url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | canonicalSatisfaction | [172, 1] | [235, 39] | let Δ : Th := ⟨▲{f}, generatedFormal {f}⟩ | case h
t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
⊢ False | case h
t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | canonicalSatisfaction | [172, 1] | [235, 39] | have l₁ : ¬(g ∈ (formalApplicationFunction t Δ).val) := by
intros h₃
have ⟨q,⟨prf₁⟩,l₂⟩ := h₃
have ⟨prf₂⟩ := t.property.mp l₂
have prf₃ := BProof.mp prf₂ (BTheorem.hs prf₁.toTheorem BTheorem.taut)
exact h₂ $ t.property.mpr ⟨prf₃⟩ | case h
t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
⊢ False | case h
t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
l₁ : ¬g ∈ ↑(formalApplicationFunction t Δ)
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | canonicalSatisfaction | [172, 1] | [235, 39] | have l₂ : Δ ⊨ f := canonicalSatisfaction.mpr ⟨BProof.ax rfl⟩ | case h
t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
l₁ : ¬g ∈ ↑(formalApplicationFunction t Δ)
⊢ False | case h
t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
l₁ : ¬g ∈ ↑(formalApplicationFunction t Δ)
l₂ : Δ⊨f
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | canonicalSatisfaction | [172, 1] | [235, 39] | exact l₁ $ canonicalSatisfaction.mp (h₁ l₂) | case h
t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
l₁ : ¬g ∈ ↑(formalApplicationFunction t Δ)
l₂ : Δ⊨f
⊢ False | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | canonicalSatisfaction | [172, 1] | [235, 39] | intros h₃ | t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
⊢ ¬g ∈ ↑(formalApplicationFunction t Δ) | t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
h₃ : g ∈ ↑(formalApplicationFunction t Δ)
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | canonicalSatisfaction | [172, 1] | [235, 39] | have ⟨q,⟨prf₁⟩,l₂⟩ := h₃ | t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
h₃ : g ∈ ↑(formalApplicationFunction t Δ)
⊢ False | t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
h₃ : g ∈ ↑(formalApplicationFunction t Δ)
q : Form
prf₁ : BProof {f} q
l₂ : q⊃g ∈ ↑t
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | canonicalSatisfaction | [172, 1] | [235, 39] | have ⟨prf₂⟩ := t.property.mp l₂ | t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
h₃ : g ∈ ↑(formalApplicationFunction t Δ)
q : Form
prf₁ : BProof {f} q
l₂ : q⊃g ∈ ↑t
⊢ False | t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
h₃ : g ∈ ↑(formalApplicationFunction t Δ)
q : Form
prf₁ : BProof {f} q
l₂ : q⊃g ∈ ↑t
prf₂ : BProof (↑t) (q⊃g)
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | canonicalSatisfaction | [172, 1] | [235, 39] | have prf₃ := BProof.mp prf₂ (BTheorem.hs prf₁.toTheorem BTheorem.taut) | t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
h₃ : g ∈ ↑(formalApplicationFunction t Δ)
q : Form
prf₁ : BProof {f} q
l₂ : q⊃g ∈ ↑t
prf₂ : BProof (↑t) (q⊃g)
⊢ False | t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
h₃ : g ∈ ↑(formalApplicationFunction t Δ)
q : Form
prf₁ : BProof {f} q
l₂ : q⊃g ∈ ↑t
prf₂ : BProof (↑t) (q⊃g)
prf₃ : BProof (↑t) (f⊃g)
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | canonicalSatisfaction | [172, 1] | [235, 39] | exact h₂ $ t.property.mpr ⟨prf₃⟩ | t : Th
f g : Form
h₁ : t⊨f⊃g
h₂ : ¬f⊃g ∈ ↑t
Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) }
h₃ : g ∈ ↑(formalApplicationFunction t Δ)
q : Form
prf₁ : BProof {f} q
l₂ : q⊃g ∈ ↑t
prf₂ : BProof (↑t) (q⊃g)
prf₃ : BProof (↑t) (f⊃g)
⊢ False | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | canonicalSatisfaction | [172, 1] | [235, 39] | intros r h₂ | t : Th
f g : Form
h₁ : f⊃g ∈ ↑t
⊢ t⊨f⊃g | t : Th
f g : Form
h₁ : f⊃g ∈ ↑t
r : Th
h₂ : r⊨f
⊢ t∙r⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | canonicalSatisfaction | [172, 1] | [235, 39] | have l₁ := canonicalSatisfaction.mp h₂ | t : Th
f g : Form
h₁ : f⊃g ∈ ↑t
r : Th
h₂ : r⊨f
⊢ t∙r⊨g | t : Th
f g : Form
h₁ : f⊃g ∈ ↑t
r : Th
h₂ : r⊨f
l₁ : f ∈ ↑r
⊢ t∙r⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | canonicalSatisfaction | [172, 1] | [235, 39] | have l₂ : g ∈ (formalApplicationFunction t r).val := ⟨f, l₁, h₁⟩ | t : Th
f g : Form
h₁ : f⊃g ∈ ↑t
r : Th
h₂ : r⊨f
l₁ : f ∈ ↑r
⊢ t∙r⊨g | t : Th
f g : Form
h₁ : f⊃g ∈ ↑t
r : Th
h₂ : r⊨f
l₁ : f ∈ ↑r
l₂ : g ∈ ↑(formalApplicationFunction t r)
⊢ t∙r⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | canonicalSatisfaction | [172, 1] | [235, 39] | exact canonicalSatisfaction.mpr l₂ | t : Th
f g : Form
h₁ : f⊃g ∈ ↑t
r : Th
h₂ : r⊨f
l₁ : f ∈ ↑r
l₂ : g ∈ ↑(formalApplicationFunction t r)
⊢ t∙r⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | intros b | t : Th
Δ : Ctx
⊢ ∀ (b a : Lex (ℕ × ℕ)), a ≤ b → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ b | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
⊢ ∀ (a : Lex (ℕ × ℕ)), a ≤ b → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ b |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | match b with
| ⟨0, 0⟩ =>
intros a h₁
cases h₁
case left a₁ _ h₂ => exact False.elim $ Nat.not_lt_zero a₁ h₂
case right b₁ h₂ =>
rw [Nat.le_zero_eq b₁] at h₂
rw [h₂]
| ⟨i + 1, 0⟩ =>
intros a h₁
cases h₁
case left a₁ b₁ h₂ =>
have l₁ : a₁ < i ∨ a₁ = i := Nat.lt_or_eq_of_le $ Nat.lt_succ.mp h₂
have l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ := by
cases l₁
case inl h₂ => exact Or.inl h₂
case inr h₂ => exact Or.inr ⟨h₂, le_refl b₁⟩
have l₃ := (Prod.Lex.le_iff (a₁, b₁) (i,b₁)).mpr l₂
have l₄ := @lindenbaumSequenceMonotone' t Δ (i,b₁) (a₁, b₁) l₃
apply le_trans l₄
intros f h₂
exact ⟨b₁,h₂⟩
case right b₁ h₂ =>
rw [Nat.le_zero_eq b₁] at h₂
rw [h₂]
| ⟨i, j + 1⟩ =>
have lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) := by
intros f h₃
unfold lindenbaumSequence
split
case h_1 _ heq | h_2 _ heq => injection heq; contradiction
case h_3 i' j' heq =>
injection heq with heq₁ heq₂
injection heq₂ with heq₂
have heq₃ : j = j' := heq₂
rw [←heq₁, ←heq₃]
change
let prev := lindenbaumSequence t Δ (i, j);
let l := (Denumerable.ofNat (Form × Form) j).fst;
let r := (Denumerable.ofNat (Form × Form) j).snd;
f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
intros prev l r
split
case inl =>
split
case inl | inr => apply Or.inl h₃
case inr => exact h₃
intros a h₁
cases h₁
case left a₁ b₁ h₂ =>
have l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j := Or.inl h₂
have l₂ := (Prod.Lex.le_iff (a₁, b₁) (i,j)).mpr l₁
have l₃ := @lindenbaumSequenceMonotone' t Δ (i,j) (a₁, b₁) l₂
apply le_trans l₃
exact lem
case right b₁ h₂ =>
cases h₂
case refl => intros _ h₁; assumption
case step h₂ =>
have l₁ : i < i ∨ i = i ∧ b₁ ≤ j := Or.inr ⟨rfl, h₂⟩
have l₂ := (Prod.Lex.le_iff (i, b₁) (i,j)).mpr l₁
have l₃ := @lindenbaumSequenceMonotone' t Δ (i,j) (i, b₁) l₂
apply le_trans l₃
exact lem | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
⊢ ∀ (a : Lex (ℕ × ℕ)), a ≤ b → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ b | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | intros a h₁ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
⊢ ∀ (a : Lex (ℕ × ℕ)), a ≤ (0, 0) → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (0, 0) | t : Th
Δ : Ctx
b a : Lex (ℕ × ℕ)
h₁ : a ≤ (0, 0)
⊢ lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (0, 0) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | cases h₁ | t : Th
Δ : Ctx
b a : Lex (ℕ × ℕ)
h₁ : a ≤ (0, 0)
⊢ lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (0, 0) | case left
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
a₁✝ b₁✝ : ℕ
h✝ : a₁✝ < 0
⊢ lindenbaumSequence t Δ (a₁✝, b₁✝) ⊆ lindenbaumSequence t Δ (0, 0)
case right
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
b₁✝ : ℕ
h✝ : b₁✝ ≤ 0
⊢ lindenbaumSequence t Δ (0, b₁✝) ⊆ lindenbaumSequence t Δ (0, 0) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case left a₁ _ h₂ => exact False.elim $ Nat.not_lt_zero a₁ h₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
a₁ b₁✝ : ℕ
h₂ : a₁ < 0
⊢ lindenbaumSequence t Δ (a₁, b₁✝) ⊆ lindenbaumSequence t Δ (0, 0) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case right b₁ h₂ =>
rw [Nat.le_zero_eq b₁] at h₂
rw [h₂] | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
b₁ : ℕ
h₂ : b₁ ≤ 0
⊢ lindenbaumSequence t Δ (0, b₁) ⊆ lindenbaumSequence t Δ (0, 0) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | exact False.elim $ Nat.not_lt_zero a₁ h₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
a₁ b₁✝ : ℕ
h₂ : a₁ < 0
⊢ lindenbaumSequence t Δ (a₁, b₁✝) ⊆ lindenbaumSequence t Δ (0, 0) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | rw [Nat.le_zero_eq b₁] at h₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
b₁ : ℕ
h₂ : b₁ ≤ 0
⊢ lindenbaumSequence t Δ (0, b₁) ⊆ lindenbaumSequence t Δ (0, 0) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
b₁ : ℕ
h₂ : b₁ = 0
⊢ lindenbaumSequence t Δ (0, b₁) ⊆ lindenbaumSequence t Δ (0, 0) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | rw [h₂] | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
b₁ : ℕ
h₂ : b₁ = 0
⊢ lindenbaumSequence t Δ (0, b₁) ⊆ lindenbaumSequence t Δ (0, 0) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | intros a h₁ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i : ℕ
⊢ ∀ (a : Lex (ℕ × ℕ)), a ≤ (i + 1, 0) → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i + 1, 0) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i : ℕ
a : Lex (ℕ × ℕ)
h₁ : a ≤ (i + 1, 0)
⊢ lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i + 1, 0) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | cases h₁ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i : ℕ
a : Lex (ℕ × ℕ)
h₁ : a ≤ (i + 1, 0)
⊢ lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i + 1, 0) | case left
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁✝ b₁✝ : ℕ
h✝ : a₁✝ < i + 1
⊢ lindenbaumSequence t Δ (a₁✝, b₁✝) ⊆ lindenbaumSequence t Δ (i + 1, 0)
case right
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i b₁✝ : ℕ
h✝ : b₁✝ ≤ 0
⊢ lindenbaumSequence t Δ (i + 1, b₁✝) ⊆ lindenbaumSequence t Δ (i + 1, 0) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case left a₁ b₁ h₂ =>
have l₁ : a₁ < i ∨ a₁ = i := Nat.lt_or_eq_of_le $ Nat.lt_succ.mp h₂
have l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ := by
cases l₁
case inl h₂ => exact Or.inl h₂
case inr h₂ => exact Or.inr ⟨h₂, le_refl b₁⟩
have l₃ := (Prod.Lex.le_iff (a₁, b₁) (i,b₁)).mpr l₂
have l₄ := @lindenbaumSequenceMonotone' t Δ (i,b₁) (a₁, b₁) l₃
apply le_trans l₄
intros f h₂
exact ⟨b₁,h₂⟩ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case right b₁ h₂ =>
rw [Nat.le_zero_eq b₁] at h₂
rw [h₂] | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i b₁ : ℕ
h₂ : b₁ ≤ 0
⊢ lindenbaumSequence t Δ (i + 1, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | have l₁ : a₁ < i ∨ a₁ = i := Nat.lt_or_eq_of_le $ Nat.lt_succ.mp h₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
l₁ : a₁ < i ∨ a₁ = i
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | have l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ := by
cases l₁
case inl h₂ => exact Or.inl h₂
case inr h₂ => exact Or.inr ⟨h₂, le_refl b₁⟩ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
l₁ : a₁ < i ∨ a₁ = i
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
l₁ : a₁ < i ∨ a₁ = i
l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | have l₃ := (Prod.Lex.le_iff (a₁, b₁) (i,b₁)).mpr l₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
l₁ : a₁ < i ∨ a₁ = i
l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
l₁ : a₁ < i ∨ a₁ = i
l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁)
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | have l₄ := @lindenbaumSequenceMonotone' t Δ (i,b₁) (a₁, b₁) l₃ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
l₁ : a₁ < i ∨ a₁ = i
l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁)
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
l₁ : a₁ < i ∨ a₁ = i
l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁)
l₄ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, b₁)
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | apply le_trans l₄ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
l₁ : a₁ < i ∨ a₁ = i
l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁)
l₄ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, b₁)
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
l₁ : a₁ < i ∨ a₁ = i
l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁)
l₄ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, b₁)
⊢ lindenbaumSequence t Δ (i, b₁) ≤ lindenbaumSequence t Δ (i + 1, 0) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | intros f h₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
l₁ : a₁ < i ∨ a₁ = i
l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁)
l₄ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, b₁)
⊢ lindenbaumSequence t Δ (i, b₁) ≤ lindenbaumSequence t Δ (i + 1, 0) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂✝ : a₁ < i + 1
l₁ : a₁ < i ∨ a₁ = i
l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁)
l₄ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, b₁)
f : Form
h₂ : f ∈ lindenbaumSequence t Δ (i, b₁)
⊢ f ∈ lindenbaumSequence t Δ (i + 1, 0) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | exact ⟨b₁,h₂⟩ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂✝ : a₁ < i + 1
l₁ : a₁ < i ∨ a₁ = i
l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁)
l₄ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, b₁)
f : Form
h₂ : f ∈ lindenbaumSequence t Δ (i, b₁)
⊢ f ∈ lindenbaumSequence t Δ (i + 1, 0) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | cases l₁ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
l₁ : a₁ < i ∨ a₁ = i
⊢ a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ | case inl
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
h✝ : a₁ < i
⊢ a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
case inr
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂ : a₁ < i + 1
h✝ : a₁ = i
⊢ a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case inl h₂ => exact Or.inl h₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂✝ : a₁ < i + 1
h₂ : a₁ < i
⊢ a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case inr h₂ => exact Or.inr ⟨h₂, le_refl b₁⟩ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂✝ : a₁ < i + 1
h₂ : a₁ = i
⊢ a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | exact Or.inl h₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂✝ : a₁ < i + 1
h₂ : a₁ < i
⊢ a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | exact Or.inr ⟨h₂, le_refl b₁⟩ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i a₁ b₁ : ℕ
h₂✝ : a₁ < i + 1
h₂ : a₁ = i
⊢ a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | rw [Nat.le_zero_eq b₁] at h₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i b₁ : ℕ
h₂ : b₁ ≤ 0
⊢ lindenbaumSequence t Δ (i + 1, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i b₁ : ℕ
h₂ : b₁ = 0
⊢ lindenbaumSequence t Δ (i + 1, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | rw [h₂] | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i b₁ : ℕ
h₂ : b₁ = 0
⊢ lindenbaumSequence t Δ (i + 1, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | have lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) := by
intros f h₃
unfold lindenbaumSequence
split
case h_1 _ heq | h_2 _ heq => injection heq; contradiction
case h_3 i' j' heq =>
injection heq with heq₁ heq₂
injection heq₂ with heq₂
have heq₃ : j = j' := heq₂
rw [←heq₁, ←heq₃]
change
let prev := lindenbaumSequence t Δ (i, j);
let l := (Denumerable.ofNat (Form × Form) j).fst;
let r := (Denumerable.ofNat (Form × Form) j).snd;
f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
intros prev l r
split
case inl =>
split
case inl | inr => apply Or.inl h₃
case inr => exact h₃ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
⊢ ∀ (a : Lex (ℕ × ℕ)), a ≤ (i, j + 1) → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i, j + 1) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
⊢ ∀ (a : Lex (ℕ × ℕ)), a ≤ (i, j + 1) → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i, j + 1) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | intros a h₁ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
⊢ ∀ (a : Lex (ℕ × ℕ)), a ≤ (i, j + 1) → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i, j + 1) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a : Lex (ℕ × ℕ)
h₁ : a ≤ (i, j + 1)
⊢ lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i, j + 1) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | cases h₁ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a : Lex (ℕ × ℕ)
h₁ : a ≤ (i, j + 1)
⊢ lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i, j + 1) | case left
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a₁✝ b₁✝ : ℕ
h✝ : a₁✝ < i
⊢ lindenbaumSequence t Δ (a₁✝, b₁✝) ⊆ lindenbaumSequence t Δ (i, j + 1)
case right
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
b₁✝ : ℕ
h✝ : b₁✝ ≤ j + 1
⊢ lindenbaumSequence t Δ (i, b₁✝) ⊆ lindenbaumSequence t Δ (i, j + 1) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case left a₁ b₁ h₂ =>
have l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j := Or.inl h₂
have l₂ := (Prod.Lex.le_iff (a₁, b₁) (i,j)).mpr l₁
have l₃ := @lindenbaumSequenceMonotone' t Δ (i,j) (a₁, b₁) l₂
apply le_trans l₃
exact lem | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a₁ b₁ : ℕ
h₂ : a₁ < i
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case right b₁ h₂ =>
cases h₂
case refl => intros _ h₁; assumption
case step h₂ =>
have l₁ : i < i ∨ i = i ∧ b₁ ≤ j := Or.inr ⟨rfl, h₂⟩
have l₂ := (Prod.Lex.le_iff (i, b₁) (i,j)).mpr l₁
have l₃ := @lindenbaumSequenceMonotone' t Δ (i,j) (i, b₁) l₂
apply le_trans l₃
exact lem | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
b₁ : ℕ
h₂ : b₁ ≤ j + 1
⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | intros f h₃ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
⊢ lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
⊢ f ∈ lindenbaumSequence t Δ (i, j + 1) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | unfold lindenbaumSequence | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
⊢ f ∈ lindenbaumSequence t Δ (i, j + 1) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
⊢ f ∈
match (i, j + 1) with
| (0, 0) => ↑t
| (Nat.succ i, 0) => { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) }
| (i, Nat.succ j) =>
let prev := lindenbaumSequence t Δ (i, j);
let l := (Denumerable.ofNat (Form × Form) j).fst;
let r := (Denumerable.ofNat (Form × Form) j).snd;
if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | split | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
⊢ f ∈
match (i, j + 1) with
| (0, 0) => ↑t
| (Nat.succ i, 0) => { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) }
| (i, Nat.succ j) =>
let prev := lindenbaumSequence t Δ (i, j);
let l := (Denumerable.ofNat (Form × Form) j).fst;
let r := (Denumerable.ofNat (Form × Form) j).snd;
if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev | case h_1
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
heq✝ : (i, j + 1) = (0, 0)
⊢ f ∈ ↑t
case h_2
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i✝ : ℕ
heq✝ : (i, j + 1) = (Nat.succ i✝, 0)
⊢ f ∈ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i✝, j) }
case h_3
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i✝ j✝ : ℕ
heq✝ : (i, j + 1) = (i✝, Nat.succ j✝)
⊢ f ∈
let prev := lindenbaumSequence t Δ (i✝, j✝);
let l := (Denumerable.ofNat (Form × Form) j✝).fst;
let r := (Denumerable.ofNat (Form × Form) j✝).snd;
if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case h_1 _ heq | h_2 _ heq => injection heq; contradiction | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i✝ : ℕ
heq : (i, j + 1) = (Nat.succ i✝, 0)
⊢ f ∈ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i✝, j) } | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case h_3 i' j' heq =>
injection heq with heq₁ heq₂
injection heq₂ with heq₂
have heq₃ : j = j' := heq₂
rw [←heq₁, ←heq₃]
change
let prev := lindenbaumSequence t Δ (i, j);
let l := (Denumerable.ofNat (Form × Form) j).fst;
let r := (Denumerable.ofNat (Form × Form) j).snd;
f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
intros prev l r
split
case inl =>
split
case inl | inr => apply Or.inl h₃
case inr => exact h₃ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq : (i, j + 1) = (i', Nat.succ j')
⊢ f ∈
let prev := lindenbaumSequence t Δ (i', j');
let l := (Denumerable.ofNat (Form × Form) j').fst;
let r := (Denumerable.ofNat (Form × Form) j').snd;
if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | injection heq | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i✝ : ℕ
heq : (i, j + 1) = (Nat.succ i✝, 0)
⊢ f ∈ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i✝, j) } | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i✝ : ℕ
fst_eq✝ : i = Nat.succ i✝
snd_eq✝ : j + 1 = 0
⊢ f ∈ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i✝, j) } |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | contradiction | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i✝ : ℕ
fst_eq✝ : i = Nat.succ i✝
snd_eq✝ : j + 1 = 0
⊢ f ∈ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i✝, j) } | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | injection heq with heq₁ heq₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq : (i, j + 1) = (i', Nat.succ j')
⊢ f ∈
let prev := lindenbaumSequence t Δ (i', j');
let l := (Denumerable.ofNat (Form × Form) j').fst;
let r := (Denumerable.ofNat (Form × Form) j').snd;
if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : j + 1 = Nat.succ j'
⊢ f ∈
let prev := lindenbaumSequence t Δ (i', j');
let l := (Denumerable.ofNat (Form × Form) j').fst;
let r := (Denumerable.ofNat (Form × Form) j').snd;
if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | injection heq₂ with heq₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : j + 1 = Nat.succ j'
⊢ f ∈
let prev := lindenbaumSequence t Δ (i', j');
let l := (Denumerable.ofNat (Form × Form) j').fst;
let r := (Denumerable.ofNat (Form × Form) j').snd;
if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
⊢ f ∈
let prev := lindenbaumSequence t Δ (i', j');
let l := (Denumerable.ofNat (Form × Form) j').fst;
let r := (Denumerable.ofNat (Form × Form) j').snd;
if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | have heq₃ : j = j' := heq₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
⊢ f ∈
let prev := lindenbaumSequence t Δ (i', j');
let l := (Denumerable.ofNat (Form × Form) j').fst;
let r := (Denumerable.ofNat (Form × Form) j').snd;
if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
⊢ f ∈
let prev := lindenbaumSequence t Δ (i', j');
let l := (Denumerable.ofNat (Form × Form) j').fst;
let r := (Denumerable.ofNat (Form × Form) j').snd;
if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | rw [←heq₁, ←heq₃] | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
⊢ f ∈
let prev := lindenbaumSequence t Δ (i', j');
let l := (Denumerable.ofNat (Form × Form) j').fst;
let r := (Denumerable.ofNat (Form × Form) j').snd;
if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
⊢ f ∈
let prev := lindenbaumSequence t Δ (i, j);
let l := (Denumerable.ofNat (Form × Form) j).fst;
let r := (Denumerable.ofNat (Form × Form) j).snd;
if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | change
let prev := lindenbaumSequence t Δ (i, j);
let l := (Denumerable.ofNat (Form × Form) j).fst;
let r := (Denumerable.ofNat (Form × Form) j).snd;
f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
⊢ f ∈
let prev := lindenbaumSequence t Δ (i, j);
let l := (Denumerable.ofNat (Form × Form) j).fst;
let r := (Denumerable.ofNat (Form × Form) j).snd;
if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
⊢ let prev := lindenbaumSequence t Δ (i, j);
let l := (Denumerable.ofNat (Form × Form) j).fst;
let r := (Denumerable.ofNat (Form × Form) j).snd;
f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | intros prev l r | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
⊢ let prev := lindenbaumSequence t Δ (i, j);
let l := (Denumerable.ofNat (Form × Form) j).fst;
let r := (Denumerable.ofNat (Form × Form) j).snd;
f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
prev : Ctx := lindenbaumSequence t Δ (i, j)
l : Form := (Denumerable.ofNat (Form × Form) j).fst
r : Form := (Denumerable.ofNat (Form × Form) j).snd
⊢ f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | split | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
prev : Ctx := lindenbaumSequence t Δ (i, j)
l : Form := (Denumerable.ofNat (Form × Form) j).fst
r : Form := (Denumerable.ofNat (Form × Form) j).snd
⊢ f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev | case inl
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
prev : Ctx := lindenbaumSequence t Δ (i, j)
l : Form := (Denumerable.ofNat (Form × Form) j).fst
r : Form := (Denumerable.ofNat (Form × Form) j).snd
h✝ : l¦r ∈ ▲prev
⊢ f ∈ if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r}
case inr
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
prev : Ctx := lindenbaumSequence t Δ (i, j)
l : Form := (Denumerable.ofNat (Form × Form) j).fst
r : Form := (Denumerable.ofNat (Form × Form) j).snd
h✝ : ¬l¦r ∈ ▲prev
⊢ f ∈ prev |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case inl =>
split
case inl | inr => apply Or.inl h₃ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
prev : Ctx := lindenbaumSequence t Δ (i, j)
l : Form := (Denumerable.ofNat (Form × Form) j).fst
r : Form := (Denumerable.ofNat (Form × Form) j).snd
h✝ : l¦r ∈ ▲prev
⊢ f ∈ if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case inr => exact h₃ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
prev : Ctx := lindenbaumSequence t Δ (i, j)
l : Form := (Denumerable.ofNat (Form × Form) j).fst
r : Form := (Denumerable.ofNat (Form × Form) j).snd
h✝ : ¬l¦r ∈ ▲prev
⊢ f ∈ prev | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | split | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
prev : Ctx := lindenbaumSequence t Δ (i, j)
l : Form := (Denumerable.ofNat (Form × Form) j).fst
r : Form := (Denumerable.ofNat (Form × Form) j).snd
h✝ : l¦r ∈ ▲prev
⊢ f ∈ if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} | case inl
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
prev : Ctx := lindenbaumSequence t Δ (i, j)
l : Form := (Denumerable.ofNat (Form × Form) j).fst
r : Form := (Denumerable.ofNat (Form × Form) j).snd
h✝¹ : l¦r ∈ ▲prev
h✝ : ▲(prev ∪ {l}) ∩ Δ = ∅
⊢ f ∈ prev ∪ {l}
case inr
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
prev : Ctx := lindenbaumSequence t Δ (i, j)
l : Form := (Denumerable.ofNat (Form × Form) j).fst
r : Form := (Denumerable.ofNat (Form × Form) j).snd
h✝¹ : l¦r ∈ ▲prev
h✝ : ¬▲(prev ∪ {l}) ∩ Δ = ∅
⊢ f ∈ prev ∪ {r} |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case inl | inr => apply Or.inl h₃ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
prev : Ctx := lindenbaumSequence t Δ (i, j)
l : Form := (Denumerable.ofNat (Form × Form) j).fst
r : Form := (Denumerable.ofNat (Form × Form) j).snd
h✝¹ : l¦r ∈ ▲prev
h✝ : ¬▲(prev ∪ {l}) ∩ Δ = ∅
⊢ f ∈ prev ∪ {r} | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | apply Or.inl h₃ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
prev : Ctx := lindenbaumSequence t Δ (i, j)
l : Form := (Denumerable.ofNat (Form × Form) j).fst
r : Form := (Denumerable.ofNat (Form × Form) j).snd
h✝¹ : l¦r ∈ ▲prev
h✝ : ¬▲(prev ∪ {l}) ∩ Δ = ∅
⊢ f ∈ prev ∪ {r} | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | exact h₃ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
f : Form
h₃ : f ∈ lindenbaumSequence t Δ (i, j)
x✝ : Lex (ℕ × ℕ)
i' j' : ℕ
heq₁ : i = i'
heq₂ : Nat.add j 0 = j'
heq₃ : j = j'
prev : Ctx := lindenbaumSequence t Δ (i, j)
l : Form := (Denumerable.ofNat (Form × Form) j).fst
r : Form := (Denumerable.ofNat (Form × Form) j).snd
h✝ : ¬l¦r ∈ ▲prev
⊢ f ∈ prev | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | have l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j := Or.inl h₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a₁ b₁ : ℕ
h₂ : a₁ < i
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a₁ b₁ : ℕ
h₂ : a₁ < i
l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | have l₂ := (Prod.Lex.le_iff (a₁, b₁) (i,j)).mpr l₁ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a₁ b₁ : ℕ
h₂ : a₁ < i
l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a₁ b₁ : ℕ
h₂ : a₁ < i
l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j
l₂ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, j)
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | have l₃ := @lindenbaumSequenceMonotone' t Δ (i,j) (a₁, b₁) l₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a₁ b₁ : ℕ
h₂ : a₁ < i
l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j
l₂ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, j)
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a₁ b₁ : ℕ
h₂ : a₁ < i
l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j
l₂ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, j)
l₃ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j)
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | apply le_trans l₃ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a₁ b₁ : ℕ
h₂ : a₁ < i
l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j
l₂ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, j)
l₃ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j)
⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a₁ b₁ : ℕ
h₂ : a₁ < i
l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j
l₂ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, j)
l₃ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j)
⊢ lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | exact lem | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a₁ b₁ : ℕ
h₂ : a₁ < i
l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j
l₂ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, j)
l₃ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j)
⊢ lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | cases h₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
b₁ : ℕ
h₂ : b₁ ≤ j + 1
⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) | case refl
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
⊢ lindenbaumSequence t Δ (i, j + 1) ⊆ lindenbaumSequence t Δ (i, j + 1)
case step
t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
b₁ : ℕ
a✝ : Nat.le b₁ (Nat.add j 0)
⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case refl => intros _ h₁; assumption | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
⊢ lindenbaumSequence t Δ (i, j + 1) ⊆ lindenbaumSequence t Δ (i, j + 1) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | case step h₂ =>
have l₁ : i < i ∨ i = i ∧ b₁ ≤ j := Or.inr ⟨rfl, h₂⟩
have l₂ := (Prod.Lex.le_iff (i, b₁) (i,j)).mpr l₁
have l₃ := @lindenbaumSequenceMonotone' t Δ (i,j) (i, b₁) l₂
apply le_trans l₃
exact lem | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
b₁ : ℕ
h₂ : Nat.le b₁ (Nat.add j 0)
⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | intros _ h₁ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
⊢ lindenbaumSequence t Δ (i, j + 1) ⊆ lindenbaumSequence t Δ (i, j + 1) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a✝ : Form
h₁ : a✝ ∈ lindenbaumSequence t Δ (i, j + 1)
⊢ a✝ ∈ lindenbaumSequence t Δ (i, j + 1) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | assumption | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
a✝ : Form
h₁ : a✝ ∈ lindenbaumSequence t Δ (i, j + 1)
⊢ a✝ ∈ lindenbaumSequence t Δ (i, j + 1) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | have l₁ : i < i ∨ i = i ∧ b₁ ≤ j := Or.inr ⟨rfl, h₂⟩ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
b₁ : ℕ
h₂ : Nat.le b₁ (Nat.add j 0)
⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
b₁ : ℕ
h₂ : Nat.le b₁ (Nat.add j 0)
l₁ : i < i ∨ i = i ∧ b₁ ≤ j
⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | have l₂ := (Prod.Lex.le_iff (i, b₁) (i,j)).mpr l₁ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
b₁ : ℕ
h₂ : Nat.le b₁ (Nat.add j 0)
l₁ : i < i ∨ i = i ∧ b₁ ≤ j
⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
b₁ : ℕ
h₂ : Nat.le b₁ (Nat.add j 0)
l₁ : i < i ∨ i = i ∧ b₁ ≤ j
l₂ : ↑toLex (i, b₁) ≤ ↑toLex (i, j)
⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | have l₃ := @lindenbaumSequenceMonotone' t Δ (i,j) (i, b₁) l₂ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
b₁ : ℕ
h₂ : Nat.le b₁ (Nat.add j 0)
l₁ : i < i ∨ i = i ∧ b₁ ≤ j
l₂ : ↑toLex (i, b₁) ≤ ↑toLex (i, j)
⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
b₁ : ℕ
h₂ : Nat.le b₁ (Nat.add j 0)
l₁ : i < i ∨ i = i ∧ b₁ ≤ j
l₂ : ↑toLex (i, b₁) ≤ ↑toLex (i, j)
l₃ : lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j)
⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | apply le_trans l₃ | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
b₁ : ℕ
h₂ : Nat.le b₁ (Nat.add j 0)
l₁ : i < i ∨ i = i ∧ b₁ ≤ j
l₂ : ↑toLex (i, b₁) ≤ ↑toLex (i, j)
l₃ : lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j)
⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1) | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
b₁ : ℕ
h₂ : Nat.le b₁ (Nat.add j 0)
l₁ : i < i ∨ i = i ∧ b₁ ≤ j
l₂ : ↑toLex (i, b₁) ≤ ↑toLex (i, j)
l₃ : lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j)
⊢ lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone' | [21, 1] | [88, 69] | exact lem | t : Th
Δ : Ctx
b : Lex (ℕ × ℕ)
i j : ℕ
lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
b₁ : ℕ
h₂ : Nat.le b₁ (Nat.add j 0)
l₁ : i < i ∨ i = i ∧ b₁ ≤ j
l₂ : ↑toLex (i, b₁) ≤ ↑toLex (i, j)
l₃ : lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j)
⊢ lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone | [90, 1] | [92, 40] | intros a b | t : Th
Δ : Ctx
⊢ Monotone (lindenbaumSequence t Δ) | t : Th
Δ : Ctx
a b : Lex (ℕ × ℕ)
⊢ a ≤ b → lindenbaumSequence t Δ a ≤ lindenbaumSequence t Δ b |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumSequenceMonotone | [90, 1] | [92, 40] | exact lindenbaumSequenceMonotone' b a | t : Th
Δ : Ctx
a b : Lex (ℕ × ℕ)
⊢ a ≤ b → lindenbaumSequence t Δ a ≤ lindenbaumSequence t Δ b | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumStageMonotone | [96, 1] | [100, 51] | intros a b h₁ | t : Th
Δ : Ctx
i : ℕ
⊢ Monotone fun j => lindenbaumSequence t Δ (i, j) | t : Th
Δ : Ctx
i a b : ℕ
h₁ : a ≤ b
⊢ (fun j => lindenbaumSequence t Δ (i, j)) a ≤ (fun j => lindenbaumSequence t Δ (i, j)) b |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumStageMonotone | [96, 1] | [100, 51] | change lindenbaumSequence t Δ (i, a) ≤ lindenbaumSequence t Δ (i, b) | t : Th
Δ : Ctx
i a b : ℕ
h₁ : a ≤ b
⊢ (fun j => lindenbaumSequence t Δ (i, j)) a ≤ (fun j => lindenbaumSequence t Δ (i, j)) b | t : Th
Δ : Ctx
i a b : ℕ
h₁ : a ≤ b
⊢ lindenbaumSequence t Δ (i, a) ≤ lindenbaumSequence t Δ (i, b) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumStageMonotone | [96, 1] | [100, 51] | have l₂ := (Prod.Lex.le_iff (i, a) (i,b)).mpr $ Or.inr ⟨rfl,h₁⟩ | t : Th
Δ : Ctx
i a b : ℕ
h₁ : a ≤ b
⊢ lindenbaumSequence t Δ (i, a) ≤ lindenbaumSequence t Δ (i, b) | t : Th
Δ : Ctx
i a b : ℕ
h₁ : a ≤ b
l₂ : ↑toLex (i, a) ≤ ↑toLex (i, b)
⊢ lindenbaumSequence t Δ (i, a) ≤ lindenbaumSequence t Δ (i, b) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumStageMonotone | [96, 1] | [100, 51] | exact lindenbaumSequenceMonotone' (i,b) (i,a) l₂ | t : Th
Δ : Ctx
i a b : ℕ
h₁ : a ≤ b
l₂ : ↑toLex (i, a) ≤ ↑toLex (i, b)
⊢ lindenbaumSequence t Δ (i, a) ≤ lindenbaumSequence t Δ (i, b) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumExtensionExtends | [102, 1] | [105, 13] | intros f h₁ | t : Th
Δ : Ctx
⊢ ↑t ⊆ lindenbaumExtension t Δ | t : Th
Δ : Ctx
f : Form
h₁ : f ∈ ↑t
⊢ f ∈ lindenbaumExtension t Δ |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumExtensionExtends | [102, 1] | [105, 13] | refine ⟨⟨0,0⟩,?_⟩ | t : Th
Δ : Ctx
f : Form
h₁ : f ∈ ↑t
⊢ f ∈ lindenbaumExtension t Δ | t : Th
Δ : Ctx
f : Form
h₁ : f ∈ ↑t
⊢ f ∈ lindenbaumSequence t Δ (0, 0) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumExtensionExtends | [102, 1] | [105, 13] | assumption | t : Th
Δ : Ctx
f : Form
h₁ : f ∈ ↑t
⊢ f ∈ lindenbaumSequence t Δ (0, 0) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumIsFormal | [107, 1] | [148, 52] | intros f | t : Th
Δ : Ctx
⊢ formalTheory (lindenbaumExtension t Δ) | t : Th
Δ : Ctx
f : Form
⊢ f ∈ lindenbaumExtension t Δ ↔ lindenbaumExtension t Δ⊢f |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumIsFormal | [107, 1] | [148, 52] | apply Iff.intro | t : Th
Δ : Ctx
f : Form
⊢ f ∈ lindenbaumExtension t Δ ↔ lindenbaumExtension t Δ⊢f | case mp
t : Th
Δ : Ctx
f : Form
⊢ f ∈ lindenbaumExtension t Δ → lindenbaumExtension t Δ⊢f
case mpr
t : Th
Δ : Ctx
f : Form
⊢ lindenbaumExtension t Δ⊢f → f ∈ lindenbaumExtension t Δ |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumIsFormal | [107, 1] | [148, 52] | case mp =>
intro h₁
exact ⟨BProof.ax h₁⟩ | t : Th
Δ : Ctx
f : Form
⊢ f ∈ lindenbaumExtension t Δ → lindenbaumExtension t Δ⊢f | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumIsFormal | [107, 1] | [148, 52] | case mpr =>
intro h₁
have ⟨prf₁⟩ := h₁
have ⟨s, l₁, fprf⟩ := BProof.compactness prf₁
have ⟨⟨i,j⟩,l₂⟩ := finiteExhaustion lindenbaumSequenceMonotone l₁
have l₃ : lindenbaumSequence t Δ ⟨i,j⟩ ⊆ lindenbaumSequence t Δ ⟨i + 1,Encodable.encode (f,f)⟩ := by
apply lindenbaumSequenceMonotone
apply (Prod.Lex.le_iff (i,j) (i + 1,Encodable.encode (f,f))).mpr $ Or.inl $ Nat.lt_succ_self i
have prf₂ := BProof.monotone (le_trans l₂ l₃) fprf
have prf₃ : BProof (lindenbaumSequence t Δ ⟨i+1,Encodable.encode (f,f)⟩) (f ¦ f) := BProof.mp prf₂ BTheorem.orI₁
clear s h₁ l₁ l₂ l₃ fprf prf₁ prf₂
have l₄ : f ∈ lindenbaumSequence t Δ ⟨i + 1, Encodable.encode (f,f) + 1⟩ := by
unfold lindenbaumSequence
change
let prev := lindenbaumSequence t Δ (i + 1, Encodable.encode (f,f));
let l := (Denumerable.ofNat (Form × Form) (Encodable.encode (f,f))).fst;
let r := (Denumerable.ofNat (Form × Form) (Encodable.encode (f,f))).snd;
f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
intros prev l r
have l₅ : l = f := by
change (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst = f
rw [Denumerable.ofNat_encode (f,f)]
have l₆ : r = f := by
change (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd = f
rw [Denumerable.ofNat_encode (f,f)]
split
case inl h₂ =>
split
. rw [l₅]; exact Or.inr rfl
. rw [l₆]; exact Or.inr rfl
case inr h₂ =>
apply False.elim
have l₇ : f¦f ∈ ▲prev := ⟨prf₃⟩
rw [l₅,l₆] at h₂
exact h₂ l₇
exact ⟨⟨i + 1, Encodable.encode (f,f) + 1⟩, l₄⟩ | t : Th
Δ : Ctx
f : Form
⊢ lindenbaumExtension t Δ⊢f → f ∈ lindenbaumExtension t Δ | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumIsFormal | [107, 1] | [148, 52] | intro h₁ | t : Th
Δ : Ctx
f : Form
⊢ f ∈ lindenbaumExtension t Δ → lindenbaumExtension t Δ⊢f | t : Th
Δ : Ctx
f : Form
h₁ : f ∈ lindenbaumExtension t Δ
⊢ lindenbaumExtension t Δ⊢f |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumIsFormal | [107, 1] | [148, 52] | exact ⟨BProof.ax h₁⟩ | t : Th
Δ : Ctx
f : Form
h₁ : f ∈ lindenbaumExtension t Δ
⊢ lindenbaumExtension t Δ⊢f | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumIsFormal | [107, 1] | [148, 52] | intro h₁ | t : Th
Δ : Ctx
f : Form
⊢ lindenbaumExtension t Δ⊢f → f ∈ lindenbaumExtension t Δ | t : Th
Δ : Ctx
f : Form
h₁ : lindenbaumExtension t Δ⊢f
⊢ f ∈ lindenbaumExtension t Δ |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumIsFormal | [107, 1] | [148, 52] | have ⟨prf₁⟩ := h₁ | t : Th
Δ : Ctx
f : Form
h₁ : lindenbaumExtension t Δ⊢f
⊢ f ∈ lindenbaumExtension t Δ | t : Th
Δ : Ctx
f : Form
h₁ : lindenbaumExtension t Δ⊢f
prf₁ : BProof (lindenbaumExtension t Δ) f
⊢ f ∈ lindenbaumExtension t Δ |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumIsFormal | [107, 1] | [148, 52] | have ⟨s, l₁, fprf⟩ := BProof.compactness prf₁ | t : Th
Δ : Ctx
f : Form
h₁ : lindenbaumExtension t Δ⊢f
prf₁ : BProof (lindenbaumExtension t Δ) f
⊢ f ∈ lindenbaumExtension t Δ | t : Th
Δ : Ctx
f : Form
h₁ : lindenbaumExtension t Δ⊢f
prf₁ : BProof (lindenbaumExtension t Δ) f
s : Finset Form
l₁ : ↑s ⊆ lindenbaumExtension t Δ
fprf : BProof (↑s) f
⊢ f ∈ lindenbaumExtension t Δ |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumIsFormal | [107, 1] | [148, 52] | have ⟨⟨i,j⟩,l₂⟩ := finiteExhaustion lindenbaumSequenceMonotone l₁ | t : Th
Δ : Ctx
f : Form
h₁ : lindenbaumExtension t Δ⊢f
prf₁ : BProof (lindenbaumExtension t Δ) f
s : Finset Form
l₁ : ↑s ⊆ lindenbaumExtension t Δ
fprf : BProof (↑s) f
⊢ f ∈ lindenbaumExtension t Δ | t : Th
Δ : Ctx
f : Form
h₁ : lindenbaumExtension t Δ⊢f
prf₁ : BProof (lindenbaumExtension t Δ) f
s : Finset Form
l₁ : ↑s ⊆ lindenbaumExtension t Δ
fprf : BProof (↑s) f
i j : ℕ
l₂ : ↑s ⊆ lindenbaumSequence t Δ (i, j)
⊢ f ∈ lindenbaumExtension t Δ |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Lindenbaum.lean | lindenbaumIsFormal | [107, 1] | [148, 52] | have l₃ : lindenbaumSequence t Δ ⟨i,j⟩ ⊆ lindenbaumSequence t Δ ⟨i + 1,Encodable.encode (f,f)⟩ := by
apply lindenbaumSequenceMonotone
apply (Prod.Lex.le_iff (i,j) (i + 1,Encodable.encode (f,f))).mpr $ Or.inl $ Nat.lt_succ_self i | t : Th
Δ : Ctx
f : Form
h₁ : lindenbaumExtension t Δ⊢f
prf₁ : BProof (lindenbaumExtension t Δ) f
s : Finset Form
l₁ : ↑s ⊆ lindenbaumExtension t Δ
fprf : BProof (↑s) f
i j : ℕ
l₂ : ↑s ⊆ lindenbaumSequence t Δ (i, j)
⊢ f ∈ lindenbaumExtension t Δ | t : Th
Δ : Ctx
f : Form
h₁ : lindenbaumExtension t Δ⊢f
prf₁ : BProof (lindenbaumExtension t Δ) f
s : Finset Form
l₁ : ↑s ⊆ lindenbaumExtension t Δ
fprf : BProof (↑s) f
i j : ℕ
l₂ : ↑s ⊆ lindenbaumSequence t Δ (i, j)
l₃ : lindenbaumSequence t Δ (i, j) ⊆ lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f))
⊢ f ∈ lindenbaumExtension t Δ |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.