url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
let Δ : Th := ⟨▲{f}, generatedFormal {f}⟩
case h t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t ⊢ False
case h t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₁ : ¬(g ∈ (formalApplicationFunction t Δ).val) := by intros h₃ have ⟨q,⟨prf₁⟩,l₂⟩ := h₃ have ⟨prf₂⟩ := t.property.mp l₂ have prf₃ := BProof.mp prf₂ (BTheorem.hs prf₁.toTheorem BTheorem.taut) exact h₂ $ t.property.mpr ⟨prf₃⟩
case h t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } ⊢ False
case h t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } l₁ : ¬g ∈ ↑(formalApplicationFunction t Δ) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₂ : Δ ⊨ f := canonicalSatisfaction.mpr ⟨BProof.ax rfl⟩
case h t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } l₁ : ¬g ∈ ↑(formalApplicationFunction t Δ) ⊢ False
case h t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } l₁ : ¬g ∈ ↑(formalApplicationFunction t Δ) l₂ : Δ⊨f ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
exact l₁ $ canonicalSatisfaction.mp (h₁ l₂)
case h t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } l₁ : ¬g ∈ ↑(formalApplicationFunction t Δ) l₂ : Δ⊨f ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
intros h₃
t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } ⊢ ¬g ∈ ↑(formalApplicationFunction t Δ)
t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } h₃ : g ∈ ↑(formalApplicationFunction t Δ) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have ⟨q,⟨prf₁⟩,l₂⟩ := h₃
t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } h₃ : g ∈ ↑(formalApplicationFunction t Δ) ⊢ False
t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } h₃ : g ∈ ↑(formalApplicationFunction t Δ) q : Form prf₁ : BProof {f} q l₂ : q⊃g ∈ ↑t ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have ⟨prf₂⟩ := t.property.mp l₂
t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } h₃ : g ∈ ↑(formalApplicationFunction t Δ) q : Form prf₁ : BProof {f} q l₂ : q⊃g ∈ ↑t ⊢ False
t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } h₃ : g ∈ ↑(formalApplicationFunction t Δ) q : Form prf₁ : BProof {f} q l₂ : q⊃g ∈ ↑t prf₂ : BProof (↑t) (q⊃g) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have prf₃ := BProof.mp prf₂ (BTheorem.hs prf₁.toTheorem BTheorem.taut)
t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } h₃ : g ∈ ↑(formalApplicationFunction t Δ) q : Form prf₁ : BProof {f} q l₂ : q⊃g ∈ ↑t prf₂ : BProof (↑t) (q⊃g) ⊢ False
t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } h₃ : g ∈ ↑(formalApplicationFunction t Δ) q : Form prf₁ : BProof {f} q l₂ : q⊃g ∈ ↑t prf₂ : BProof (↑t) (q⊃g) prf₃ : BProof (↑t) (f⊃g) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
exact h₂ $ t.property.mpr ⟨prf₃⟩
t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t Δ : Th := { val := ▲{f}, property := (_ : ∀ {f_1 : Form}, f_1 ∈ ▲{f} ↔ ▲{f}⊢f_1) } h₃ : g ∈ ↑(formalApplicationFunction t Δ) q : Form prf₁ : BProof {f} q l₂ : q⊃g ∈ ↑t prf₂ : BProof (↑t) (q⊃g) prf₃ : BProof (↑t) (f⊃g) ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
intros r h₂
t : Th f g : Form h₁ : f⊃g ∈ ↑t ⊢ t⊨f⊃g
t : Th f g : Form h₁ : f⊃g ∈ ↑t r : Th h₂ : r⊨f ⊢ t∙r⊨g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₁ := canonicalSatisfaction.mp h₂
t : Th f g : Form h₁ : f⊃g ∈ ↑t r : Th h₂ : r⊨f ⊢ t∙r⊨g
t : Th f g : Form h₁ : f⊃g ∈ ↑t r : Th h₂ : r⊨f l₁ : f ∈ ↑r ⊢ t∙r⊨g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₂ : g ∈ (formalApplicationFunction t r).val := ⟨f, l₁, h₁⟩
t : Th f g : Form h₁ : f⊃g ∈ ↑t r : Th h₂ : r⊨f l₁ : f ∈ ↑r ⊢ t∙r⊨g
t : Th f g : Form h₁ : f⊃g ∈ ↑t r : Th h₂ : r⊨f l₁ : f ∈ ↑r l₂ : g ∈ ↑(formalApplicationFunction t r) ⊢ t∙r⊨g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
exact canonicalSatisfaction.mpr l₂
t : Th f g : Form h₁ : f⊃g ∈ ↑t r : Th h₂ : r⊨f l₁ : f ∈ ↑r l₂ : g ∈ ↑(formalApplicationFunction t r) ⊢ t∙r⊨g
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
intros b
t : Th Δ : Ctx ⊢ ∀ (b a : Lex (ℕ × ℕ)), a ≤ b → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ b
t : Th Δ : Ctx b : Lex (ℕ × ℕ) ⊢ ∀ (a : Lex (ℕ × ℕ)), a ≤ b → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ b
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
match b with | ⟨0, 0⟩ => intros a h₁ cases h₁ case left a₁ _ h₂ => exact False.elim $ Nat.not_lt_zero a₁ h₂ case right b₁ h₂ => rw [Nat.le_zero_eq b₁] at h₂ rw [h₂] | ⟨i + 1, 0⟩ => intros a h₁ cases h₁ case left a₁ b₁ h₂ => have l₁ : a₁ < i ∨ a₁ = i := Nat.lt_or_eq_of_le $ Nat.lt_succ.mp h₂ have l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ := by cases l₁ case inl h₂ => exact Or.inl h₂ case inr h₂ => exact Or.inr ⟨h₂, le_refl b₁⟩ have l₃ := (Prod.Lex.le_iff (a₁, b₁) (i,b₁)).mpr l₂ have l₄ := @lindenbaumSequenceMonotone' t Δ (i,b₁) (a₁, b₁) l₃ apply le_trans l₄ intros f h₂ exact ⟨b₁,h₂⟩ case right b₁ h₂ => rw [Nat.le_zero_eq b₁] at h₂ rw [h₂] | ⟨i, j + 1⟩ => have lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) := by intros f h₃ unfold lindenbaumSequence split case h_1 _ heq | h_2 _ heq => injection heq; contradiction case h_3 i' j' heq => injection heq with heq₁ heq₂ injection heq₂ with heq₂ have heq₃ : j = j' := heq₂ rw [←heq₁, ←heq₃] change let prev := lindenbaumSequence t Δ (i, j); let l := (Denumerable.ofNat (Form × Form) j).fst; let r := (Denumerable.ofNat (Form × Form) j).snd; f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev intros prev l r split case inl => split case inl | inr => apply Or.inl h₃ case inr => exact h₃ intros a h₁ cases h₁ case left a₁ b₁ h₂ => have l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j := Or.inl h₂ have l₂ := (Prod.Lex.le_iff (a₁, b₁) (i,j)).mpr l₁ have l₃ := @lindenbaumSequenceMonotone' t Δ (i,j) (a₁, b₁) l₂ apply le_trans l₃ exact lem case right b₁ h₂ => cases h₂ case refl => intros _ h₁; assumption case step h₂ => have l₁ : i < i ∨ i = i ∧ b₁ ≤ j := Or.inr ⟨rfl, h₂⟩ have l₂ := (Prod.Lex.le_iff (i, b₁) (i,j)).mpr l₁ have l₃ := @lindenbaumSequenceMonotone' t Δ (i,j) (i, b₁) l₂ apply le_trans l₃ exact lem
t : Th Δ : Ctx b : Lex (ℕ × ℕ) ⊢ ∀ (a : Lex (ℕ × ℕ)), a ≤ b → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ b
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
intros a h₁
t : Th Δ : Ctx b : Lex (ℕ × ℕ) ⊢ ∀ (a : Lex (ℕ × ℕ)), a ≤ (0, 0) → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (0, 0)
t : Th Δ : Ctx b a : Lex (ℕ × ℕ) h₁ : a ≤ (0, 0) ⊢ lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (0, 0)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
cases h₁
t : Th Δ : Ctx b a : Lex (ℕ × ℕ) h₁ : a ≤ (0, 0) ⊢ lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (0, 0)
case left t : Th Δ : Ctx b : Lex (ℕ × ℕ) a₁✝ b₁✝ : ℕ h✝ : a₁✝ < 0 ⊢ lindenbaumSequence t Δ (a₁✝, b₁✝) ⊆ lindenbaumSequence t Δ (0, 0) case right t : Th Δ : Ctx b : Lex (ℕ × ℕ) b₁✝ : ℕ h✝ : b₁✝ ≤ 0 ⊢ lindenbaumSequence t Δ (0, b₁✝) ⊆ lindenbaumSequence t Δ (0, 0)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case left a₁ _ h₂ => exact False.elim $ Nat.not_lt_zero a₁ h₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) a₁ b₁✝ : ℕ h₂ : a₁ < 0 ⊢ lindenbaumSequence t Δ (a₁, b₁✝) ⊆ lindenbaumSequence t Δ (0, 0)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case right b₁ h₂ => rw [Nat.le_zero_eq b₁] at h₂ rw [h₂]
t : Th Δ : Ctx b : Lex (ℕ × ℕ) b₁ : ℕ h₂ : b₁ ≤ 0 ⊢ lindenbaumSequence t Δ (0, b₁) ⊆ lindenbaumSequence t Δ (0, 0)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
exact False.elim $ Nat.not_lt_zero a₁ h₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) a₁ b₁✝ : ℕ h₂ : a₁ < 0 ⊢ lindenbaumSequence t Δ (a₁, b₁✝) ⊆ lindenbaumSequence t Δ (0, 0)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
rw [Nat.le_zero_eq b₁] at h₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) b₁ : ℕ h₂ : b₁ ≤ 0 ⊢ lindenbaumSequence t Δ (0, b₁) ⊆ lindenbaumSequence t Δ (0, 0)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) b₁ : ℕ h₂ : b₁ = 0 ⊢ lindenbaumSequence t Δ (0, b₁) ⊆ lindenbaumSequence t Δ (0, 0)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
rw [h₂]
t : Th Δ : Ctx b : Lex (ℕ × ℕ) b₁ : ℕ h₂ : b₁ = 0 ⊢ lindenbaumSequence t Δ (0, b₁) ⊆ lindenbaumSequence t Δ (0, 0)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
intros a h₁
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i : ℕ ⊢ ∀ (a : Lex (ℕ × ℕ)), a ≤ (i + 1, 0) → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i + 1, 0)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i : ℕ a : Lex (ℕ × ℕ) h₁ : a ≤ (i + 1, 0) ⊢ lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i + 1, 0)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
cases h₁
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i : ℕ a : Lex (ℕ × ℕ) h₁ : a ≤ (i + 1, 0) ⊢ lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i + 1, 0)
case left t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁✝ b₁✝ : ℕ h✝ : a₁✝ < i + 1 ⊢ lindenbaumSequence t Δ (a₁✝, b₁✝) ⊆ lindenbaumSequence t Δ (i + 1, 0) case right t : Th Δ : Ctx b : Lex (ℕ × ℕ) i b₁✝ : ℕ h✝ : b₁✝ ≤ 0 ⊢ lindenbaumSequence t Δ (i + 1, b₁✝) ⊆ lindenbaumSequence t Δ (i + 1, 0)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case left a₁ b₁ h₂ => have l₁ : a₁ < i ∨ a₁ = i := Nat.lt_or_eq_of_le $ Nat.lt_succ.mp h₂ have l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ := by cases l₁ case inl h₂ => exact Or.inl h₂ case inr h₂ => exact Or.inr ⟨h₂, le_refl b₁⟩ have l₃ := (Prod.Lex.le_iff (a₁, b₁) (i,b₁)).mpr l₂ have l₄ := @lindenbaumSequenceMonotone' t Δ (i,b₁) (a₁, b₁) l₃ apply le_trans l₄ intros f h₂ exact ⟨b₁,h₂⟩
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case right b₁ h₂ => rw [Nat.le_zero_eq b₁] at h₂ rw [h₂]
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i b₁ : ℕ h₂ : b₁ ≤ 0 ⊢ lindenbaumSequence t Δ (i + 1, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
have l₁ : a₁ < i ∨ a₁ = i := Nat.lt_or_eq_of_le $ Nat.lt_succ.mp h₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 l₁ : a₁ < i ∨ a₁ = i ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
have l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ := by cases l₁ case inl h₂ => exact Or.inl h₂ case inr h₂ => exact Or.inr ⟨h₂, le_refl b₁⟩
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 l₁ : a₁ < i ∨ a₁ = i ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 l₁ : a₁ < i ∨ a₁ = i l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
have l₃ := (Prod.Lex.le_iff (a₁, b₁) (i,b₁)).mpr l₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 l₁ : a₁ < i ∨ a₁ = i l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 l₁ : a₁ < i ∨ a₁ = i l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁) ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
have l₄ := @lindenbaumSequenceMonotone' t Δ (i,b₁) (a₁, b₁) l₃
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 l₁ : a₁ < i ∨ a₁ = i l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁) ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 l₁ : a₁ < i ∨ a₁ = i l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁) l₄ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, b₁) ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
apply le_trans l₄
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 l₁ : a₁ < i ∨ a₁ = i l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁) l₄ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, b₁) ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 l₁ : a₁ < i ∨ a₁ = i l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁) l₄ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, b₁) ⊢ lindenbaumSequence t Δ (i, b₁) ≤ lindenbaumSequence t Δ (i + 1, 0)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
intros f h₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 l₁ : a₁ < i ∨ a₁ = i l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁) l₄ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, b₁) ⊢ lindenbaumSequence t Δ (i, b₁) ≤ lindenbaumSequence t Δ (i + 1, 0)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂✝ : a₁ < i + 1 l₁ : a₁ < i ∨ a₁ = i l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁) l₄ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, b₁) f : Form h₂ : f ∈ lindenbaumSequence t Δ (i, b₁) ⊢ f ∈ lindenbaumSequence t Δ (i + 1, 0)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
exact ⟨b₁,h₂⟩
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂✝ : a₁ < i + 1 l₁ : a₁ < i ∨ a₁ = i l₂ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ l₃ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, b₁) l₄ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, b₁) f : Form h₂ : f ∈ lindenbaumSequence t Δ (i, b₁) ⊢ f ∈ lindenbaumSequence t Δ (i + 1, 0)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
cases l₁
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 l₁ : a₁ < i ∨ a₁ = i ⊢ a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
case inl t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 h✝ : a₁ < i ⊢ a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁ case inr t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂ : a₁ < i + 1 h✝ : a₁ = i ⊢ a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case inl h₂ => exact Or.inl h₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂✝ : a₁ < i + 1 h₂ : a₁ < i ⊢ a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case inr h₂ => exact Or.inr ⟨h₂, le_refl b₁⟩
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂✝ : a₁ < i + 1 h₂ : a₁ = i ⊢ a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
exact Or.inl h₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂✝ : a₁ < i + 1 h₂ : a₁ < i ⊢ a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
exact Or.inr ⟨h₂, le_refl b₁⟩
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i a₁ b₁ : ℕ h₂✝ : a₁ < i + 1 h₂ : a₁ = i ⊢ a₁ < i ∨ a₁ = i ∧ b₁ ≤ b₁
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
rw [Nat.le_zero_eq b₁] at h₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i b₁ : ℕ h₂ : b₁ ≤ 0 ⊢ lindenbaumSequence t Δ (i + 1, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i b₁ : ℕ h₂ : b₁ = 0 ⊢ lindenbaumSequence t Δ (i + 1, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
rw [h₂]
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i b₁ : ℕ h₂ : b₁ = 0 ⊢ lindenbaumSequence t Δ (i + 1, b₁) ⊆ lindenbaumSequence t Δ (i + 1, 0)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
have lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) := by intros f h₃ unfold lindenbaumSequence split case h_1 _ heq | h_2 _ heq => injection heq; contradiction case h_3 i' j' heq => injection heq with heq₁ heq₂ injection heq₂ with heq₂ have heq₃ : j = j' := heq₂ rw [←heq₁, ←heq₃] change let prev := lindenbaumSequence t Δ (i, j); let l := (Denumerable.ofNat (Form × Form) j).fst; let r := (Denumerable.ofNat (Form × Form) j).snd; f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev intros prev l r split case inl => split case inl | inr => apply Or.inl h₃ case inr => exact h₃
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ ⊢ ∀ (a : Lex (ℕ × ℕ)), a ≤ (i, j + 1) → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i, j + 1)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) ⊢ ∀ (a : Lex (ℕ × ℕ)), a ≤ (i, j + 1) → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i, j + 1)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
intros a h₁
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) ⊢ ∀ (a : Lex (ℕ × ℕ)), a ≤ (i, j + 1) → lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i, j + 1)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a : Lex (ℕ × ℕ) h₁ : a ≤ (i, j + 1) ⊢ lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i, j + 1)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
cases h₁
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a : Lex (ℕ × ℕ) h₁ : a ≤ (i, j + 1) ⊢ lindenbaumSequence t Δ a ⊆ lindenbaumSequence t Δ (i, j + 1)
case left t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a₁✝ b₁✝ : ℕ h✝ : a₁✝ < i ⊢ lindenbaumSequence t Δ (a₁✝, b₁✝) ⊆ lindenbaumSequence t Δ (i, j + 1) case right t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) b₁✝ : ℕ h✝ : b₁✝ ≤ j + 1 ⊢ lindenbaumSequence t Δ (i, b₁✝) ⊆ lindenbaumSequence t Δ (i, j + 1)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case left a₁ b₁ h₂ => have l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j := Or.inl h₂ have l₂ := (Prod.Lex.le_iff (a₁, b₁) (i,j)).mpr l₁ have l₃ := @lindenbaumSequenceMonotone' t Δ (i,j) (a₁, b₁) l₂ apply le_trans l₃ exact lem
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a₁ b₁ : ℕ h₂ : a₁ < i ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case right b₁ h₂ => cases h₂ case refl => intros _ h₁; assumption case step h₂ => have l₁ : i < i ∨ i = i ∧ b₁ ≤ j := Or.inr ⟨rfl, h₂⟩ have l₂ := (Prod.Lex.le_iff (i, b₁) (i,j)).mpr l₁ have l₃ := @lindenbaumSequenceMonotone' t Δ (i,j) (i, b₁) l₂ apply le_trans l₃ exact lem
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) b₁ : ℕ h₂ : b₁ ≤ j + 1 ⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
intros f h₃
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ ⊢ lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) ⊢ f ∈ lindenbaumSequence t Δ (i, j + 1)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
unfold lindenbaumSequence
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) ⊢ f ∈ lindenbaumSequence t Δ (i, j + 1)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) ⊢ f ∈ match (i, j + 1) with | (0, 0) => ↑t | (Nat.succ i, 0) => { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } | (i, Nat.succ j) => let prev := lindenbaumSequence t Δ (i, j); let l := (Denumerable.ofNat (Form × Form) j).fst; let r := (Denumerable.ofNat (Form × Form) j).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
split
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) ⊢ f ∈ match (i, j + 1) with | (0, 0) => ↑t | (Nat.succ i, 0) => { f | ∃ j, f ∈ lindenbaumSequence t Δ (i, j) } | (i, Nat.succ j) => let prev := lindenbaumSequence t Δ (i, j); let l := (Denumerable.ofNat (Form × Form) j).fst; let r := (Denumerable.ofNat (Form × Form) j).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
case h_1 t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) heq✝ : (i, j + 1) = (0, 0) ⊢ f ∈ ↑t case h_2 t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i✝ : ℕ heq✝ : (i, j + 1) = (Nat.succ i✝, 0) ⊢ f ∈ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i✝, j) } case h_3 t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i✝ j✝ : ℕ heq✝ : (i, j + 1) = (i✝, Nat.succ j✝) ⊢ f ∈ let prev := lindenbaumSequence t Δ (i✝, j✝); let l := (Denumerable.ofNat (Form × Form) j✝).fst; let r := (Denumerable.ofNat (Form × Form) j✝).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case h_1 _ heq | h_2 _ heq => injection heq; contradiction
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i✝ : ℕ heq : (i, j + 1) = (Nat.succ i✝, 0) ⊢ f ∈ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i✝, j) }
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case h_3 i' j' heq => injection heq with heq₁ heq₂ injection heq₂ with heq₂ have heq₃ : j = j' := heq₂ rw [←heq₁, ←heq₃] change let prev := lindenbaumSequence t Δ (i, j); let l := (Denumerable.ofNat (Form × Form) j).fst; let r := (Denumerable.ofNat (Form × Form) j).snd; f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev intros prev l r split case inl => split case inl | inr => apply Or.inl h₃ case inr => exact h₃
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq : (i, j + 1) = (i', Nat.succ j') ⊢ f ∈ let prev := lindenbaumSequence t Δ (i', j'); let l := (Denumerable.ofNat (Form × Form) j').fst; let r := (Denumerable.ofNat (Form × Form) j').snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
injection heq
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i✝ : ℕ heq : (i, j + 1) = (Nat.succ i✝, 0) ⊢ f ∈ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i✝, j) }
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i✝ : ℕ fst_eq✝ : i = Nat.succ i✝ snd_eq✝ : j + 1 = 0 ⊢ f ∈ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i✝, j) }
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
contradiction
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i✝ : ℕ fst_eq✝ : i = Nat.succ i✝ snd_eq✝ : j + 1 = 0 ⊢ f ∈ { f | ∃ j, f ∈ lindenbaumSequence t Δ (i✝, j) }
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
injection heq with heq₁ heq₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq : (i, j + 1) = (i', Nat.succ j') ⊢ f ∈ let prev := lindenbaumSequence t Δ (i', j'); let l := (Denumerable.ofNat (Form × Form) j').fst; let r := (Denumerable.ofNat (Form × Form) j').snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : j + 1 = Nat.succ j' ⊢ f ∈ let prev := lindenbaumSequence t Δ (i', j'); let l := (Denumerable.ofNat (Form × Form) j').fst; let r := (Denumerable.ofNat (Form × Form) j').snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
injection heq₂ with heq₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : j + 1 = Nat.succ j' ⊢ f ∈ let prev := lindenbaumSequence t Δ (i', j'); let l := (Denumerable.ofNat (Form × Form) j').fst; let r := (Denumerable.ofNat (Form × Form) j').snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' ⊢ f ∈ let prev := lindenbaumSequence t Δ (i', j'); let l := (Denumerable.ofNat (Form × Form) j').fst; let r := (Denumerable.ofNat (Form × Form) j').snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
have heq₃ : j = j' := heq₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' ⊢ f ∈ let prev := lindenbaumSequence t Δ (i', j'); let l := (Denumerable.ofNat (Form × Form) j').fst; let r := (Denumerable.ofNat (Form × Form) j').snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' ⊢ f ∈ let prev := lindenbaumSequence t Δ (i', j'); let l := (Denumerable.ofNat (Form × Form) j').fst; let r := (Denumerable.ofNat (Form × Form) j').snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
rw [←heq₁, ←heq₃]
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' ⊢ f ∈ let prev := lindenbaumSequence t Δ (i', j'); let l := (Denumerable.ofNat (Form × Form) j').fst; let r := (Denumerable.ofNat (Form × Form) j').snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' ⊢ f ∈ let prev := lindenbaumSequence t Δ (i, j); let l := (Denumerable.ofNat (Form × Form) j).fst; let r := (Denumerable.ofNat (Form × Form) j).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
change let prev := lindenbaumSequence t Δ (i, j); let l := (Denumerable.ofNat (Form × Form) j).fst; let r := (Denumerable.ofNat (Form × Form) j).snd; f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' ⊢ f ∈ let prev := lindenbaumSequence t Δ (i, j); let l := (Denumerable.ofNat (Form × Form) j).fst; let r := (Denumerable.ofNat (Form × Form) j).snd; if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' ⊢ let prev := lindenbaumSequence t Δ (i, j); let l := (Denumerable.ofNat (Form × Form) j).fst; let r := (Denumerable.ofNat (Form × Form) j).snd; f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
intros prev l r
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' ⊢ let prev := lindenbaumSequence t Δ (i, j); let l := (Denumerable.ofNat (Form × Form) j).fst; let r := (Denumerable.ofNat (Form × Form) j).snd; f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' prev : Ctx := lindenbaumSequence t Δ (i, j) l : Form := (Denumerable.ofNat (Form × Form) j).fst r : Form := (Denumerable.ofNat (Form × Form) j).snd ⊢ f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
split
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' prev : Ctx := lindenbaumSequence t Δ (i, j) l : Form := (Denumerable.ofNat (Form × Form) j).fst r : Form := (Denumerable.ofNat (Form × Form) j).snd ⊢ f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev
case inl t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' prev : Ctx := lindenbaumSequence t Δ (i, j) l : Form := (Denumerable.ofNat (Form × Form) j).fst r : Form := (Denumerable.ofNat (Form × Form) j).snd h✝ : l¦r ∈ ▲prev ⊢ f ∈ if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} case inr t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' prev : Ctx := lindenbaumSequence t Δ (i, j) l : Form := (Denumerable.ofNat (Form × Form) j).fst r : Form := (Denumerable.ofNat (Form × Form) j).snd h✝ : ¬l¦r ∈ ▲prev ⊢ f ∈ prev
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case inl => split case inl | inr => apply Or.inl h₃
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' prev : Ctx := lindenbaumSequence t Δ (i, j) l : Form := (Denumerable.ofNat (Form × Form) j).fst r : Form := (Denumerable.ofNat (Form × Form) j).snd h✝ : l¦r ∈ ▲prev ⊢ f ∈ if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r}
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case inr => exact h₃
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' prev : Ctx := lindenbaumSequence t Δ (i, j) l : Form := (Denumerable.ofNat (Form × Form) j).fst r : Form := (Denumerable.ofNat (Form × Form) j).snd h✝ : ¬l¦r ∈ ▲prev ⊢ f ∈ prev
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
split
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' prev : Ctx := lindenbaumSequence t Δ (i, j) l : Form := (Denumerable.ofNat (Form × Form) j).fst r : Form := (Denumerable.ofNat (Form × Form) j).snd h✝ : l¦r ∈ ▲prev ⊢ f ∈ if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r}
case inl t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' prev : Ctx := lindenbaumSequence t Δ (i, j) l : Form := (Denumerable.ofNat (Form × Form) j).fst r : Form := (Denumerable.ofNat (Form × Form) j).snd h✝¹ : l¦r ∈ ▲prev h✝ : ▲(prev ∪ {l}) ∩ Δ = ∅ ⊢ f ∈ prev ∪ {l} case inr t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' prev : Ctx := lindenbaumSequence t Δ (i, j) l : Form := (Denumerable.ofNat (Form × Form) j).fst r : Form := (Denumerable.ofNat (Form × Form) j).snd h✝¹ : l¦r ∈ ▲prev h✝ : ¬▲(prev ∪ {l}) ∩ Δ = ∅ ⊢ f ∈ prev ∪ {r}
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case inl | inr => apply Or.inl h₃
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' prev : Ctx := lindenbaumSequence t Δ (i, j) l : Form := (Denumerable.ofNat (Form × Form) j).fst r : Form := (Denumerable.ofNat (Form × Form) j).snd h✝¹ : l¦r ∈ ▲prev h✝ : ¬▲(prev ∪ {l}) ∩ Δ = ∅ ⊢ f ∈ prev ∪ {r}
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
apply Or.inl h₃
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' prev : Ctx := lindenbaumSequence t Δ (i, j) l : Form := (Denumerable.ofNat (Form × Form) j).fst r : Form := (Denumerable.ofNat (Form × Form) j).snd h✝¹ : l¦r ∈ ▲prev h✝ : ¬▲(prev ∪ {l}) ∩ Δ = ∅ ⊢ f ∈ prev ∪ {r}
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
exact h₃
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ f : Form h₃ : f ∈ lindenbaumSequence t Δ (i, j) x✝ : Lex (ℕ × ℕ) i' j' : ℕ heq₁ : i = i' heq₂ : Nat.add j 0 = j' heq₃ : j = j' prev : Ctx := lindenbaumSequence t Δ (i, j) l : Form := (Denumerable.ofNat (Form × Form) j).fst r : Form := (Denumerable.ofNat (Form × Form) j).snd h✝ : ¬l¦r ∈ ▲prev ⊢ f ∈ prev
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
have l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j := Or.inl h₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a₁ b₁ : ℕ h₂ : a₁ < i ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a₁ b₁ : ℕ h₂ : a₁ < i l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
have l₂ := (Prod.Lex.le_iff (a₁, b₁) (i,j)).mpr l₁
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a₁ b₁ : ℕ h₂ : a₁ < i l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a₁ b₁ : ℕ h₂ : a₁ < i l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j l₂ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, j) ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
have l₃ := @lindenbaumSequenceMonotone' t Δ (i,j) (a₁, b₁) l₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a₁ b₁ : ℕ h₂ : a₁ < i l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j l₂ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, j) ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a₁ b₁ : ℕ h₂ : a₁ < i l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j l₂ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, j) l₃ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j) ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
apply le_trans l₃
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a₁ b₁ : ℕ h₂ : a₁ < i l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j l₂ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, j) l₃ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j) ⊢ lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a₁ b₁ : ℕ h₂ : a₁ < i l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j l₂ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, j) l₃ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j) ⊢ lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
exact lem
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a₁ b₁ : ℕ h₂ : a₁ < i l₁ : a₁ < i ∨ a₁ = i ∧ b₁ ≤ j l₂ : ↑toLex (a₁, b₁) ≤ ↑toLex (i, j) l₃ : lindenbaumSequence t Δ (a₁, b₁) ⊆ lindenbaumSequence t Δ (i, j) ⊢ lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
cases h₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) b₁ : ℕ h₂ : b₁ ≤ j + 1 ⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
case refl t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) ⊢ lindenbaumSequence t Δ (i, j + 1) ⊆ lindenbaumSequence t Δ (i, j + 1) case step t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) b₁ : ℕ a✝ : Nat.le b₁ (Nat.add j 0) ⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case refl => intros _ h₁; assumption
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) ⊢ lindenbaumSequence t Δ (i, j + 1) ⊆ lindenbaumSequence t Δ (i, j + 1)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
case step h₂ => have l₁ : i < i ∨ i = i ∧ b₁ ≤ j := Or.inr ⟨rfl, h₂⟩ have l₂ := (Prod.Lex.le_iff (i, b₁) (i,j)).mpr l₁ have l₃ := @lindenbaumSequenceMonotone' t Δ (i,j) (i, b₁) l₂ apply le_trans l₃ exact lem
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) b₁ : ℕ h₂ : Nat.le b₁ (Nat.add j 0) ⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
intros _ h₁
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) ⊢ lindenbaumSequence t Δ (i, j + 1) ⊆ lindenbaumSequence t Δ (i, j + 1)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a✝ : Form h₁ : a✝ ∈ lindenbaumSequence t Δ (i, j + 1) ⊢ a✝ ∈ lindenbaumSequence t Δ (i, j + 1)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
assumption
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) a✝ : Form h₁ : a✝ ∈ lindenbaumSequence t Δ (i, j + 1) ⊢ a✝ ∈ lindenbaumSequence t Δ (i, j + 1)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
have l₁ : i < i ∨ i = i ∧ b₁ ≤ j := Or.inr ⟨rfl, h₂⟩
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) b₁ : ℕ h₂ : Nat.le b₁ (Nat.add j 0) ⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) b₁ : ℕ h₂ : Nat.le b₁ (Nat.add j 0) l₁ : i < i ∨ i = i ∧ b₁ ≤ j ⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
have l₂ := (Prod.Lex.le_iff (i, b₁) (i,j)).mpr l₁
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) b₁ : ℕ h₂ : Nat.le b₁ (Nat.add j 0) l₁ : i < i ∨ i = i ∧ b₁ ≤ j ⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) b₁ : ℕ h₂ : Nat.le b₁ (Nat.add j 0) l₁ : i < i ∨ i = i ∧ b₁ ≤ j l₂ : ↑toLex (i, b₁) ≤ ↑toLex (i, j) ⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
have l₃ := @lindenbaumSequenceMonotone' t Δ (i,j) (i, b₁) l₂
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) b₁ : ℕ h₂ : Nat.le b₁ (Nat.add j 0) l₁ : i < i ∨ i = i ∧ b₁ ≤ j l₂ : ↑toLex (i, b₁) ≤ ↑toLex (i, j) ⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) b₁ : ℕ h₂ : Nat.le b₁ (Nat.add j 0) l₁ : i < i ∨ i = i ∧ b₁ ≤ j l₂ : ↑toLex (i, b₁) ≤ ↑toLex (i, j) l₃ : lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j) ⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
apply le_trans l₃
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) b₁ : ℕ h₂ : Nat.le b₁ (Nat.add j 0) l₁ : i < i ∨ i = i ∧ b₁ ≤ j l₂ : ↑toLex (i, b₁) ≤ ↑toLex (i, j) l₃ : lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j) ⊢ lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j + 1)
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) b₁ : ℕ h₂ : Nat.le b₁ (Nat.add j 0) l₁ : i < i ∨ i = i ∧ b₁ ≤ j l₂ : ↑toLex (i, b₁) ≤ ↑toLex (i, j) l₃ : lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j) ⊢ lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone'
[21, 1]
[88, 69]
exact lem
t : Th Δ : Ctx b : Lex (ℕ × ℕ) i j : ℕ lem : lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1) b₁ : ℕ h₂ : Nat.le b₁ (Nat.add j 0) l₁ : i < i ∨ i = i ∧ b₁ ≤ j l₂ : ↑toLex (i, b₁) ≤ ↑toLex (i, j) l₃ : lindenbaumSequence t Δ (i, b₁) ⊆ lindenbaumSequence t Δ (i, j) ⊢ lindenbaumSequence t Δ (i, j) ≤ lindenbaumSequence t Δ (i, j + 1)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone
[90, 1]
[92, 40]
intros a b
t : Th Δ : Ctx ⊢ Monotone (lindenbaumSequence t Δ)
t : Th Δ : Ctx a b : Lex (ℕ × ℕ) ⊢ a ≤ b → lindenbaumSequence t Δ a ≤ lindenbaumSequence t Δ b
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumSequenceMonotone
[90, 1]
[92, 40]
exact lindenbaumSequenceMonotone' b a
t : Th Δ : Ctx a b : Lex (ℕ × ℕ) ⊢ a ≤ b → lindenbaumSequence t Δ a ≤ lindenbaumSequence t Δ b
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumStageMonotone
[96, 1]
[100, 51]
intros a b h₁
t : Th Δ : Ctx i : ℕ ⊢ Monotone fun j => lindenbaumSequence t Δ (i, j)
t : Th Δ : Ctx i a b : ℕ h₁ : a ≤ b ⊢ (fun j => lindenbaumSequence t Δ (i, j)) a ≤ (fun j => lindenbaumSequence t Δ (i, j)) b
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumStageMonotone
[96, 1]
[100, 51]
change lindenbaumSequence t Δ (i, a) ≤ lindenbaumSequence t Δ (i, b)
t : Th Δ : Ctx i a b : ℕ h₁ : a ≤ b ⊢ (fun j => lindenbaumSequence t Δ (i, j)) a ≤ (fun j => lindenbaumSequence t Δ (i, j)) b
t : Th Δ : Ctx i a b : ℕ h₁ : a ≤ b ⊢ lindenbaumSequence t Δ (i, a) ≤ lindenbaumSequence t Δ (i, b)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumStageMonotone
[96, 1]
[100, 51]
have l₂ := (Prod.Lex.le_iff (i, a) (i,b)).mpr $ Or.inr ⟨rfl,h₁⟩
t : Th Δ : Ctx i a b : ℕ h₁ : a ≤ b ⊢ lindenbaumSequence t Δ (i, a) ≤ lindenbaumSequence t Δ (i, b)
t : Th Δ : Ctx i a b : ℕ h₁ : a ≤ b l₂ : ↑toLex (i, a) ≤ ↑toLex (i, b) ⊢ lindenbaumSequence t Δ (i, a) ≤ lindenbaumSequence t Δ (i, b)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumStageMonotone
[96, 1]
[100, 51]
exact lindenbaumSequenceMonotone' (i,b) (i,a) l₂
t : Th Δ : Ctx i a b : ℕ h₁ : a ≤ b l₂ : ↑toLex (i, a) ≤ ↑toLex (i, b) ⊢ lindenbaumSequence t Δ (i, a) ≤ lindenbaumSequence t Δ (i, b)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumExtensionExtends
[102, 1]
[105, 13]
intros f h₁
t : Th Δ : Ctx ⊢ ↑t ⊆ lindenbaumExtension t Δ
t : Th Δ : Ctx f : Form h₁ : f ∈ ↑t ⊢ f ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumExtensionExtends
[102, 1]
[105, 13]
refine ⟨⟨0,0⟩,?_⟩
t : Th Δ : Ctx f : Form h₁ : f ∈ ↑t ⊢ f ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f : Form h₁ : f ∈ ↑t ⊢ f ∈ lindenbaumSequence t Δ (0, 0)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumExtensionExtends
[102, 1]
[105, 13]
assumption
t : Th Δ : Ctx f : Form h₁ : f ∈ ↑t ⊢ f ∈ lindenbaumSequence t Δ (0, 0)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
intros f
t : Th Δ : Ctx ⊢ formalTheory (lindenbaumExtension t Δ)
t : Th Δ : Ctx f : Form ⊢ f ∈ lindenbaumExtension t Δ ↔ lindenbaumExtension t Δ⊢f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
apply Iff.intro
t : Th Δ : Ctx f : Form ⊢ f ∈ lindenbaumExtension t Δ ↔ lindenbaumExtension t Δ⊢f
case mp t : Th Δ : Ctx f : Form ⊢ f ∈ lindenbaumExtension t Δ → lindenbaumExtension t Δ⊢f case mpr t : Th Δ : Ctx f : Form ⊢ lindenbaumExtension t Δ⊢f → f ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
case mp => intro h₁ exact ⟨BProof.ax h₁⟩
t : Th Δ : Ctx f : Form ⊢ f ∈ lindenbaumExtension t Δ → lindenbaumExtension t Δ⊢f
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
case mpr => intro h₁ have ⟨prf₁⟩ := h₁ have ⟨s, l₁, fprf⟩ := BProof.compactness prf₁ have ⟨⟨i,j⟩,l₂⟩ := finiteExhaustion lindenbaumSequenceMonotone l₁ have l₃ : lindenbaumSequence t Δ ⟨i,j⟩ ⊆ lindenbaumSequence t Δ ⟨i + 1,Encodable.encode (f,f)⟩ := by apply lindenbaumSequenceMonotone apply (Prod.Lex.le_iff (i,j) (i + 1,Encodable.encode (f,f))).mpr $ Or.inl $ Nat.lt_succ_self i have prf₂ := BProof.monotone (le_trans l₂ l₃) fprf have prf₃ : BProof (lindenbaumSequence t Δ ⟨i+1,Encodable.encode (f,f)⟩) (f ¦ f) := BProof.mp prf₂ BTheorem.orI₁ clear s h₁ l₁ l₂ l₃ fprf prf₁ prf₂ have l₄ : f ∈ lindenbaumSequence t Δ ⟨i + 1, Encodable.encode (f,f) + 1⟩ := by unfold lindenbaumSequence change let prev := lindenbaumSequence t Δ (i + 1, Encodable.encode (f,f)); let l := (Denumerable.ofNat (Form × Form) (Encodable.encode (f,f))).fst; let r := (Denumerable.ofNat (Form × Form) (Encodable.encode (f,f))).snd; f ∈ if l¦r ∈ ▲prev then if ▲(prev ∪ {l}) ∩ Δ = ∅ then prev ∪ {l} else prev ∪ {r} else prev intros prev l r have l₅ : l = f := by change (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).fst = f rw [Denumerable.ofNat_encode (f,f)] have l₆ : r = f := by change (Denumerable.ofNat (Form × Form) (Encodable.encode (f, f))).snd = f rw [Denumerable.ofNat_encode (f,f)] split case inl h₂ => split . rw [l₅]; exact Or.inr rfl . rw [l₆]; exact Or.inr rfl case inr h₂ => apply False.elim have l₇ : f¦f ∈ ▲prev := ⟨prf₃⟩ rw [l₅,l₆] at h₂ exact h₂ l₇ exact ⟨⟨i + 1, Encodable.encode (f,f) + 1⟩, l₄⟩
t : Th Δ : Ctx f : Form ⊢ lindenbaumExtension t Δ⊢f → f ∈ lindenbaumExtension t Δ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
intro h₁
t : Th Δ : Ctx f : Form ⊢ f ∈ lindenbaumExtension t Δ → lindenbaumExtension t Δ⊢f
t : Th Δ : Ctx f : Form h₁ : f ∈ lindenbaumExtension t Δ ⊢ lindenbaumExtension t Δ⊢f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
exact ⟨BProof.ax h₁⟩
t : Th Δ : Ctx f : Form h₁ : f ∈ lindenbaumExtension t Δ ⊢ lindenbaumExtension t Δ⊢f
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
intro h₁
t : Th Δ : Ctx f : Form ⊢ lindenbaumExtension t Δ⊢f → f ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f ⊢ f ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
have ⟨prf₁⟩ := h₁
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f ⊢ f ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f ⊢ f ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
have ⟨s, l₁, fprf⟩ := BProof.compactness prf₁
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f ⊢ f ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f s : Finset Form l₁ : ↑s ⊆ lindenbaumExtension t Δ fprf : BProof (↑s) f ⊢ f ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
have ⟨⟨i,j⟩,l₂⟩ := finiteExhaustion lindenbaumSequenceMonotone l₁
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f s : Finset Form l₁ : ↑s ⊆ lindenbaumExtension t Δ fprf : BProof (↑s) f ⊢ f ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f s : Finset Form l₁ : ↑s ⊆ lindenbaumExtension t Δ fprf : BProof (↑s) f i j : ℕ l₂ : ↑s ⊆ lindenbaumSequence t Δ (i, j) ⊢ f ∈ lindenbaumExtension t Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumIsFormal
[107, 1]
[148, 52]
have l₃ : lindenbaumSequence t Δ ⟨i,j⟩ ⊆ lindenbaumSequence t Δ ⟨i + 1,Encodable.encode (f,f)⟩ := by apply lindenbaumSequenceMonotone apply (Prod.Lex.le_iff (i,j) (i + 1,Encodable.encode (f,f))).mpr $ Or.inl $ Nat.lt_succ_self i
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f s : Finset Form l₁ : ↑s ⊆ lindenbaumExtension t Δ fprf : BProof (↑s) f i j : ℕ l₂ : ↑s ⊆ lindenbaumSequence t Δ (i, j) ⊢ f ∈ lindenbaumExtension t Δ
t : Th Δ : Ctx f : Form h₁ : lindenbaumExtension t Δ⊢f prf₁ : BProof (lindenbaumExtension t Δ) f s : Finset Form l₁ : ↑s ⊆ lindenbaumExtension t Δ fprf : BProof (↑s) f i j : ℕ l₂ : ↑s ⊆ lindenbaumSequence t Δ (i, j) l₃ : lindenbaumSequence t Δ (i, j) ⊆ lindenbaumSequence t Δ (i + 1, Encodable.encode (f, f)) ⊢ f ∈ lindenbaumExtension t Δ