url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | formalStarFormal | [173, 1] | [196, 39] | case inr right => exact l₂ right | Γ : Ctx
h₁ : formalTheory Γ
h₂ : isPrimeTheory Γ
F P Q : Form
prf₁ : BProof (FormalDual Γ) P
prf₂ : BProof (FormalDual Γ) Q
ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ
ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ
h₃ : FormalDual Γ⊢P&Q
h₄ : ~(P&Q) ∈ Γ
l₁ : P ∈ fun f => ¬~f ∈ Γ
l₂ : Q ∈ fun f => ¬~f ∈ Γ
prf₃ : BProof Γ (~P¦~Q)
right : ~Q ∈ Γ
⊢ False | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | formalStarFormal | [173, 1] | [196, 39] | exact l₁ left | Γ : Ctx
h₁ : formalTheory Γ
h₂ : isPrimeTheory Γ
F P Q : Form
prf₁ : BProof (FormalDual Γ) P
prf₂ : BProof (FormalDual Γ) Q
ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ
ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ
h₃ : FormalDual Γ⊢P&Q
h₄ : ~(P&Q) ∈ Γ
l₁ : P ∈ fun f => ¬~f ∈ Γ
l₂ : Q ∈ fun f => ¬~f ∈ Γ
prf₃ : BProof Γ (~P¦~Q)
left : ~P ∈ Γ
⊢ False | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | formalStarFormal | [173, 1] | [196, 39] | exact l₂ right | Γ : Ctx
h₁ : formalTheory Γ
h₂ : isPrimeTheory Γ
F P Q : Form
prf₁ : BProof (FormalDual Γ) P
prf₂ : BProof (FormalDual Γ) Q
ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ
ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ
h₃ : FormalDual Γ⊢P&Q
h₄ : ~(P&Q) ∈ Γ
l₁ : P ∈ fun f => ¬~f ∈ Γ
l₂ : Q ∈ fun f => ¬~f ∈ Γ
prf₃ : BProof Γ (~P¦~Q)
right : ~Q ∈ Γ
⊢ False | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starInvolution | [220, 1] | [233, 16] | intros Γ | ⊢ Function.Involutive primeStarFunction | Γ : Pr
⊢ primeStarFunction (primeStarFunction Γ) = Γ |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starInvolution | [220, 1] | [233, 16] | ext f | Γ : Pr
⊢ primeStarFunction (primeStarFunction Γ) = Γ | case a.a.h
Γ : Pr
f : Form
⊢ f ∈ ↑↑(primeStarFunction (primeStarFunction Γ)) ↔ f ∈ ↑↑Γ |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starInvolution | [220, 1] | [233, 16] | apply Iff.intro | case a.a.h
Γ : Pr
f : Form
⊢ f ∈ ↑↑(primeStarFunction (primeStarFunction Γ)) ↔ f ∈ ↑↑Γ | case a.a.h.mp
Γ : Pr
f : Form
⊢ f ∈ ↑↑(primeStarFunction (primeStarFunction Γ)) → f ∈ ↑↑Γ
case a.a.h.mpr
Γ : Pr
f : Form
⊢ f ∈ ↑↑Γ → f ∈ ↑↑(primeStarFunction (primeStarFunction Γ)) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starInvolution | [220, 1] | [233, 16] | all_goals intros h₁ | case a.a.h.mp
Γ : Pr
f : Form
⊢ f ∈ ↑↑(primeStarFunction (primeStarFunction Γ)) → f ∈ ↑↑Γ
case a.a.h.mpr
Γ : Pr
f : Form
⊢ f ∈ ↑↑Γ → f ∈ ↑↑(primeStarFunction (primeStarFunction Γ)) | case a.a.h.mp
Γ : Pr
f : Form
h₁ : f ∈ ↑↑(primeStarFunction (primeStarFunction Γ))
⊢ f ∈ ↑↑Γ
case a.a.h.mpr
Γ : Pr
f : Form
h₁ : f ∈ ↑↑Γ
⊢ f ∈ ↑↑(primeStarFunction (primeStarFunction Γ)) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starInvolution | [220, 1] | [233, 16] | case a.a.h.mpr =>
intros h₂
have l₁ : ~~f ∈ Γ := Γ.val.property.mpr ⟨BProof.mp (BProof.ax h₁) BTheorem.dni⟩
exact h₂ l₁ | Γ : Pr
f : Form
h₁ : f ∈ ↑↑Γ
⊢ f ∈ ↑↑(primeStarFunction (primeStarFunction Γ)) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starInvolution | [220, 1] | [233, 16] | case a.a.h.mp =>
apply byContradiction
intros h₂
have l₂ : ¬(~~f ∈ Γ) := h₂ ∘ λel => Γ.val.property.mpr ⟨BProof.mp (BProof.ax el) BTheorem.dne⟩
exact h₁ l₂ | Γ : Pr
f : Form
h₁ : f ∈ ↑↑(primeStarFunction (primeStarFunction Γ))
⊢ f ∈ ↑↑Γ | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starInvolution | [220, 1] | [233, 16] | intros h₁ | case a.a.h.mpr
Γ : Pr
f : Form
⊢ f ∈ ↑↑Γ → f ∈ ↑↑(primeStarFunction (primeStarFunction Γ)) | case a.a.h.mpr
Γ : Pr
f : Form
h₁ : f ∈ ↑↑Γ
⊢ f ∈ ↑↑(primeStarFunction (primeStarFunction Γ)) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starInvolution | [220, 1] | [233, 16] | intros h₂ | Γ : Pr
f : Form
h₁ : f ∈ ↑↑Γ
⊢ f ∈ ↑↑(primeStarFunction (primeStarFunction Γ)) | Γ : Pr
f : Form
h₁ : f ∈ ↑↑Γ
h₂ : ~f ∈ ↑↑(primeStarFunction Γ)
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starInvolution | [220, 1] | [233, 16] | have l₁ : ~~f ∈ Γ := Γ.val.property.mpr ⟨BProof.mp (BProof.ax h₁) BTheorem.dni⟩ | Γ : Pr
f : Form
h₁ : f ∈ ↑↑Γ
h₂ : ~f ∈ ↑↑(primeStarFunction Γ)
⊢ False | Γ : Pr
f : Form
h₁ : f ∈ ↑↑Γ
h₂ : ~f ∈ ↑↑(primeStarFunction Γ)
l₁ : ~~f ∈ Γ
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starInvolution | [220, 1] | [233, 16] | exact h₂ l₁ | Γ : Pr
f : Form
h₁ : f ∈ ↑↑Γ
h₂ : ~f ∈ ↑↑(primeStarFunction Γ)
l₁ : ~~f ∈ Γ
⊢ False | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starInvolution | [220, 1] | [233, 16] | apply byContradiction | Γ : Pr
f : Form
h₁ : f ∈ ↑↑(primeStarFunction (primeStarFunction Γ))
⊢ f ∈ ↑↑Γ | case h
Γ : Pr
f : Form
h₁ : f ∈ ↑↑(primeStarFunction (primeStarFunction Γ))
⊢ ¬f ∈ ↑↑Γ → False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starInvolution | [220, 1] | [233, 16] | intros h₂ | case h
Γ : Pr
f : Form
h₁ : f ∈ ↑↑(primeStarFunction (primeStarFunction Γ))
⊢ ¬f ∈ ↑↑Γ → False | case h
Γ : Pr
f : Form
h₁ : f ∈ ↑↑(primeStarFunction (primeStarFunction Γ))
h₂ : ¬f ∈ ↑↑Γ
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starInvolution | [220, 1] | [233, 16] | have l₂ : ¬(~~f ∈ Γ) := h₂ ∘ λel => Γ.val.property.mpr ⟨BProof.mp (BProof.ax el) BTheorem.dne⟩ | case h
Γ : Pr
f : Form
h₁ : f ∈ ↑↑(primeStarFunction (primeStarFunction Γ))
h₂ : ¬f ∈ ↑↑Γ
⊢ False | case h
Γ : Pr
f : Form
h₁ : f ∈ ↑↑(primeStarFunction (primeStarFunction Γ))
h₂ : ¬f ∈ ↑↑Γ
l₂ : ¬~~f ∈ Γ
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starInvolution | [220, 1] | [233, 16] | exact h₁ l₂ | case h
Γ : Pr
f : Form
h₁ : f ∈ ↑↑(primeStarFunction (primeStarFunction Γ))
h₂ : ¬f ∈ ↑↑Γ
l₂ : ¬~~f ∈ Γ
⊢ False | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starAntitone | [235, 1] | [237, 19] | intros _ _ h₁ f h₂ h₃ | ⊢ Antitone primeStarFunction | a✝ b✝ : Pr
h₁ : a✝ ≤ b✝
f : Form
h₂ : f ∈ (fun a => ↑a) ((fun a => ↑a) (primeStarFunction b✝))
h₃ : ~f ∈ ↑↑a✝
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/Theories.lean | starAntitone | [235, 1] | [237, 19] | exact h₂ (h₁ h₃) | a✝ b✝ : Pr
h₁ : a✝ ≤ b✝
f : Form
h₂ : f ∈ (fun a => ↑a) ((fun a => ↑a) (primeStarFunction b✝))
h₃ : ~f ∈ ↑↑a✝
⊢ False | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | intros t | ⊢ ∀ (t : Th), ↑t = ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } | t : Th
⊢ ↑t = ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | ext x | t : Th
⊢ ↑t = ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } | case h
t : Th
x : Form
⊢ x ∈ ↑t ↔ x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | apply Iff.intro | case h
t : Th
x : Form
⊢ x ∈ ↑t ↔ x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } | case h.mp
t : Th
x : Form
⊢ x ∈ ↑t → x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
case h.mpr
t : Th
x : Form
⊢ x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } → x ∈ ↑t |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | case h.mp =>
intros h₁
apply Set.mem_interₛ.mpr
intros r h₂
exact h₂.right.left h₁ | t : Th
x : Form
⊢ x ∈ ↑t → x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | case h.mpr =>
intros h₁
apply byContradiction
intros h₂
have l₁ : ∀ g : Form, g ∈ generatedDisjunctions x → {g} ⊢ x := by
intros g h₃
induction g
case or f g ih₁ ih₂ =>
cases h₃
case inl h₄ => rw [h₄]; exact ⟨BProof.ax rfl⟩
case inr h₄ =>
have ⟨prf₁⟩ := ih₁ h₄.left
have ⟨prf₂⟩ := ih₂ h₄.right
have thm₁ := BTheorem.mp (BTheorem.adj prf₁.toTheorem prf₂.toTheorem) BTheorem.orE
exact ⟨thm₁.toProof ⟩
all_goals
cases h₃; exact ⟨BProof.ax rfl⟩
have l₂ : ↑t ∩ generatedDisjunctions x = ∅ := by
apply Set.eq_empty_iff_forall_not_mem.mpr
intros y h₃
have ⟨prf₁⟩ := l₁ y h₃.right
exact h₂ (t.property.mpr ⟨BProof.monotone (Set.singleton_subset_iff.mpr h₃.left) prf₁⟩)
have l₃ : isDisjunctionClosed (generatedDisjunctions x) := by
intros f g h₃
exact Or.inr h₃
have l₄ : x ∈ generatedDisjunctions x := by
cases x
case or f g => exact Or.inl rfl
all_goals
exact rfl
have l₅ := lindenbaumTheorem l₂ l₃
have l₆ := (Set.mem_interₛ.mp h₁)
(lindenbaumExtension t (generatedDisjunctions x))
⟨lindenbaumIsPrime, lindenbaumExtensionExtends, lindenbaumIsFormal⟩
exact Set.eq_empty_iff_forall_not_mem.mp l₅ x ⟨l₆,l₄⟩ | t : Th
x : Form
⊢ x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } → x ∈ ↑t | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | intros h₁ | t : Th
x : Form
⊢ x ∈ ↑t → x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } | t : Th
x : Form
h₁ : x ∈ ↑t
⊢ x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | apply Set.mem_interₛ.mpr | t : Th
x : Form
h₁ : x ∈ ↑t
⊢ x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } | t : Th
x : Form
h₁ : x ∈ ↑t
⊢ ∀ (t_1 : Set Form), t_1 ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } → x ∈ t_1 |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | intros r h₂ | t : Th
x : Form
h₁ : x ∈ ↑t
⊢ ∀ (t_1 : Set Form), t_1 ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } → x ∈ t_1 | t : Th
x : Form
h₁ : x ∈ ↑t
r : Set Form
h₂ : r ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
⊢ x ∈ r |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | exact h₂.right.left h₁ | t : Th
x : Form
h₁ : x ∈ ↑t
r : Set Form
h₂ : r ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
⊢ x ∈ r | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | intros h₁ | t : Th
x : Form
⊢ x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } → x ∈ ↑t | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
⊢ x ∈ ↑t |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | apply byContradiction | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
⊢ x ∈ ↑t | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
⊢ ¬x ∈ ↑t → False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | intros h₂ | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
⊢ ¬x ∈ ↑t → False | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | have l₁ : ∀ g : Form, g ∈ generatedDisjunctions x → {g} ⊢ x := by
intros g h₃
induction g
case or f g ih₁ ih₂ =>
cases h₃
case inl h₄ => rw [h₄]; exact ⟨BProof.ax rfl⟩
case inr h₄ =>
have ⟨prf₁⟩ := ih₁ h₄.left
have ⟨prf₂⟩ := ih₂ h₄.right
have thm₁ := BTheorem.mp (BTheorem.adj prf₁.toTheorem prf₂.toTheorem) BTheorem.orE
exact ⟨thm₁.toProof ⟩
all_goals
cases h₃; exact ⟨BProof.ax rfl⟩ | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
⊢ False | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | have l₂ : ↑t ∩ generatedDisjunctions x = ∅ := by
apply Set.eq_empty_iff_forall_not_mem.mpr
intros y h₃
have ⟨prf₁⟩ := l₁ y h₃.right
exact h₂ (t.property.mpr ⟨BProof.monotone (Set.singleton_subset_iff.mpr h₃.left) prf₁⟩) | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
⊢ False | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
l₂ : ↑t ∩ generatedDisjunctions x = ∅
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | have l₃ : isDisjunctionClosed (generatedDisjunctions x) := by
intros f g h₃
exact Or.inr h₃ | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
l₂ : ↑t ∩ generatedDisjunctions x = ∅
⊢ False | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
l₂ : ↑t ∩ generatedDisjunctions x = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions x)
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | have l₄ : x ∈ generatedDisjunctions x := by
cases x
case or f g => exact Or.inl rfl
all_goals
exact rfl | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
l₂ : ↑t ∩ generatedDisjunctions x = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions x)
⊢ False | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
l₂ : ↑t ∩ generatedDisjunctions x = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions x)
l₄ : x ∈ generatedDisjunctions x
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | have l₅ := lindenbaumTheorem l₂ l₃ | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
l₂ : ↑t ∩ generatedDisjunctions x = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions x)
l₄ : x ∈ generatedDisjunctions x
⊢ False | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
l₂ : ↑t ∩ generatedDisjunctions x = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions x)
l₄ : x ∈ generatedDisjunctions x
l₅ : lindenbaumExtension t (generatedDisjunctions x) ∩ generatedDisjunctions x = ∅
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | have l₆ := (Set.mem_interₛ.mp h₁)
(lindenbaumExtension t (generatedDisjunctions x))
⟨lindenbaumIsPrime, lindenbaumExtensionExtends, lindenbaumIsFormal⟩ | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
l₂ : ↑t ∩ generatedDisjunctions x = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions x)
l₄ : x ∈ generatedDisjunctions x
l₅ : lindenbaumExtension t (generatedDisjunctions x) ∩ generatedDisjunctions x = ∅
⊢ False | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
l₂ : ↑t ∩ generatedDisjunctions x = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions x)
l₄ : x ∈ generatedDisjunctions x
l₅ : lindenbaumExtension t (generatedDisjunctions x) ∩ generatedDisjunctions x = ∅
l₆ : x ∈ lindenbaumExtension t (generatedDisjunctions x)
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | exact Set.eq_empty_iff_forall_not_mem.mp l₅ x ⟨l₆,l₄⟩ | case h
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
l₂ : ↑t ∩ generatedDisjunctions x = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions x)
l₄ : x ∈ generatedDisjunctions x
l₅ : lindenbaumExtension t (generatedDisjunctions x) ∩ generatedDisjunctions x = ∅
l₆ : x ∈ lindenbaumExtension t (generatedDisjunctions x)
⊢ False | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | intros g h₃ | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
⊢ ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
g : Form
h₃ : g ∈ generatedDisjunctions x
⊢ {g}⊢x |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | induction g | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
g : Form
h₃ : g ∈ generatedDisjunctions x
⊢ {g}⊢x | case atom
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
a✝ : ℕ
h₃ : #a✝ ∈ generatedDisjunctions x
⊢ {#a✝}⊢x
case neg
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
a✝ : Form
a_ih✝ : a✝ ∈ generatedDisjunctions x → {a✝}⊢x
h₃ : ~a✝ ∈ generatedDisjunctions x
⊢ {~a✝}⊢x
case and
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
a✝¹ a✝ : Form
a_ih✝¹ : a✝¹ ∈ generatedDisjunctions x → {a✝¹}⊢x
a_ih✝ : a✝ ∈ generatedDisjunctions x → {a✝}⊢x
h₃ : a✝¹&a✝ ∈ generatedDisjunctions x
⊢ {a✝¹&a✝}⊢x
case or
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
a✝¹ a✝ : Form
a_ih✝¹ : a✝¹ ∈ generatedDisjunctions x → {a✝¹}⊢x
a_ih✝ : a✝ ∈ generatedDisjunctions x → {a✝}⊢x
h₃ : a✝¹¦a✝ ∈ generatedDisjunctions x
⊢ {a✝¹¦a✝}⊢x
case impl
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
a✝¹ a✝ : Form
a_ih✝¹ : a✝¹ ∈ generatedDisjunctions x → {a✝¹}⊢x
a_ih✝ : a✝ ∈ generatedDisjunctions x → {a✝}⊢x
h₃ : a✝¹⊃a✝ ∈ generatedDisjunctions x
⊢ {a✝¹⊃a✝}⊢x |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | case or f g ih₁ ih₂ =>
cases h₃
case inl h₄ => rw [h₄]; exact ⟨BProof.ax rfl⟩
case inr h₄ =>
have ⟨prf₁⟩ := ih₁ h₄.left
have ⟨prf₂⟩ := ih₂ h₄.right
have thm₁ := BTheorem.mp (BTheorem.adj prf₁.toTheorem prf₂.toTheorem) BTheorem.orE
exact ⟨thm₁.toProof ⟩ | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h₃ : f¦g ∈ generatedDisjunctions x
⊢ {f¦g}⊢x | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | all_goals
cases h₃; exact ⟨BProof.ax rfl⟩ | case atom
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
a✝ : ℕ
h₃ : #a✝ ∈ generatedDisjunctions x
⊢ {#a✝}⊢x
case neg
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
a✝ : Form
a_ih✝ : a✝ ∈ generatedDisjunctions x → {a✝}⊢x
h₃ : ~a✝ ∈ generatedDisjunctions x
⊢ {~a✝}⊢x
case and
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
a✝¹ a✝ : Form
a_ih✝¹ : a✝¹ ∈ generatedDisjunctions x → {a✝¹}⊢x
a_ih✝ : a✝ ∈ generatedDisjunctions x → {a✝}⊢x
h₃ : a✝¹&a✝ ∈ generatedDisjunctions x
⊢ {a✝¹&a✝}⊢x
case impl
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
a✝¹ a✝ : Form
a_ih✝¹ : a✝¹ ∈ generatedDisjunctions x → {a✝¹}⊢x
a_ih✝ : a✝ ∈ generatedDisjunctions x → {a✝}⊢x
h₃ : a✝¹⊃a✝ ∈ generatedDisjunctions x
⊢ {a✝¹⊃a✝}⊢x | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | cases h₃ | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h₃ : f¦g ∈ generatedDisjunctions x
⊢ {f¦g}⊢x | case inl
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h✝ : x = f¦g
⊢ {f¦g}⊢x
case inr
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h✝ : generatedDisjunctions x f ∧ generatedDisjunctions x g
⊢ {f¦g}⊢x |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | case inl h₄ => rw [h₄]; exact ⟨BProof.ax rfl⟩ | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h₄ : x = f¦g
⊢ {f¦g}⊢x | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | case inr h₄ =>
have ⟨prf₁⟩ := ih₁ h₄.left
have ⟨prf₂⟩ := ih₂ h₄.right
have thm₁ := BTheorem.mp (BTheorem.adj prf₁.toTheorem prf₂.toTheorem) BTheorem.orE
exact ⟨thm₁.toProof ⟩ | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h₄ : generatedDisjunctions x f ∧ generatedDisjunctions x g
⊢ {f¦g}⊢x | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | rw [h₄] | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h₄ : x = f¦g
⊢ {f¦g}⊢x | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h₄ : x = f¦g
⊢ {f¦g}⊢f¦g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | exact ⟨BProof.ax rfl⟩ | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h₄ : x = f¦g
⊢ {f¦g}⊢f¦g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | have ⟨prf₁⟩ := ih₁ h₄.left | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h₄ : generatedDisjunctions x f ∧ generatedDisjunctions x g
⊢ {f¦g}⊢x | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h₄ : generatedDisjunctions x f ∧ generatedDisjunctions x g
prf₁ : BProof {f} x
⊢ {f¦g}⊢x |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | have ⟨prf₂⟩ := ih₂ h₄.right | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h₄ : generatedDisjunctions x f ∧ generatedDisjunctions x g
prf₁ : BProof {f} x
⊢ {f¦g}⊢x | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h₄ : generatedDisjunctions x f ∧ generatedDisjunctions x g
prf₁ : BProof {f} x
prf₂ : BProof {g} x
⊢ {f¦g}⊢x |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | have thm₁ := BTheorem.mp (BTheorem.adj prf₁.toTheorem prf₂.toTheorem) BTheorem.orE | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h₄ : generatedDisjunctions x f ∧ generatedDisjunctions x g
prf₁ : BProof {f} x
prf₂ : BProof {g} x
⊢ {f¦g}⊢x | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h₄ : generatedDisjunctions x f ∧ generatedDisjunctions x g
prf₁ : BProof {f} x
prf₂ : BProof {g} x
thm₁ : BTheorem (f¦g⊃x)
⊢ {f¦g}⊢x |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | exact ⟨thm₁.toProof ⟩ | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
f g : Form
ih₁ : f ∈ generatedDisjunctions x → {f}⊢x
ih₂ : g ∈ generatedDisjunctions x → {g}⊢x
h₄ : generatedDisjunctions x f ∧ generatedDisjunctions x g
prf₁ : BProof {f} x
prf₂ : BProof {g} x
thm₁ : BTheorem (f¦g⊃x)
⊢ {f¦g}⊢x | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | cases h₃ | case impl
t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
a✝¹ a✝ : Form
a_ih✝¹ : a✝¹ ∈ generatedDisjunctions x → {a✝¹}⊢x
a_ih✝ : a✝ ∈ generatedDisjunctions x → {a✝}⊢x
h₃ : a✝¹⊃a✝ ∈ generatedDisjunctions x
⊢ {a✝¹⊃a✝}⊢x | case impl.refl
t : Th
a✝¹ a✝ : Form
h₁ : a✝¹⊃a✝ ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬a✝¹⊃a✝ ∈ ↑t
a_ih✝¹ : a✝¹ ∈ generatedDisjunctions (a✝¹⊃a✝) → {a✝¹}⊢a✝¹⊃a✝
a_ih✝ : a✝ ∈ generatedDisjunctions (a✝¹⊃a✝) → {a✝}⊢a✝¹⊃a✝
⊢ {a✝¹⊃a✝}⊢a✝¹⊃a✝ |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | exact ⟨BProof.ax rfl⟩ | case impl.refl
t : Th
a✝¹ a✝ : Form
h₁ : a✝¹⊃a✝ ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬a✝¹⊃a✝ ∈ ↑t
a_ih✝¹ : a✝¹ ∈ generatedDisjunctions (a✝¹⊃a✝) → {a✝¹}⊢a✝¹⊃a✝
a_ih✝ : a✝ ∈ generatedDisjunctions (a✝¹⊃a✝) → {a✝}⊢a✝¹⊃a✝
⊢ {a✝¹⊃a✝}⊢a✝¹⊃a✝ | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | apply Set.eq_empty_iff_forall_not_mem.mpr | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
⊢ ↑t ∩ generatedDisjunctions x = ∅ | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
⊢ ∀ (x_1 : Form), ¬x_1 ∈ ↑t ∩ generatedDisjunctions x |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | intros y h₃ | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
⊢ ∀ (x_1 : Form), ¬x_1 ∈ ↑t ∩ generatedDisjunctions x | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
y : Form
h₃ : y ∈ ↑t ∩ generatedDisjunctions x
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | have ⟨prf₁⟩ := l₁ y h₃.right | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
y : Form
h₃ : y ∈ ↑t ∩ generatedDisjunctions x
⊢ False | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
y : Form
h₃ : y ∈ ↑t ∩ generatedDisjunctions x
prf₁ : BProof {y} x
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | exact h₂ (t.property.mpr ⟨BProof.monotone (Set.singleton_subset_iff.mpr h₃.left) prf₁⟩) | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
y : Form
h₃ : y ∈ ↑t ∩ generatedDisjunctions x
prf₁ : BProof {y} x
⊢ False | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | intros f g h₃ | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
l₂ : ↑t ∩ generatedDisjunctions x = ∅
⊢ isDisjunctionClosed (generatedDisjunctions x) | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
l₂ : ↑t ∩ generatedDisjunctions x = ∅
f g : Form
h₃ : f ∈ generatedDisjunctions x ∧ g ∈ generatedDisjunctions x
⊢ f¦g ∈ generatedDisjunctions x |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | exact Or.inr h₃ | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
l₂ : ↑t ∩ generatedDisjunctions x = ∅
f g : Form
h₃ : f ∈ generatedDisjunctions x ∧ g ∈ generatedDisjunctions x
⊢ f¦g ∈ generatedDisjunctions x | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | cases x | t : Th
x : Form
h₁ : x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬x ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions x → {g}⊢x
l₂ : ↑t ∩ generatedDisjunctions x = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions x)
⊢ x ∈ generatedDisjunctions x | case atom
t : Th
a✝ : ℕ
h₁ : #a✝ ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬#a✝ ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions #a✝ → {g}⊢#a✝
l₂ : ↑t ∩ generatedDisjunctions #a✝ = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions #a✝)
⊢ #a✝ ∈ generatedDisjunctions #a✝
case neg
t : Th
a✝ : Form
h₁ : ~a✝ ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬~a✝ ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions ~a✝ → {g}⊢~a✝
l₂ : ↑t ∩ generatedDisjunctions ~a✝ = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions ~a✝)
⊢ ~a✝ ∈ generatedDisjunctions ~a✝
case and
t : Th
a✝¹ a✝ : Form
h₁ : a✝¹&a✝ ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬a✝¹&a✝ ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions (a✝¹&a✝) → {g}⊢a✝¹&a✝
l₂ : ↑t ∩ generatedDisjunctions (a✝¹&a✝) = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions (a✝¹&a✝))
⊢ a✝¹&a✝ ∈ generatedDisjunctions (a✝¹&a✝)
case or
t : Th
a✝¹ a✝ : Form
h₁ : a✝¹¦a✝ ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬a✝¹¦a✝ ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions (a✝¹¦a✝) → {g}⊢a✝¹¦a✝
l₂ : ↑t ∩ generatedDisjunctions (a✝¹¦a✝) = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions (a✝¹¦a✝))
⊢ a✝¹¦a✝ ∈ generatedDisjunctions (a✝¹¦a✝)
case impl
t : Th
a✝¹ a✝ : Form
h₁ : a✝¹⊃a✝ ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬a✝¹⊃a✝ ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions (a✝¹⊃a✝) → {g}⊢a✝¹⊃a✝
l₂ : ↑t ∩ generatedDisjunctions (a✝¹⊃a✝) = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions (a✝¹⊃a✝))
⊢ a✝¹⊃a✝ ∈ generatedDisjunctions (a✝¹⊃a✝) |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | case or f g => exact Or.inl rfl | t : Th
f g : Form
h₁ : f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬f¦g ∈ ↑t
l₁ : ∀ (g_1 : Form), g_1 ∈ generatedDisjunctions (f¦g) → {g_1}⊢f¦g
l₂ : ↑t ∩ generatedDisjunctions (f¦g) = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions (f¦g))
⊢ f¦g ∈ generatedDisjunctions (f¦g) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | all_goals
exact rfl | case atom
t : Th
a✝ : ℕ
h₁ : #a✝ ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬#a✝ ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions #a✝ → {g}⊢#a✝
l₂ : ↑t ∩ generatedDisjunctions #a✝ = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions #a✝)
⊢ #a✝ ∈ generatedDisjunctions #a✝
case neg
t : Th
a✝ : Form
h₁ : ~a✝ ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬~a✝ ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions ~a✝ → {g}⊢~a✝
l₂ : ↑t ∩ generatedDisjunctions ~a✝ = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions ~a✝)
⊢ ~a✝ ∈ generatedDisjunctions ~a✝
case and
t : Th
a✝¹ a✝ : Form
h₁ : a✝¹&a✝ ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬a✝¹&a✝ ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions (a✝¹&a✝) → {g}⊢a✝¹&a✝
l₂ : ↑t ∩ generatedDisjunctions (a✝¹&a✝) = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions (a✝¹&a✝))
⊢ a✝¹&a✝ ∈ generatedDisjunctions (a✝¹&a✝)
case impl
t : Th
a✝¹ a✝ : Form
h₁ : a✝¹⊃a✝ ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬a✝¹⊃a✝ ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions (a✝¹⊃a✝) → {g}⊢a✝¹⊃a✝
l₂ : ↑t ∩ generatedDisjunctions (a✝¹⊃a✝) = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions (a✝¹⊃a✝))
⊢ a✝¹⊃a✝ ∈ generatedDisjunctions (a✝¹⊃a✝) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | exact Or.inl rfl | t : Th
f g : Form
h₁ : f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬f¦g ∈ ↑t
l₁ : ∀ (g_1 : Form), g_1 ∈ generatedDisjunctions (f¦g) → {g_1}⊢f¦g
l₂ : ↑t ∩ generatedDisjunctions (f¦g) = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions (f¦g))
⊢ f¦g ∈ generatedDisjunctions (f¦g) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | primeAnalysis | [9, 1] | [52, 58] | exact rfl | case impl
t : Th
a✝¹ a✝ : Form
h₁ : a✝¹⊃a✝ ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
h₂ : ¬a✝¹⊃a✝ ∈ ↑t
l₁ : ∀ (g : Form), g ∈ generatedDisjunctions (a✝¹⊃a✝) → {g}⊢a✝¹⊃a✝
l₂ : ↑t ∩ generatedDisjunctions (a✝¹⊃a✝) = ∅
l₃ : isDisjunctionClosed (generatedDisjunctions (a✝¹⊃a✝))
⊢ a✝¹⊃a✝ ∈ generatedDisjunctions (a✝¹⊃a✝) | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | intros t u p h₁ | ⊢ ∀ (t u : Th) (p : Pr),
formalApplicationFunction t u ≤ ↑p →
∃ q r, t ≤ ↑q ∧ u ≤ ↑r ∧ formalApplicationFunction (↑q) u ≤ ↑p ∧ formalApplicationFunction t ↑r ≤ ↑p | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
⊢ ∃ q r, t ≤ ↑q ∧ u ≤ ↑r ∧ formalApplicationFunction (↑q) u ≤ ↑p ∧ formalApplicationFunction t ↑r ≤ ↑p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have ⟨q,h₂,h₃⟩ := lemma1 t u p h₁ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
⊢ ∃ q r, t ≤ ↑q ∧ u ≤ ↑r ∧ formalApplicationFunction (↑q) u ≤ ↑p ∧ formalApplicationFunction t ↑r ≤ ↑p | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
q : Pr
h₂ : t ≤ ↑q
h₃ : formalApplication ↑↑q ↑u ⊆ ↑↑p
⊢ ∃ q r, t ≤ ↑q ∧ u ≤ ↑r ∧ formalApplicationFunction (↑q) u ≤ ↑p ∧ formalApplicationFunction t ↑r ≤ ↑p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have ⟨r,h₄,h₅⟩ := lemma2 t u p h₁ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
q : Pr
h₂ : t ≤ ↑q
h₃ : formalApplication ↑↑q ↑u ⊆ ↑↑p
⊢ ∃ q r, t ≤ ↑q ∧ u ≤ ↑r ∧ formalApplicationFunction (↑q) u ≤ ↑p ∧ formalApplicationFunction t ↑r ≤ ↑p | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
q : Pr
h₂ : t ≤ ↑q
h₃ : formalApplication ↑↑q ↑u ⊆ ↑↑p
r : Pr
h₄ : u ≤ ↑r
h₅ : formalApplication ↑t ↑↑r ⊆ ↑↑p
⊢ ∃ q r, t ≤ ↑q ∧ u ≤ ↑r ∧ formalApplicationFunction (↑q) u ≤ ↑p ∧ formalApplicationFunction t ↑r ≤ ↑p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | exact ⟨q,r,h₂,h₄,h₃,h₅⟩ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
q : Pr
h₂ : t ≤ ↑q
h₃ : formalApplication ↑↑q ↑u ⊆ ↑↑p
r : Pr
h₄ : u ≤ ↑r
h₅ : formalApplication ↑t ↑↑r ⊆ ↑↑p
⊢ ∃ q r, t ≤ ↑q ∧ u ≤ ↑r ∧ formalApplicationFunction (↑q) u ≤ ↑p ∧ formalApplicationFunction t ↑r ≤ ↑p | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | intros t u p h₁ | ⊢ ∀ (t u : Th) (p : Pr), formalApplicationFunction t u ≤ ↑p → ∃ q, t ≤ ↑q ∧ formalApplication ↑↑q ↑u ⊆ ↑↑p | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
⊢ ∃ q, t ≤ ↑q ∧ formalApplication ↑↑q ↑u ⊆ ↑↑p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | let Δ := {f : Form | ¬(formalApplication (▲{f}) u ⊆ p) } | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
⊢ ∃ q, t ≤ ↑q ∧ formalApplication ↑↑q ↑u ⊆ ↑↑p | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
⊢ ∃ q, t ≤ ↑q ∧ formalApplication ↑↑q ↑u ⊆ ↑↑p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have l₂ : ↑t ∩ Δ = ∅ := by
apply Set.eq_empty_iff_forall_not_mem.mpr
intros P h₂
have l₃ : ▲{P} ⊆ ↑t := generatedContained (Set.singleton_subset_iff.mpr h₂.left)
have l₄ := formalAppMonotoneRight ↑u l₃
exact h₂.right $ le_trans l₄ h₁ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
⊢ ∃ q, t ≤ ↑q ∧ formalApplication ↑↑q ↑u ⊆ ↑↑p | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
⊢ ∃ q, t ≤ ↑q ∧ formalApplication ↑↑q ↑u ⊆ ↑↑p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have l₃ : isDisjunctionClosed Δ := by
intros P Q h₁ h₂
have ⟨R,l₄⟩ := nonconstruction h₁.left
have ⟨⟨S,l₆,⟨prf₁⟩⟩,l₈⟩ := nonconstruction l₄
have ⟨T,l₉⟩ := nonconstruction h₁.right
have ⟨⟨U,l₁₀,⟨prf₂⟩⟩,l₁₂⟩ := nonconstruction l₉
clear h₁ l₄ l₉
have l₁₃ : ¬(R¦T ∈ p) := λw => Or.elim (p.property w) l₈ l₁₂
apply l₁₃
apply h₂
clear l₈ l₁₂ l₁₃ h₂
have prf₃ : BProof {P} (S & U ⊃ R ¦ T) := BProof.mp
(BProof.mp prf₁ (BTheorem.hs BTheorem.taut BTheorem.orI₁))
(BTheorem.hs BTheorem.andE₁ BTheorem.taut)
have prf₄ : BProof {Q} (S & U ⊃ R ¦ T) := BProof.mp
(BProof.mp prf₂ (BTheorem.hs BTheorem.taut BTheorem.orI₂))
(BTheorem.hs BTheorem.andE₂ BTheorem.taut)
have prf₅ : BProof {P ¦ Q} (S & U ⊃ R ¦ T) := BTheorem.toProof $
BTheorem.mp (BTheorem.adj prf₃.toTheorem prf₄.toTheorem) BTheorem.orE
clear prf₁ prf₂ prf₃ prf₄
have l₁₄ : S & U ∈ u := u.property.mpr ⟨BProof.adj (BProof.ax l₆) (BProof.ax l₁₀)⟩
exact ⟨S & U, l₁₄, ⟨prf₅⟩⟩ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
⊢ ∃ q, t ≤ ↑q ∧ formalApplication ↑↑q ↑u ⊆ ↑↑p | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
l₃ : isDisjunctionClosed Δ
⊢ ∃ q, t ≤ ↑q ∧ formalApplication ↑↑q ↑u ⊆ ↑↑p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have l₄ : lindenbaumExtension t Δ ∩ Δ = ∅ := lindenbaumTheorem l₂ l₃ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
l₃ : isDisjunctionClosed Δ
⊢ ∃ q, t ≤ ↑q ∧ formalApplication ↑↑q ↑u ⊆ ↑↑p | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
l₃ : isDisjunctionClosed Δ
l₄ : lindenbaumExtension t Δ ∩ Δ = ∅
⊢ ∃ q, t ≤ ↑q ∧ formalApplication ↑↑q ↑u ⊆ ↑↑p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | clear l₂ l₃ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
l₃ : isDisjunctionClosed Δ
l₄ : lindenbaumExtension t Δ ∩ Δ = ∅
⊢ ∃ q, t ≤ ↑q ∧ formalApplication ↑↑q ↑u ⊆ ↑↑p | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₄ : lindenbaumExtension t Δ ∩ Δ = ∅
⊢ ∃ q, t ≤ ↑q ∧ formalApplication ↑↑q ↑u ⊆ ↑↑p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | refine ⟨⟨⟨lindenbaumExtension t Δ, lindenbaumIsFormal⟩, lindenbaumIsPrime⟩, lindenbaumExtensionExtends, ?_⟩ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₄ : lindenbaumExtension t Δ ∩ Δ = ∅
⊢ ∃ q, t ≤ ↑q ∧ formalApplication ↑↑q ↑u ⊆ ↑↑p | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₄ : lindenbaumExtension t Δ ∩ Δ = ∅
⊢ formalApplication
↑↑{
val :=
{ val := lindenbaumExtension t Δ,
property := (_ : ∀ {f : Form}, f ∈ lindenbaumExtension t Δ ↔ lindenbaumExtension t Δ⊢f) },
property :=
(_ :
∀ {f g : Form},
f¦g ∈ lindenbaumExtension t Δ → f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ) }
↑u ⊆
↑↑p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | change formalApplication (lindenbaumExtension t Δ) ↑u ⊆ p | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₄ : lindenbaumExtension t Δ ∩ Δ = ∅
⊢ formalApplication
↑↑{
val :=
{ val := lindenbaumExtension t Δ,
property := (_ : ∀ {f : Form}, f ∈ lindenbaumExtension t Δ ↔ lindenbaumExtension t Δ⊢f) },
property :=
(_ :
∀ {f g : Form},
f¦g ∈ lindenbaumExtension t Δ → f ∈ lindenbaumExtension t Δ ∨ g ∈ lindenbaumExtension t Δ) }
↑u ⊆
↑↑p | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₄ : lindenbaumExtension t Δ ∩ Δ = ∅
⊢ formalApplication (lindenbaumExtension t Δ) ↑u ⊆ ↑↑p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | intros P h₁ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₄ : lindenbaumExtension t Δ ∩ Δ = ∅
⊢ formalApplication (lindenbaumExtension t Δ) ↑u ⊆ ↑↑p | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₄ : lindenbaumExtension t Δ ∩ Δ = ∅
P : Form
h₁ : P ∈ formalApplication (lindenbaumExtension t Δ) ↑u
⊢ P ∈ ↑↑p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have ⟨Q,h₂,h₃⟩ := h₁ | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₄ : lindenbaumExtension t Δ ∩ Δ = ∅
P : Form
h₁ : P ∈ formalApplication (lindenbaumExtension t Δ) ↑u
⊢ P ∈ ↑↑p | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₄ : lindenbaumExtension t Δ ∩ Δ = ∅
P : Form
h₁ : P ∈ formalApplication (lindenbaumExtension t Δ) ↑u
Q : Form
h₂ : Q ∈ ↑u
h₃ : Q⊃P ∈ lindenbaumExtension t Δ
⊢ P ∈ ↑↑p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have l₄ : formalApplication (▲{Q⊃P}) ↑u ⊆ ↑↑p := by
apply byContradiction
intros h₄
exact (Set.eq_empty_iff_forall_not_mem.mp l₄) (Q⊃P) ⟨h₃,h₄⟩ | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₄ : lindenbaumExtension t Δ ∩ Δ = ∅
P : Form
h₁ : P ∈ formalApplication (lindenbaumExtension t Δ) ↑u
Q : Form
h₂ : Q ∈ ↑u
h₃ : Q⊃P ∈ lindenbaumExtension t Δ
⊢ P ∈ ↑↑p | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₄✝ : lindenbaumExtension t Δ ∩ Δ = ∅
P : Form
h₁ : P ∈ formalApplication (lindenbaumExtension t Δ) ↑u
Q : Form
h₂ : Q ∈ ↑u
h₃ : Q⊃P ∈ lindenbaumExtension t Δ
l₄ : formalApplication (▲{Q⊃P}) ↑u ⊆ ↑↑p
⊢ P ∈ ↑↑p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | exact l₄ ⟨Q,h₂,⟨BProof.ax rfl⟩⟩ | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₄✝ : lindenbaumExtension t Δ ∩ Δ = ∅
P : Form
h₁ : P ∈ formalApplication (lindenbaumExtension t Δ) ↑u
Q : Form
h₂ : Q ∈ ↑u
h₃ : Q⊃P ∈ lindenbaumExtension t Δ
l₄ : formalApplication (▲{Q⊃P}) ↑u ⊆ ↑↑p
⊢ P ∈ ↑↑p | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | apply Set.eq_empty_iff_forall_not_mem.mpr | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
⊢ ↑t ∩ Δ = ∅ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
⊢ ∀ (x : Form), ¬x ∈ ↑t ∩ Δ |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | intros P h₂ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
⊢ ∀ (x : Form), ¬x ∈ ↑t ∩ Δ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
P : Form
h₂ : P ∈ ↑t ∩ Δ
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have l₃ : ▲{P} ⊆ ↑t := generatedContained (Set.singleton_subset_iff.mpr h₂.left) | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
P : Form
h₂ : P ∈ ↑t ∩ Δ
⊢ False | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
P : Form
h₂ : P ∈ ↑t ∩ Δ
l₃ : ▲{P} ⊆ ↑t
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have l₄ := formalAppMonotoneRight ↑u l₃ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
P : Form
h₂ : P ∈ ↑t ∩ Δ
l₃ : ▲{P} ⊆ ↑t
⊢ False | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
P : Form
h₂ : P ∈ ↑t ∩ Δ
l₃ : ▲{P} ⊆ ↑t
l₄ : flip formalApplication (↑u) (▲{P}) ≤ flip formalApplication ↑u ↑t
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | exact h₂.right $ le_trans l₄ h₁ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
P : Form
h₂ : P ∈ ↑t ∩ Δ
l₃ : ▲{P} ⊆ ↑t
l₄ : flip formalApplication (↑u) (▲{P}) ≤ flip formalApplication ↑u ↑t
⊢ False | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | intros P Q h₁ h₂ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
⊢ isDisjunctionClosed Δ | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₁ : P ∈ Δ ∧ Q ∈ Δ
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have ⟨R,l₄⟩ := nonconstruction h₁.left | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₁ : P ∈ Δ ∧ Q ∈ Δ
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
⊢ False | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₁ : P ∈ Δ ∧ Q ∈ Δ
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R : Form
l₄ : ¬(R ∈ formalApplication (▲{P}) ↑u → R ∈ ↑↑p)
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have ⟨⟨S,l₆,⟨prf₁⟩⟩,l₈⟩ := nonconstruction l₄ | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₁ : P ∈ Δ ∧ Q ∈ Δ
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R : Form
l₄ : ¬(R ∈ formalApplication (▲{P}) ↑u → R ∈ ↑↑p)
⊢ False | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₁ : P ∈ Δ ∧ Q ∈ Δ
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R : Form
l₄ : ¬(R ∈ formalApplication (▲{P}) ↑u → R ∈ ↑↑p)
S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
l₈ : ¬R ∈ ↑↑p
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have ⟨T,l₉⟩ := nonconstruction h₁.right | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₁ : P ∈ Δ ∧ Q ∈ Δ
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R : Form
l₄ : ¬(R ∈ formalApplication (▲{P}) ↑u → R ∈ ↑↑p)
S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
l₈ : ¬R ∈ ↑↑p
⊢ False | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₁ : P ∈ Δ ∧ Q ∈ Δ
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R : Form
l₄ : ¬(R ∈ formalApplication (▲{P}) ↑u → R ∈ ↑↑p)
S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
l₈ : ¬R ∈ ↑↑p
T : Form
l₉ : ¬(T ∈ formalApplication (▲{Q}) ↑u → T ∈ ↑↑p)
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have ⟨⟨U,l₁₀,⟨prf₂⟩⟩,l₁₂⟩ := nonconstruction l₉ | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₁ : P ∈ Δ ∧ Q ∈ Δ
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R : Form
l₄ : ¬(R ∈ formalApplication (▲{P}) ↑u → R ∈ ↑↑p)
S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
l₈ : ¬R ∈ ↑↑p
T : Form
l₉ : ¬(T ∈ formalApplication (▲{Q}) ↑u → T ∈ ↑↑p)
⊢ False | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₁ : P ∈ Δ ∧ Q ∈ Δ
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R : Form
l₄ : ¬(R ∈ formalApplication (▲{P}) ↑u → R ∈ ↑↑p)
S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
l₈ : ¬R ∈ ↑↑p
T : Form
l₉ : ¬(T ∈ formalApplication (▲{Q}) ↑u → T ∈ ↑↑p)
U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
l₁₂ : ¬T ∈ ↑↑p
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | clear h₁ l₄ l₉ | t u : Th
p : Pr
h₁✝ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₁ : P ∈ Δ ∧ Q ∈ Δ
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R : Form
l₄ : ¬(R ∈ formalApplication (▲{P}) ↑u → R ∈ ↑↑p)
S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
l₈ : ¬R ∈ ↑↑p
T : Form
l₉ : ¬(T ∈ formalApplication (▲{Q}) ↑u → T ∈ ↑↑p)
U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
l₁₂ : ¬T ∈ ↑↑p
⊢ False | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
l₈ : ¬R ∈ ↑↑p
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
l₁₂ : ¬T ∈ ↑↑p
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have l₁₃ : ¬(R¦T ∈ p) := λw => Or.elim (p.property w) l₈ l₁₂ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
l₈ : ¬R ∈ ↑↑p
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
l₁₂ : ¬T ∈ ↑↑p
⊢ False | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
l₈ : ¬R ∈ ↑↑p
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
l₁₂ : ¬T ∈ ↑↑p
l₁₃ : ¬R¦T ∈ p
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | apply l₁₃ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
l₈ : ¬R ∈ ↑↑p
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
l₁₂ : ¬T ∈ ↑↑p
l₁₃ : ¬R¦T ∈ p
⊢ False | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
l₈ : ¬R ∈ ↑↑p
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
l₁₂ : ¬T ∈ ↑↑p
l₁₃ : ¬R¦T ∈ p
⊢ R¦T ∈ p |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | apply h₂ | t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
l₈ : ¬R ∈ ↑↑p
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
l₁₂ : ¬T ∈ ↑↑p
l₁₃ : ¬R¦T ∈ p
⊢ R¦T ∈ p | case a
t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
l₈ : ¬R ∈ ↑↑p
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
l₁₂ : ¬T ∈ ↑↑p
l₁₃ : ¬R¦T ∈ p
⊢ R¦T ∈ formalApplication (▲{P¦Q}) ↑u |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | clear l₈ l₁₂ l₁₃ h₂ | case a
t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q : Form
h₂ : formalApplication (▲{P¦Q}) ↑u ⊆ ↑↑p
R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
l₈ : ¬R ∈ ↑↑p
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
l₁₂ : ¬T ∈ ↑↑p
l₁₃ : ¬R¦T ∈ p
⊢ R¦T ∈ formalApplication (▲{P¦Q}) ↑u | case a
t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
⊢ R¦T ∈ formalApplication (▲{P¦Q}) ↑u |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have prf₃ : BProof {P} (S & U ⊃ R ¦ T) := BProof.mp
(BProof.mp prf₁ (BTheorem.hs BTheorem.taut BTheorem.orI₁))
(BTheorem.hs BTheorem.andE₁ BTheorem.taut) | case a
t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
⊢ R¦T ∈ formalApplication (▲{P¦Q}) ↑u | case a
t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
prf₃ : BProof {P} (S&U⊃R¦T)
⊢ R¦T ∈ formalApplication (▲{P¦Q}) ↑u |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have prf₄ : BProof {Q} (S & U ⊃ R ¦ T) := BProof.mp
(BProof.mp prf₂ (BTheorem.hs BTheorem.taut BTheorem.orI₂))
(BTheorem.hs BTheorem.andE₂ BTheorem.taut) | case a
t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
prf₃ : BProof {P} (S&U⊃R¦T)
⊢ R¦T ∈ formalApplication (▲{P¦Q}) ↑u | case a
t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
prf₃ : BProof {P} (S&U⊃R¦T)
prf₄ : BProof {Q} (S&U⊃R¦T)
⊢ R¦T ∈ formalApplication (▲{P¦Q}) ↑u |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have prf₅ : BProof {P ¦ Q} (S & U ⊃ R ¦ T) := BTheorem.toProof $
BTheorem.mp (BTheorem.adj prf₃.toTheorem prf₄.toTheorem) BTheorem.orE | case a
t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
prf₃ : BProof {P} (S&U⊃R¦T)
prf₄ : BProof {Q} (S&U⊃R¦T)
⊢ R¦T ∈ formalApplication (▲{P¦Q}) ↑u | case a
t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
prf₃ : BProof {P} (S&U⊃R¦T)
prf₄ : BProof {Q} (S&U⊃R¦T)
prf₅ : BProof {P¦Q} (S&U⊃R¦T)
⊢ R¦T ∈ formalApplication (▲{P¦Q}) ↑u |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | clear prf₁ prf₂ prf₃ prf₄ | case a
t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q R S : Form
l₆ : S ∈ ↑u
prf₁ : BProof {P} (S⊃R)
T U : Form
l₁₀ : U ∈ ↑u
prf₂ : BProof {Q} (U⊃T)
prf₃ : BProof {P} (S&U⊃R¦T)
prf₄ : BProof {Q} (S&U⊃R¦T)
prf₅ : BProof {P¦Q} (S&U⊃R¦T)
⊢ R¦T ∈ formalApplication (▲{P¦Q}) ↑u | case a
t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q R S : Form
l₆ : S ∈ ↑u
T U : Form
l₁₀ : U ∈ ↑u
prf₅ : BProof {P¦Q} (S&U⊃R¦T)
⊢ R¦T ∈ formalApplication (▲{P¦Q}) ↑u |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/SystemB/CanonicalModel.lean | appBoundingFormalApplication | [54, 1] | [141, 38] | have l₁₄ : S & U ∈ u := u.property.mpr ⟨BProof.adj (BProof.ax l₆) (BProof.ax l₁₀)⟩ | case a
t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q R S : Form
l₆ : S ∈ ↑u
T U : Form
l₁₀ : U ∈ ↑u
prf₅ : BProof {P¦Q} (S&U⊃R¦T)
⊢ R¦T ∈ formalApplication (▲{P¦Q}) ↑u | case a
t u : Th
p : Pr
h₁ : formalApplicationFunction t u ≤ ↑p
Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p }
l₂ : ↑t ∩ Δ = ∅
P Q R S : Form
l₆ : S ∈ ↑u
T U : Form
l₁₀ : U ∈ ↑u
prf₅ : BProof {P¦Q} (S&U⊃R¦T)
l₁₄ : S&U ∈ u
⊢ R¦T ∈ formalApplication (▲{P¦Q}) ↑u |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.