by change (Denumerable.ofNat (Form × Form) k).fst = f rw [l₄]
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) ⊢ (f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ g ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) l₅ : l = f ⊢ (f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ g ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
have l₆ : r = g := by change (Denumerable.ofNat (Form × Form) k).snd = g rw [l₄]
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) l₅ : l = f ⊢ (f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ g ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) l₅ : l = f l₆ : r = g ⊢ (f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ g ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
repeat rw [l₅,l₆]
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) l₅ : l = f l₆ : r = g ⊢ (f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ g ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) l₅ : l = f l₆ : r = g ⊢ (f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev) ∨ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
clear l r l₅ l₆
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) l₅ : l = f l₆ : r = g ⊢ (f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev) ∨ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) ⊢ (f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev) ∨ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
cases Classical.em (▲(prev ∪ {f}) ∩ Δ = ∅)
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) ⊢ (f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev) ∨ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
case inl t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h✝ : ▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ (f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev) ∨ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev case inr t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h✝ : ¬▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ (f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev) ∨ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
case' inl h₁ => apply Or.inl
case inl t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h✝ : ▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ (f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev) ∨ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev case inr t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h✝ : ¬▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ (f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev) ∨ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
case inl t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev case inr t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h✝ : ¬▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ (f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev) ∨ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
case' inr h₁ => apply Or.inr
case inl t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev case inr t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h✝ : ¬▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ (f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev) ∨ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
case inr t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ¬▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev case inl t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
all_goals split case inl => exact Or.inr rfl case inr h₂ => exact False.elim $ h₂ ⟨BProof.ax l₂⟩
case inr t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ¬▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev case inl t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
change (Denumerable.ofNat (Form × Form) k).fst = f
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) ⊢ l = f
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) ⊢ (Denumerable.ofNat (Form × Form) k).fst = f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
rw [l₄]
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) ⊢ (Denumerable.ofNat (Form × Form) k).fst = f
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
change (Denumerable.ofNat (Form × Form) k).snd = g
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) l₅ : l = f ⊢ r = g
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) l₅ : l = f ⊢ (Denumerable.ofNat (Form × Form) k).snd = g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
rw [l₄]
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) l₅ : l = f ⊢ (Denumerable.ofNat (Form × Form) k).snd = g
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
rw [l₅,l₆]
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) l₅ : l = f l₆ : r = g ⊢ (f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev) ∨ g ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l : Form := (Denumerable.ofNat (Form × Form) k).fst r : Form := (Denumerable.ofNat (Form × Form) k).snd l₄ : Denumerable.ofNat (Form × Form) k = (f, g) l₅ : l = f l₆ : r = g ⊢ (f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev) ∨ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
apply Or.inl
case inl t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ (f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev) ∨ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
case inl.h t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
apply Or.inr
case inr t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ¬▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ (f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev) ∨ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
case inr.h t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ¬▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ g ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
split
case inl t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ▲(prev ∪ {f}) ∩ Δ = ∅ ⊢ f ∈ if f¦g ∈ ▲prev then if ▲(prev ∪ {f}) ∩ Δ = ∅ then prev ∪ {f} else prev ∪ {g} else prev
case inl.inl t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ▲(prev ∪ {f}) ∩ Δ = ∅ h✝ : f¦g ∈ ▲prev ⊢ f ∈ prev ∪ {f} case inl.inr t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ▲(prev ∪ {f}) ∩ Δ = ∅ h✝ : ¬f¦g ∈ ▲prev ⊢ f ∈ prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
case inl => exact Or.inr rfl
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ▲(prev ∪ {f}) ∩ Δ = ∅ h✝ : f¦g ∈ ▲prev ⊢ f ∈ prev ∪ {f}
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
case inr h₂ => exact False.elim $ h₂ ⟨BProof.ax l₂⟩
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ▲(prev ∪ {f}) ∩ Δ = ∅ h₂ : ¬f¦g ∈ ▲prev ⊢ f ∈ prev
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
exact Or.inr rfl
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ▲(prev ∪ {f}) ∩ Δ = ∅ h✝ : f¦g ∈ ▲prev ⊢ f ∈ prev ∪ {f}
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
exact False.elim $ h₂ ⟨BProof.ax l₂⟩
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) prev : Ctx := lindenbaumSequence t Δ (i + 1, k) l₄ : Denumerable.ofNat (Form × Form) k = (f, g) h₁ : ▲(prev ∪ {f}) ∩ Δ = ∅ h₂ : ¬f¦g ∈ ▲prev ⊢ f ∈ prev
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
intros h₁
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) l₃ : f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ∨ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) ⊢ f ∈ lindenbaumSequence t Δ (i + 1, k + 1) → f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) l₃ : f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ∨ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) h₁ : f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
exact Or.inl ⟨⟨i+1,k+1⟩,h₁⟩
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) l₃ : f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ∨ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) h₁ : f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
intros h₁
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) l₃ : f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ∨ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) ⊢ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) → f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) l₃ : f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ∨ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) h₁ : g ∈ lindenbaumSequence t Δ (i + 1, k + 1) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsPrime
[150, 1]
[186, 55]
exact Or.inr ⟨⟨i+1,k+1⟩,h₁⟩
t : Th Δ : Ctx f g : Form i j : ℕ k : ℕ := Encodable.encode (f, g) l₂ : f¦g ∈ lindenbaumSequence t Δ (i + 1, k) l₃ : f ∈ lindenbaumSequence t Δ (i + 1, k + 1) ∨ g ∈ lindenbaumSequence t Δ (i + 1, k + 1) h₁ : g ∈ lindenbaumSequence t Δ (i + 1, k + 1) ⊢ f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have l₁ := formalFixed t.property
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ ⊢ ▲lindenbaumSequence t Δ (0, 0) ∩ Δ = ∅
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ l₁ : ▲↑t = ↑t ⊢ ▲lindenbaumSequence t Δ (0, 0) ∩ Δ = ∅
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
rw [←l₁] at h₁
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ l₁ : ▲↑t = ↑t ⊢ ▲lindenbaumSequence t Δ (0, 0) ∩ Δ = ∅
t : Th Δ : Ctx h₁ : ▲↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ l₁ : ▲↑t = ↑t ⊢ ▲lindenbaumSequence t Δ (0, 0) ∩ Δ = ∅
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
exact h₁
t : Th Δ : Ctx h₁ : ▲↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ l₁ : ▲↑t = ↑t ⊢ ▲lindenbaumSequence t Δ (0, 0) ∩ Δ = ∅
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
change ▲{ f : Form | ∃j : Nat, f ∈ lindenbaumSequence t Δ ⟨i, j⟩ } ∩ Δ = ∅
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ ⊢ ▲lindenbaumSequence t Δ (i + 1, 0) ∩ Δ = ∅
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ ⊢ ▲{ f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } ∩ Δ = ∅
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
apply Set.not_nonempty_iff_eq_empty.mp
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ ⊢ ▲{ f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } ∩ Δ = ∅
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ ⊢ ¬Set.Nonempty (▲{ f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } ∩ Δ)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
intros h₃
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ ⊢ ¬Set.Nonempty (▲{ f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } ∩ Δ)
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ h₃ : Set.Nonempty (▲{ f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } ∩ Δ) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have ⟨w,⟨prf₁⟩,l₁⟩ := h₃
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ h₃ : Set.Nonempty (▲{ f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } ∩ Δ) ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ h₃ : Set.Nonempty (▲{ f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } ∩ Δ) w : Form prf₁ : BProof { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } w l₁ : w ∈ Δ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
clear h₃
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ h₃ : Set.Nonempty (▲{ f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } ∩ Δ) w : Form prf₁ : BProof { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } w l₁ : w ∈ Δ ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ w : Form prf₁ : BProof { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } w l₁ : w ∈ Δ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have ⟨s,l₂,prf₂⟩ := BProof.compactness prf₁
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ w : Form prf₁ : BProof { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } w l₁ : w ∈ Δ ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ w : Form prf₁ : BProof { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } w l₁ : w ∈ Δ s : Finset Form l₂ : ↑s ⊆ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } prf₂ : BProof (↑s) w ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have ⟨j, l₃⟩ := finiteExhaustion lindenbaumStageMonotone l₂
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ w : Form prf₁ : BProof { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } w l₁ : w ∈ Δ s : Finset Form l₂ : ↑s ⊆ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } prf₂ : BProof (↑s) w ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ w : Form prf₁ : BProof { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } w l₁ : w ∈ Δ s : Finset Form l₂ : ↑s ⊆ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } prf₂ : BProof (↑s) w j : ℕ l₃ : ↑s ⊆ lindenbaumSequence t Δ (i, j) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have l₄ := lindenbaumAvoids h₁ h₂ ⟨i,j⟩
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ w : Form prf₁ : BProof { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } w l₁ : w ∈ Δ s : Finset Form l₂ : ↑s ⊆ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } prf₂ : BProof (↑s) w j : ℕ l₃ : ↑s ⊆ lindenbaumSequence t Δ (i, j) ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ w : Form prf₁ : BProof { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } w l₁ : w ∈ Δ s : Finset Form l₂ : ↑s ⊆ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } prf₂ : BProof (↑s) w j : ℕ l₃ : ↑s ⊆ lindenbaumSequence t Δ (i, j) l₄ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have prf₃ := BProof.monotone l₃ prf₂
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ w : Form prf₁ : BProof { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } w l₁ : w ∈ Δ s : Finset Form l₂ : ↑s ⊆ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } prf₂ : BProof (↑s) w j : ℕ l₃ : ↑s ⊆ lindenbaumSequence t Δ (i, j) l₄ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ w : Form prf₁ : BProof { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } w l₁ : w ∈ Δ s : Finset Form l₂ : ↑s ⊆ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } prf₂ : BProof (↑s) w j : ℕ l₃ : ↑s ⊆ lindenbaumSequence t Δ (i, j) l₄ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ prf₃ : BProof (lindenbaumSequence t Δ (i, j)) w ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have l₅ := Set.not_nonempty_iff_eq_empty.mpr l₄
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ w : Form prf₁ : BProof { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } w l₁ : w ∈ Δ s : Finset Form l₂ : ↑s ⊆ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } prf₂ : BProof (↑s) w j : ℕ l₃ : ↑s ⊆ lindenbaumSequence t Δ (i, j) l₄ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ prf₃ : BProof (lindenbaumSequence t Δ (i, j)) w ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ w : Form prf₁ : BProof { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } w l₁ : w ∈ Δ s : Finset Form l₂ : ↑s ⊆ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } prf₂ : BProof (↑s) w j : ℕ l₃ : ↑s ⊆ lindenbaumSequence t Δ (i, j) l₄ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ prf₃ : BProof (lindenbaumSequence t Δ (i, j)) w l₅ : ¬Set.Nonempty (▲lindenbaumSequence t Δ (i, j) ∩ Δ) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
exact l₅ ⟨w, ⟨⟨prf₃⟩,l₁⟩⟩
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i : ℕ w : Form prf₁ : BProof { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } w l₁ : w ∈ Δ s : Finset Form l₂ : ↑s ⊆ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } prf₂ : BProof (↑s) w j : ℕ l₃ : ↑s ⊆ lindenbaumSequence t Δ (i, j) l₄ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ prf₃ : BProof (lindenbaumSequence t Δ (i, j)) w l₅ : ¬Set.Nonempty (▲lindenbaumSequence t Δ (i, j) ∩ Δ) ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
apply Set.not_nonempty_iff_eq_empty.mp
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ ⊢ ▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ = ∅
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ ⊢ ¬Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
intros h₃
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ ⊢ ¬Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ)
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have ⟨w₁,l₁,l₂⟩ := h₃
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₁ : w₁ ∈ ▲lindenbaumSequence t Δ (i, j + 1) l₂ : w₁ ∈ Δ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
unfold lindenbaumSequence at l₁
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₁ : w₁ ∈ ▲lindenbaumSequence t Δ (i, j + 1) l₂ : w₁ ∈ Δ ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ l₁ : w₁ ∈ ▲match (i, j + 1) with | (0, 0) => ↑t | (Nat.succ i, 0) => { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } | (i, Nat.succ j) => let prev := lindenbaumSequence t Δ (i, j); let l := (Denumerable.ofNat (Form × Form) j).fst; let r := (Denumerable.ofNat (Form × Form) j).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
split at l₁
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ l₁ : w₁ ∈ ▲match (i, j + 1) with | (0, 0) => ↑t | (Nat.succ i, 0) => { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } | (i, Nat.succ j) => let prev := lindenbaumSequence t Δ (i, j); let l := (Denumerable.ofNat (Form × Form) j).fst; let r := (Denumerable.ofNat (Form × Form) j).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev ⊢ False
case h_1 t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x✝ : Lex (ℕ × ℕ) heq✝ : (i, j + 1) = (0, 0) l₁ : w₁ ∈ ▲↑t ⊢ False case h_2 t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x✝ : Lex (ℕ × ℕ) i✝ : ℕ heq✝ : (i, j + 1) = (Nat.succ i✝, 0) l₁ : w₁ ∈ ▲{ f | ∃ j, f ∈ lindenbaumSequence t Δ (i✝, j) } ⊢ False case h_3 t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x✝ : Lex (ℕ × ℕ) i✝ j✝ : ℕ heq✝ : (i, j + 1) = (i✝, Nat.succ j✝) l₁ : w₁ ∈ ▲let prev := lindenbaumSequence t Δ (i✝, j✝); let l := (Denumerable.ofNat (Form × Form) j✝).fst; let r := (Denumerable.ofNat (Form × Form) j✝).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
case h_1 x heq => injection heq with heq; contradiction
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x : Lex (ℕ × ℕ) heq : (i, j + 1) = (0, 0) l₁ : w₁ ∈ ▲↑t ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
case h_2 x heq => injection heq with heq; contradiction
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x✝ : Lex (ℕ × ℕ) x : ℕ heq : (i, j + 1) = (Nat.succ x, 0) l₁ : w₁ ∈ ▲{ f | ∃ j, f ∈ lindenbaumSequence t Δ (x, j) } ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
case h_3 x n m heq => have l₃ := lindenbaumAvoids h₁ h₂ ⟨i,j⟩ injection heq with heq₁ heq₂ injection heq₂ with heq₂ rw [←heq₁,←heq₂] at l₁ clear n m x heq₁ heq₂ h₃ dsimp at l₁ j split at l₁ case inr h₄ => exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁, l₁, l₂⟩ case inl h₄ => split at l₁ case inl h₅ => exact (Set.not_nonempty_iff_eq_empty.mpr h₅) ⟨w₁, l₁, l₂⟩ case inr h₅ => have ⟨prf₁⟩ := l₁ have ⟨w₂,⟨⟨prf₂⟩,l₄⟩⟩ := Set.nonempty_iff_ne_empty.mpr h₅ have l₅ : w₁¦w₂ ∈ Δ := h₂ ⟨l₂, l₄⟩ clear l₁ l₂ l₄ h₅ have ⟨lst₁,l₆,prf₃⟩ := BProof.sentenceCompactness (Set.union_singleton ▸ prf₁) have ⟨lst₂,l₇,prf₄⟩ := BProof.sentenceCompactness (Set.union_singleton ▸ prf₂) have thm₁ := BTheorem.transitivity prf₃.toTheorem (BTheorem.orI₁ : BTheorem (w₁ ⊃ w₁ ¦ w₂)) have thm₂ := BTheorem.transitivity prf₄.toTheorem (BTheorem.orI₂ : BTheorem (w₂ ⊃ w₁ ¦ w₂)) have thm₃ := BTheorem.mp (BTheorem.adj thm₂ thm₁) BTheorem.orE have ⟨prf₅⟩ := h₄ clear h₄ thm₁ thm₂ prf₁ prf₂ prf₃ prf₄ cases lst₁ all_goals cases lst₂ case' nil.nil => have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp prf₅ thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩ case' nil.cons head tail => have := BProof.proveList l₇ have := BProof.mp (BProof.adj prf₅ this) BTheorem.distRight have := BProof.mp this (BTheorem.orFunctor BTheorem.taut BTheorem.andE₁) have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp this thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩ case' cons.nil head tail => have := BProof.proveList l₆ have := BProof.mp (BProof.adj prf₅ this) BTheorem.distRight have := BProof.mp this (BTheorem.orFunctor BTheorem.andE₁ BTheorem.taut) have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp this thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩ case' cons.cons head tail head' tail'=> have prf₆ := BProof.proveList l₆ have prf₇ := BProof.proveList l₇ have := BProof.mp (BProof.adj prf₅ prf₇) BTheorem.distRight have prf₈ := BProof.mp this (BTheorem.orFunctor BTheorem.taut BTheorem.andE₁) have := BProof.mp (BProof.adj prf₈ prf₆) BTheorem.distRight have prf₉ := BProof.mp this (BTheorem.orFunctor BTheorem.andE₁ BTheorem.taut) have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp prf₉ thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x : Lex (ℕ × ℕ) n m : ℕ heq : (i, j + 1) = (n, Nat.succ m) l₁ : w₁ ∈ ▲let prev := lindenbaumSequence t Δ (n, m); let l := (Denumerable.ofNat (Form × Form) m).fst; let r := (Denumerable.ofNat (Form × Form) m).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
injection heq with heq
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x : Lex (ℕ × ℕ) heq : (i, j + 1) = (0, 0) l₁ : w₁ ∈ ▲↑t ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x : Lex (ℕ × ℕ) l₁ : w₁ ∈ ▲↑t heq : i = 0 snd_eq✝ : j + 1 = 0 ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
contradiction
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x : Lex (ℕ × ℕ) l₁ : w₁ ∈ ▲↑t heq : i = 0 snd_eq✝ : j + 1 = 0 ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
injection heq with heq
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x✝ : Lex (ℕ × ℕ) x : ℕ heq : (i, j + 1) = (Nat.succ x, 0) l₁ : w₁ ∈ ▲{ f | ∃ j, f ∈ lindenbaumSequence t Δ (x, j) } ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x✝ : Lex (ℕ × ℕ) x : ℕ l₁ : w₁ ∈ ▲{ f | ∃ j, f ∈ lindenbaumSequence t Δ (x, j) } heq : i = Nat.succ x snd_eq✝ : j + 1 = 0 ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
contradiction
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x✝ : Lex (ℕ × ℕ) x : ℕ l₁ : w₁ ∈ ▲{ f | ∃ j, f ∈ lindenbaumSequence t Δ (x, j) } heq : i = Nat.succ x snd_eq✝ : j + 1 = 0 ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have l₃ := lindenbaumAvoids h₁ h₂ ⟨i,j⟩
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x : Lex (ℕ × ℕ) n m : ℕ heq : (i, j + 1) = (n, Nat.succ m) l₁ : w₁ ∈ ▲let prev := lindenbaumSequence t Δ (n, m); let l := (Denumerable.ofNat (Form × Form) m).fst; let r := (Denumerable.ofNat (Form × Form) m).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x : Lex (ℕ × ℕ) n m : ℕ heq : (i, j + 1) = (n, Nat.succ m) l₁ : w₁ ∈ ▲let prev := lindenbaumSequence t Δ (n, m); let l := (Denumerable.ofNat (Form × Form) m).fst; let r := (Denumerable.ofNat (Form × Form) m).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
injection heq with heq₁ heq₂
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x : Lex (ℕ × ℕ) n m : ℕ heq : (i, j + 1) = (n, Nat.succ m) l₁ : w₁ ∈ ▲let prev := lindenbaumSequence t Δ (n, m); let l := (Denumerable.ofNat (Form × Form) m).fst; let r := (Denumerable.ofNat (Form × Form) m).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x : Lex (ℕ × ℕ) n m : ℕ l₁ : w₁ ∈ ▲let prev := lindenbaumSequence t Δ (n, m); let l := (Denumerable.ofNat (Form × Form) m).fst; let r := (Denumerable.ofNat (Form × Form) m).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ heq₁ : i = n heq₂ : j + 1 = Nat.succ m ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
injection heq₂ with heq₂
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x : Lex (ℕ × ℕ) n m : ℕ l₁ : w₁ ∈ ▲let prev := lindenbaumSequence t Δ (n, m); let l := (Denumerable.ofNat (Form × Form) m).fst; let r := (Denumerable.ofNat (Form × Form) m).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ heq₁ : i = n heq₂ : j + 1 = Nat.succ m ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x : Lex (ℕ × ℕ) n m : ℕ l₁ : w₁ ∈ ▲let prev := lindenbaumSequence t Δ (n, m); let l := (Denumerable.ofNat (Form × Form) m).fst; let r := (Denumerable.ofNat (Form × Form) m).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ heq₁ : i = n heq₂ : Nat.add j 0 = m ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
rw [←heq₁,←heq₂] at l₁
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x : Lex (ℕ × ℕ) n m : ℕ l₁ : w₁ ∈ ▲let prev := lindenbaumSequence t Δ (n, m); let l := (Denumerable.ofNat (Form × Form) m).fst; let r := (Denumerable.ofNat (Form × Form) m).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ heq₁ : i = n heq₂ : Nat.add j 0 = m ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x : Lex (ℕ × ℕ) n m : ℕ l₁ : w₁ ∈ ▲let prev := lindenbaumSequence t Δ (i, Nat.add j 0); let l := (Denumerable.ofNat (Form × Form) (Nat.add j 0)).fst; let r := (Denumerable.ofNat (Form × Form) (Nat.add j 0)).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ heq₁ : i = n heq₂ : Nat.add j 0 = m ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
clear n m x heq₁ heq₂ h₃
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ h₃ : Set.Nonempty (▲lindenbaumSequence t Δ (i, j + 1) ∩ Δ) w₁ : Form l₂ : w₁ ∈ Δ x : Lex (ℕ × ℕ) n m : ℕ l₁ : w₁ ∈ ▲let prev := lindenbaumSequence t Δ (i, Nat.add j 0); let l := (Denumerable.ofNat (Form × Form) (Nat.add j 0)).fst; let r := (Denumerable.ofNat (Form × Form) (Nat.add j 0)).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ heq₁ : i = n heq₂ : Nat.add j 0 = m ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₁ : w₁ ∈ ▲let prev := lindenbaumSequence t Δ (i, Nat.add j 0); let l := (Denumerable.ofNat (Form × Form) (Nat.add j 0)).fst; let r := (Denumerable.ofNat (Form × Form) (Nat.add j 0)).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
dsimp at l₁ j
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₁ : w₁ ∈ ▲let prev := lindenbaumSequence t Δ (i, Nat.add j 0); let l := (Denumerable.ofNat (Form × Form) (Nat.add j 0)).fst; let r := (Denumerable.ofNat (Form × Form) (Nat.add j 0)).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₁ : w₁ ∈ ▲if (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) then if ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ then lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst} else lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd} else lindenbaumSequence t Δ (i, j + 0) l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
split at l₁
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₁ : w₁ ∈ ▲if (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) then if ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ then lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst} else lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd} else lindenbaumSequence t Δ (i, j + 0) l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ ⊢ False
case inl t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h✝ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) l₁ : w₁ ∈ ▲if ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ then lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst} else lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd} ⊢ False case inr t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h✝ : ¬(Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) l₁ : w₁ ∈ ▲lindenbaumSequence t Δ (i, j + 0) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
case inr h₄ => exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁, l₁, l₂⟩
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : ¬(Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) l₁ : w₁ ∈ ▲lindenbaumSequence t Δ (i, j + 0) ⊢ False
no goals