url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
exact ⟨S & U, l₁₄, ⟨prf₅⟩⟩
case a t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p } l₂ : ↑t ∩ Δ = ∅ P Q R S : Form l₆ : S ∈ ↑u T U : Form l₁₀ : U ∈ ↑u prf₅ : BProof {P¦Q} (S&U⊃R¦T) l₁₄ : S&U ∈ u ⊢ R¦T ∈ formalApplication (▲{P¦Q}) ↑u
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
apply byContradiction
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p } l₄ : lindenbaumExtension t Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (lindenbaumExtension t Δ) ↑u Q : Form h₂ : Q ∈ ↑u h₃ : Q⊃P ∈ lindenbaumExtension t Δ ⊢ formalApplication (▲{Q⊃P}) ↑u ⊆ ↑↑p
case h t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p } l₄ : lindenbaumExtension t Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (lindenbaumExtension t Δ) ↑u Q : Form h₂ : Q ∈ ↑u h₃ : Q⊃P ∈ lindenbaumExtension t Δ ⊢ ¬formalApplication (▲{Q⊃P}) ↑u ⊆ ↑↑p → False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
intros h₄
case h t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p } l₄ : lindenbaumExtension t Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (lindenbaumExtension t Δ) ↑u Q : Form h₂ : Q ∈ ↑u h₃ : Q⊃P ∈ lindenbaumExtension t Δ ⊢ ¬formalApplication (▲{Q⊃P}) ↑u ⊆ ↑↑p → False
case h t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p } l₄ : lindenbaumExtension t Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (lindenbaumExtension t Δ) ↑u Q : Form h₂ : Q ∈ ↑u h₃ : Q⊃P ∈ lindenbaumExtension t Δ h₄ : ¬formalApplication (▲{Q⊃P}) ↑u ⊆ ↑↑p ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
exact (Set.eq_empty_iff_forall_not_mem.mp l₄) (Q⊃P) ⟨h₃,h₄⟩
case h t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (▲{f}) ↑u ⊆ ↑↑p } l₄ : lindenbaumExtension t Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (lindenbaumExtension t Δ) ↑u Q : Form h₂ : Q ∈ ↑u h₃ : Q⊃P ∈ lindenbaumExtension t Δ h₄ : ¬formalApplication (▲{Q⊃P}) ↑u ⊆ ↑↑p ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
intros t u p h₁
⊢ ∀ (t u : Th) (p : Pr), formalApplicationFunction t u ≤ ↑p → ∃ r, u ≤ ↑r ∧ formalApplication ↑t ↑↑r ⊆ ↑↑p
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p ⊢ ∃ r, u ≤ ↑r ∧ formalApplication ↑t ↑↑r ⊆ ↑↑p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
let Δ := {f : Form | ¬(formalApplication t (▲{f}) ⊆ p) }
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p ⊢ ∃ r, u ≤ ↑r ∧ formalApplication ↑t ↑↑r ⊆ ↑↑p
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } ⊢ ∃ r, u ≤ ↑r ∧ formalApplication ↑t ↑↑r ⊆ ↑↑p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
have l₂ : ↑u ∩ Δ = ∅ := by apply Set.eq_empty_iff_forall_not_mem.mpr intros P h₂ have l₃ : ▲{P} ⊆ ↑u := generatedContained (Set.singleton_subset_iff.mpr h₂.left) have l₄ := formalAppMonotoneLeft ↑t l₃ exact h₂.right $ le_trans l₄ h₁
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } ⊢ ∃ r, u ≤ ↑r ∧ formalApplication ↑t ↑↑r ⊆ ↑↑p
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ ⊢ ∃ r, u ≤ ↑r ∧ formalApplication ↑t ↑↑r ⊆ ↑↑p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
have l₃ : isDisjunctionClosed Δ := by intros P Q h₁ h₂ have ⟨R,l₄⟩ := nonconstruction h₁.left have ⟨⟨S,⟨prf₁⟩,l₆⟩,l₈⟩ := nonconstruction l₄ have ⟨T,l₉⟩ := nonconstruction h₁.right have ⟨⟨U,⟨prf₂⟩,l₁₀⟩,l₁₂⟩ := nonconstruction l₉ clear h₁ l₄ l₉ have l₁₃ : ¬(R¦T ∈ p) := λw => Or.elim (p.property w) l₈ l₁₂ apply l₁₃ apply h₂ clear l₈ l₁₂ l₁₃ h₂ have l₁₄ : S¦U ∈ ▲{P¦Q} := ⟨(BTheorem.orFunctor prf₁.toTheorem prf₂.toTheorem).toProof⟩ have l₁₅ : (S¦U ⊃ R¦T) ∈ t := t.property.mpr ⟨BProof.mp (BProof.adj (BProof.mp (BProof.ax l₆) (BTheorem.hs BTheorem.taut BTheorem.orI₁)) (BProof.mp (BProof.ax l₁₀) (BTheorem.hs BTheorem.taut BTheorem.orI₂))) BTheorem.orE⟩ exact ⟨S ¦ U, l₁₄, l₁₅⟩
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ ⊢ ∃ r, u ≤ ↑r ∧ formalApplication ↑t ↑↑r ⊆ ↑↑p
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ l₃ : isDisjunctionClosed Δ ⊢ ∃ r, u ≤ ↑r ∧ formalApplication ↑t ↑↑r ⊆ ↑↑p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
have l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ := lindenbaumTheorem l₂ l₃
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ l₃ : isDisjunctionClosed Δ ⊢ ∃ r, u ≤ ↑r ∧ formalApplication ↑t ↑↑r ⊆ ↑↑p
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ l₃ : isDisjunctionClosed Δ l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ ⊢ ∃ r, u ≤ ↑r ∧ formalApplication ↑t ↑↑r ⊆ ↑↑p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
clear l₂ l₃
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ l₃ : isDisjunctionClosed Δ l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ ⊢ ∃ r, u ≤ ↑r ∧ formalApplication ↑t ↑↑r ⊆ ↑↑p
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ ⊢ ∃ r, u ≤ ↑r ∧ formalApplication ↑t ↑↑r ⊆ ↑↑p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
refine ⟨⟨⟨lindenbaumExtension u Δ, lindenbaumIsFormal⟩, lindenbaumIsPrime⟩, lindenbaumExtensionExtends, ?_⟩
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ ⊢ ∃ r, u ≤ ↑r ∧ formalApplication ↑t ↑↑r ⊆ ↑↑p
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ ⊢ formalApplication ↑t ↑↑{ val := { val := lindenbaumExtension u Δ, property := (_ : ∀ {f : Form}, f ∈ lindenbaumExtension u Δ ↔ lindenbaumExtension u Δ⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ lindenbaumExtension u Δ → f ∈ lindenbaumExtension u Δ ∨ g ∈ lindenbaumExtension u Δ) } ⊆ ↑↑p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
change formalApplication ↑t (lindenbaumExtension u Δ) ⊆ p
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ ⊢ formalApplication ↑t ↑↑{ val := { val := lindenbaumExtension u Δ, property := (_ : ∀ {f : Form}, f ∈ lindenbaumExtension u Δ ↔ lindenbaumExtension u Δ⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ lindenbaumExtension u Δ → f ∈ lindenbaumExtension u Δ ∨ g ∈ lindenbaumExtension u Δ) } ⊆ ↑↑p
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ ⊢ formalApplication (↑t) (lindenbaumExtension u Δ) ⊆ ↑↑p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
intros P h₁
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ ⊢ formalApplication (↑t) (lindenbaumExtension u Δ) ⊆ ↑↑p
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (↑t) (lindenbaumExtension u Δ) ⊢ P ∈ ↑↑p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
have ⟨Q,h₂,h₃⟩ := h₁
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (↑t) (lindenbaumExtension u Δ) ⊢ P ∈ ↑↑p
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (↑t) (lindenbaumExtension u Δ) Q : Form h₂ : Q ∈ lindenbaumExtension u Δ h₃ : Q⊃P ∈ ↑t ⊢ P ∈ ↑↑p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
have l₄ : formalApplication ↑t (▲{Q}) ⊆ ↑↑p := by apply byContradiction intros h₄ exact (Set.eq_empty_iff_forall_not_mem.mp l₄) Q ⟨h₂,h₄⟩
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (↑t) (lindenbaumExtension u Δ) Q : Form h₂ : Q ∈ lindenbaumExtension u Δ h₃ : Q⊃P ∈ ↑t ⊢ P ∈ ↑↑p
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄✝ : lindenbaumExtension u Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (↑t) (lindenbaumExtension u Δ) Q : Form h₂ : Q ∈ lindenbaumExtension u Δ h₃ : Q⊃P ∈ ↑t l₄ : formalApplication (↑t) (▲{Q}) ⊆ ↑↑p ⊢ P ∈ ↑↑p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
exact l₄ ⟨Q,⟨BProof.ax rfl⟩,h₃⟩
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄✝ : lindenbaumExtension u Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (↑t) (lindenbaumExtension u Δ) Q : Form h₂ : Q ∈ lindenbaumExtension u Δ h₃ : Q⊃P ∈ ↑t l₄ : formalApplication (↑t) (▲{Q}) ⊆ ↑↑p ⊢ P ∈ ↑↑p
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
apply Set.eq_empty_iff_forall_not_mem.mpr
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } ⊢ ↑u ∩ Δ = ∅
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } ⊢ ∀ (x : Form), ¬x ∈ ↑u ∩ Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
intros P h₂
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } ⊢ ∀ (x : Form), ¬x ∈ ↑u ∩ Δ
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } P : Form h₂ : P ∈ ↑u ∩ Δ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
have l₃ : ▲{P} ⊆ ↑u := generatedContained (Set.singleton_subset_iff.mpr h₂.left)
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } P : Form h₂ : P ∈ ↑u ∩ Δ ⊢ False
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } P : Form h₂ : P ∈ ↑u ∩ Δ l₃ : ▲{P} ⊆ ↑u ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
have l₄ := formalAppMonotoneLeft ↑t l₃
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } P : Form h₂ : P ∈ ↑u ∩ Δ l₃ : ▲{P} ⊆ ↑u ⊢ False
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } P : Form h₂ : P ∈ ↑u ∩ Δ l₃ : ▲{P} ⊆ ↑u l₄ : formalApplication (↑t) (▲{P}) ≤ formalApplication ↑t ↑u ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
exact h₂.right $ le_trans l₄ h₁
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } P : Form h₂ : P ∈ ↑u ∩ Δ l₃ : ▲{P} ⊆ ↑u l₄ : formalApplication (↑t) (▲{P}) ≤ formalApplication ↑t ↑u ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
intros P Q h₁ h₂
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ ⊢ isDisjunctionClosed Δ
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₁ : P ∈ Δ ∧ Q ∈ Δ h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
have ⟨R,l₄⟩ := nonconstruction h₁.left
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₁ : P ∈ Δ ∧ Q ∈ Δ h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p ⊢ False
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₁ : P ∈ Δ ∧ Q ∈ Δ h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R : Form l₄ : ¬(R ∈ formalApplication (↑t) (▲{P}) → R ∈ ↑↑p) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
have ⟨⟨S,⟨prf₁⟩,l₆⟩,l₈⟩ := nonconstruction l₄
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₁ : P ∈ Δ ∧ Q ∈ Δ h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R : Form l₄ : ¬(R ∈ formalApplication (↑t) (▲{P}) → R ∈ ↑↑p) ⊢ False
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₁ : P ∈ Δ ∧ Q ∈ Δ h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R : Form l₄ : ¬(R ∈ formalApplication (↑t) (▲{P}) → R ∈ ↑↑p) S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t l₈ : ¬R ∈ ↑↑p ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
have ⟨T,l₉⟩ := nonconstruction h₁.right
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₁ : P ∈ Δ ∧ Q ∈ Δ h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R : Form l₄ : ¬(R ∈ formalApplication (↑t) (▲{P}) → R ∈ ↑↑p) S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t l₈ : ¬R ∈ ↑↑p ⊢ False
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₁ : P ∈ Δ ∧ Q ∈ Δ h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R : Form l₄ : ¬(R ∈ formalApplication (↑t) (▲{P}) → R ∈ ↑↑p) S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t l₈ : ¬R ∈ ↑↑p T : Form l₉ : ¬(T ∈ formalApplication (↑t) (▲{Q}) → T ∈ ↑↑p) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
have ⟨⟨U,⟨prf₂⟩,l₁₀⟩,l₁₂⟩ := nonconstruction l₉
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₁ : P ∈ Δ ∧ Q ∈ Δ h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R : Form l₄ : ¬(R ∈ formalApplication (↑t) (▲{P}) → R ∈ ↑↑p) S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t l₈ : ¬R ∈ ↑↑p T : Form l₉ : ¬(T ∈ formalApplication (↑t) (▲{Q}) → T ∈ ↑↑p) ⊢ False
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₁ : P ∈ Δ ∧ Q ∈ Δ h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R : Form l₄ : ¬(R ∈ formalApplication (↑t) (▲{P}) → R ∈ ↑↑p) S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t l₈ : ¬R ∈ ↑↑p T : Form l₉ : ¬(T ∈ formalApplication (↑t) (▲{Q}) → T ∈ ↑↑p) U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t l₁₂ : ¬T ∈ ↑↑p ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
clear h₁ l₄ l₉
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₁ : P ∈ Δ ∧ Q ∈ Δ h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R : Form l₄ : ¬(R ∈ formalApplication (↑t) (▲{P}) → R ∈ ↑↑p) S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t l₈ : ¬R ∈ ↑↑p T : Form l₉ : ¬(T ∈ formalApplication (↑t) (▲{Q}) → T ∈ ↑↑p) U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t l₁₂ : ¬T ∈ ↑↑p ⊢ False
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t l₈ : ¬R ∈ ↑↑p T U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t l₁₂ : ¬T ∈ ↑↑p ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
have l₁₃ : ¬(R¦T ∈ p) := λw => Or.elim (p.property w) l₈ l₁₂
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t l₈ : ¬R ∈ ↑↑p T U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t l₁₂ : ¬T ∈ ↑↑p ⊢ False
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t l₈ : ¬R ∈ ↑↑p T U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t l₁₂ : ¬T ∈ ↑↑p l₁₃ : ¬R¦T ∈ p ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
apply l₁₃
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t l₈ : ¬R ∈ ↑↑p T U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t l₁₂ : ¬T ∈ ↑↑p l₁₃ : ¬R¦T ∈ p ⊢ False
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t l₈ : ¬R ∈ ↑↑p T U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t l₁₂ : ¬T ∈ ↑↑p l₁₃ : ¬R¦T ∈ p ⊢ R¦T ∈ p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
apply h₂
t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t l₈ : ¬R ∈ ↑↑p T U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t l₁₂ : ¬T ∈ ↑↑p l₁₃ : ¬R¦T ∈ p ⊢ R¦T ∈ p
case a t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t l₈ : ¬R ∈ ↑↑p T U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t l₁₂ : ¬T ∈ ↑↑p l₁₃ : ¬R¦T ∈ p ⊢ R¦T ∈ formalApplication (↑t) (▲{P¦Q})
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
clear l₈ l₁₂ l₁₃ h₂
case a t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q : Form h₂ : formalApplication (↑t) (▲{P¦Q}) ⊆ ↑↑p R S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t l₈ : ¬R ∈ ↑↑p T U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t l₁₂ : ¬T ∈ ↑↑p l₁₃ : ¬R¦T ∈ p ⊢ R¦T ∈ formalApplication (↑t) (▲{P¦Q})
case a t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q R S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t T U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t ⊢ R¦T ∈ formalApplication (↑t) (▲{P¦Q})
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
have l₁₄ : S¦U ∈ ▲{P¦Q} := ⟨(BTheorem.orFunctor prf₁.toTheorem prf₂.toTheorem).toProof⟩
case a t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q R S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t T U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t ⊢ R¦T ∈ formalApplication (↑t) (▲{P¦Q})
case a t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q R S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t T U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t l₁₄ : S¦U ∈ ▲{P¦Q} ⊢ R¦T ∈ formalApplication (↑t) (▲{P¦Q})
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
have l₁₅ : (S¦U ⊃ R¦T) ∈ t := t.property.mpr ⟨BProof.mp (BProof.adj (BProof.mp (BProof.ax l₆) (BTheorem.hs BTheorem.taut BTheorem.orI₁)) (BProof.mp (BProof.ax l₁₀) (BTheorem.hs BTheorem.taut BTheorem.orI₂))) BTheorem.orE⟩
case a t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q R S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t T U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t l₁₄ : S¦U ∈ ▲{P¦Q} ⊢ R¦T ∈ formalApplication (↑t) (▲{P¦Q})
case a t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q R S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t T U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t l₁₄ : S¦U ∈ ▲{P¦Q} l₁₅ : S¦U⊃R¦T ∈ t ⊢ R¦T ∈ formalApplication (↑t) (▲{P¦Q})
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
exact ⟨S ¦ U, l₁₄, l₁₅⟩
case a t u : Th p : Pr h₁ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₂ : ↑u ∩ Δ = ∅ P Q R S : Form prf₁ : BProof {P} S l₆ : S⊃R ∈ ↑t T U : Form prf₂ : BProof {Q} U l₁₀ : U⊃T ∈ ↑t l₁₄ : S¦U ∈ ▲{P¦Q} l₁₅ : S¦U⊃R¦T ∈ t ⊢ R¦T ∈ formalApplication (↑t) (▲{P¦Q})
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
apply byContradiction
t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (↑t) (lindenbaumExtension u Δ) Q : Form h₂ : Q ∈ lindenbaumExtension u Δ h₃ : Q⊃P ∈ ↑t ⊢ formalApplication (↑t) (▲{Q}) ⊆ ↑↑p
case h t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (↑t) (lindenbaumExtension u Δ) Q : Form h₂ : Q ∈ lindenbaumExtension u Δ h₃ : Q⊃P ∈ ↑t ⊢ ¬formalApplication (↑t) (▲{Q}) ⊆ ↑↑p → False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
intros h₄
case h t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (↑t) (lindenbaumExtension u Δ) Q : Form h₂ : Q ∈ lindenbaumExtension u Δ h₃ : Q⊃P ∈ ↑t ⊢ ¬formalApplication (↑t) (▲{Q}) ⊆ ↑↑p → False
case h t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (↑t) (lindenbaumExtension u Δ) Q : Form h₂ : Q ∈ lindenbaumExtension u Δ h₃ : Q⊃P ∈ ↑t h₄ : ¬formalApplication (↑t) (▲{Q}) ⊆ ↑↑p ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
appBoundingFormalApplication
[54, 1]
[141, 38]
exact (Set.eq_empty_iff_forall_not_mem.mp l₄) Q ⟨h₂,h₄⟩
case h t u : Th p : Pr h₁✝ : formalApplicationFunction t u ≤ ↑p Δ : Set Form := { f | ¬formalApplication (↑t) (▲{f}) ⊆ ↑↑p } l₄ : lindenbaumExtension u Δ ∩ Δ = ∅ P : Form h₁ : P ∈ formalApplication (↑t) (lindenbaumExtension u Δ) Q : Form h₂ : Q ∈ lindenbaumExtension u Δ h₃ : Q⊃P ∈ ↑t h₄ : ¬formalApplication (↑t) (▲{Q}) ⊆ ↑↑p ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
theoryValuationMonotone
[145, 1]
[147, 14]
intros _ _ h₁ n h₂
⊢ Monotone theoryValuation
a✝ b✝ : Th h₁ : a✝ ≤ b✝ n : ℕ h₂ : n ∈ theoryValuation a✝ ⊢ n ∈ theoryValuation b✝
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
theoryValuationMonotone
[145, 1]
[147, 14]
exact h₁ h₂
a✝ b✝ : Th h₁ : a✝ ≤ b✝ n : ℕ h₂ : n ∈ theoryValuation a✝ ⊢ n ∈ theoryValuation b✝
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
theoryValuationBounding
[149, 1]
[155, 54]
intros t x h₁
⊢ ∀ (t : Th) (x : ℕ), (∀ (p : Pr), t ≤ ↑p → x ∈ theoryValuation ↑p) → x ∈ theoryValuation t
t : Th x : ℕ h₁ : ∀ (p : Pr), t ≤ ↑p → x ∈ theoryValuation ↑p ⊢ x ∈ theoryValuation t
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
theoryValuationBounding
[149, 1]
[155, 54]
change #x ∈ t.val
t : Th x : ℕ h₁ : ∀ (p : Pr), t ≤ ↑p → x ∈ theoryValuation ↑p ⊢ x ∈ theoryValuation t
t : Th x : ℕ h₁ : ∀ (p : Pr), t ≤ ↑p → x ∈ theoryValuation ↑p ⊢ #x ∈ ↑t
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
theoryValuationBounding
[149, 1]
[155, 54]
rw [primeAnalysis t]
t : Th x : ℕ h₁ : ∀ (p : Pr), t ≤ ↑p → x ∈ theoryValuation ↑p ⊢ #x ∈ ↑t
t : Th x : ℕ h₁ : ∀ (p : Pr), t ≤ ↑p → x ∈ theoryValuation ↑p ⊢ #x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
theoryValuationBounding
[149, 1]
[155, 54]
apply Set.mem_interₛ.mpr
t : Th x : ℕ h₁ : ∀ (p : Pr), t ≤ ↑p → x ∈ theoryValuation ↑p ⊢ #x ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
t : Th x : ℕ h₁ : ∀ (p : Pr), t ≤ ↑p → x ∈ theoryValuation ↑p ⊢ ∀ (t_1 : Set Form), t_1 ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } → #x ∈ t_1
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
theoryValuationBounding
[149, 1]
[155, 54]
intros r h₂
t : Th x : ℕ h₁ : ∀ (p : Pr), t ≤ ↑p → x ∈ theoryValuation ↑p ⊢ ∀ (t_1 : Set Form), t_1 ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } → #x ∈ t_1
t : Th x : ℕ h₁ : ∀ (p : Pr), t ≤ ↑p → x ∈ theoryValuation ↑p r : Set Form h₂ : r ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } ⊢ #x ∈ r
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
theoryValuationBounding
[149, 1]
[155, 54]
exact h₁ ⟨⟨r,h₂.right.right⟩,h₂.left⟩ h₂.right.left
t : Th x : ℕ h₁ : ∀ (p : Pr), t ≤ ↑p → x ∈ theoryValuation ↑p r : Set Form h₂ : r ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } ⊢ #x ∈ r
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
intros t f
⊢ ∀ {t : Th} {f : Form}, t⊨f ↔ f ∈ ↑t
t : Th f : Form ⊢ t⊨f ↔ f ∈ ↑t
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
cases f
t : Th f : Form ⊢ t⊨f ↔ f ∈ ↑t
case atom t : Th a✝ : ℕ ⊢ t⊨#a✝ ↔ #a✝ ∈ ↑t case neg t : Th a✝ : Form ⊢ t⊨~a✝ ↔ ~a✝ ∈ ↑t case and t : Th a✝¹ a✝ : Form ⊢ t⊨a✝¹&a✝ ↔ a✝¹&a✝ ∈ ↑t case or t : Th a✝¹ a✝ : Form ⊢ t⊨a✝¹¦a✝ ↔ a✝¹¦a✝ ∈ ↑t case impl t : Th a✝¹ a✝ : Form ⊢ t⊨a✝¹⊃a✝ ↔ a✝¹⊃a✝ ∈ ↑t
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
all_goals apply Iff.intro <;> intros h₁
case atom t : Th a✝ : ℕ ⊢ t⊨#a✝ ↔ #a✝ ∈ ↑t case neg t : Th a✝ : Form ⊢ t⊨~a✝ ↔ ~a✝ ∈ ↑t case and t : Th a✝¹ a✝ : Form ⊢ t⊨a✝¹&a✝ ↔ a✝¹&a✝ ∈ ↑t case or t : Th a✝¹ a✝ : Form ⊢ t⊨a✝¹¦a✝ ↔ a✝¹¦a✝ ∈ ↑t case impl t : Th a✝¹ a✝ : Form ⊢ t⊨a✝¹⊃a✝ ↔ a✝¹⊃a✝ ∈ ↑t
case atom.mp t : Th a✝ : ℕ h₁ : t⊨#a✝ ⊢ #a✝ ∈ ↑t case atom.mpr t : Th a✝ : ℕ h₁ : #a✝ ∈ ↑t ⊢ t⊨#a✝ case neg.mp t : Th a✝ : Form h₁ : t⊨~a✝ ⊢ ~a✝ ∈ ↑t case neg.mpr t : Th a✝ : Form h₁ : ~a✝ ∈ ↑t ⊢ t⊨~a✝ case and.mp t : Th a✝¹ a✝ : Form h₁ : t⊨a✝¹&a✝ ⊢ a✝¹&a✝ ∈ ↑t case and.mpr t : Th a✝¹ a✝ : Form h₁ : a✝¹&a✝ ∈ ↑t ⊢ t⊨a✝¹&a✝ case or.mp t : Th a✝¹ a✝ : Form h₁ : t⊨a✝¹¦a✝ ⊢ a✝¹¦a✝ ∈ ↑t case or.mpr t : Th a✝¹ a✝ : Form h₁ : a✝¹¦a✝ ∈ ↑t ⊢ t⊨a✝¹¦a✝ case impl.mp t : Th a✝¹ a✝ : Form h₁ : t⊨a✝¹⊃a✝ ⊢ a✝¹⊃a✝ ∈ ↑t case impl.mpr t : Th a✝¹ a✝ : Form h₁ : a✝¹⊃a✝ ∈ ↑t ⊢ t⊨a✝¹⊃a✝
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
case atom.mp => exact h₁
t : Th a✝ : ℕ h₁ : t⊨#a✝ ⊢ #a✝ ∈ ↑t
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
case atom.mpr => exact h₁
t : Th a✝ : ℕ h₁ : #a✝ ∈ ↑t ⊢ t⊨#a✝
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
case and.mp f g => have l₁ : f ∈ t := canonicalSatisfaction.mp h₁.left have l₂ : g ∈ t := canonicalSatisfaction.mp h₁.right exact t.property.mpr ⟨BProof.adj (BProof.ax l₁) (BProof.ax l₂)⟩
t : Th f g : Form h₁ : t⊨f&g ⊢ f&g ∈ ↑t
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
case and.mpr f g => have l₁ : t ⊨ f := canonicalSatisfaction.mpr $ t.property.mpr ⟨BProof.mp (BProof.ax h₁) BTheorem.andE₁⟩ have l₂ : t ⊨ g := canonicalSatisfaction.mpr $ t.property.mpr ⟨BProof.mp (BProof.ax h₁) BTheorem.andE₂⟩ exact ⟨l₁,l₂⟩
t : Th f g : Form h₁ : f&g ∈ ↑t ⊢ t⊨f&g
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
case or.mp f g => rw [primeAnalysis] intros p h₂ let pr : Pr := ⟨⟨p, h₂.right.right⟩,h₂.left⟩ have l₁ := @h₁ pr h₂.right.left cases l₁ case inl h₃ => have l₂ := canonicalSatisfaction.mp h₃ exact h₂.right.right.mpr ⟨BProof.mp (BProof.ax l₂) BTheorem.orI₁⟩ case inr h₃ => have l₂ := canonicalSatisfaction.mp h₃ exact h₂.right.right.mpr ⟨BProof.mp (BProof.ax l₂) BTheorem.orI₂⟩
t : Th f g : Form h₁ : t⊨f¦g ⊢ f¦g ∈ ↑t
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
case or.mpr f g => intros p h₂ rw [primeAnalysis] at h₁ have l₁ : f ¦ g ∈ p.val.val := (Set.mem_interₛ.mp h₁ p) ⟨p.property, h₂, p.val.property⟩ have l₂ : f ∈ p.val.val ∨ g ∈ p.val.val := p.property l₁ cases l₂ case inl h₂ => exact Or.inl $ canonicalSatisfaction.mpr h₂ case inr h₂ => exact Or.inr $ canonicalSatisfaction.mpr h₂
t : Th f g : Form h₁ : f¦g ∈ ↑t ⊢ t⊨f¦g
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
case neg.mp f => rw [primeAnalysis] intros p h₂ let pr : Pr := ⟨⟨p, h₂.right.right⟩,h₂.left⟩ have l₁ := @h₁ pr h₂.right.left have l₂ := l₁ ∘ canonicalSatisfaction.mpr apply byContradiction exact l₂
t : Th f : Form h₁ : t⊨~f ⊢ ~f ∈ ↑t
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
case neg.mpr f => intros p h₂ h₃ rw [primeAnalysis] at h₁ have l₁ : ~f ∈ p.val.val := (Set.mem_interₛ.mp h₁ p) ⟨p.property, h₂, p.val.property⟩ exact canonicalSatisfaction.mp h₃ l₁
t : Th f : Form h₁ : ~f ∈ ↑t ⊢ t⊨~f
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
case impl.mp f g => apply byContradiction intros h₂ let Δ : Th := ⟨▲{f}, generatedFormal {f}⟩ have l₁ : ¬(g ∈ (formalApplicationFunction t Δ).val) := by intros h₃ have ⟨q,⟨prf₁⟩,l₂⟩ := h₃ have ⟨prf₂⟩ := t.property.mp l₂ have prf₃ := BProof.mp prf₂ (BTheorem.hs prf₁.toTheorem BTheorem.taut) exact h₂ $ t.property.mpr ⟨prf₃⟩ have l₂ : Δ ⊨ f := canonicalSatisfaction.mpr ⟨BProof.ax rfl⟩ exact l₁ $ canonicalSatisfaction.mp (h₁ l₂)
t : Th f g : Form h₁ : t⊨f⊃g ⊢ f⊃g ∈ ↑t
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
case impl.mpr f g => intros r h₂ have l₁ := canonicalSatisfaction.mp h₂ have l₂ : g ∈ (formalApplicationFunction t r).val := ⟨f, l₁, h₁⟩ exact canonicalSatisfaction.mpr l₂
t : Th f g : Form h₁ : f⊃g ∈ ↑t ⊢ t⊨f⊃g
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
apply Iff.intro <;> intros h₁
case impl t : Th a✝¹ a✝ : Form ⊢ t⊨a✝¹⊃a✝ ↔ a✝¹⊃a✝ ∈ ↑t
case impl.mp t : Th a✝¹ a✝ : Form h₁ : t⊨a✝¹⊃a✝ ⊢ a✝¹⊃a✝ ∈ ↑t case impl.mpr t : Th a✝¹ a✝ : Form h₁ : a✝¹⊃a✝ ∈ ↑t ⊢ t⊨a✝¹⊃a✝
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
exact h₁
t : Th a✝ : ℕ h₁ : t⊨#a✝ ⊢ #a✝ ∈ ↑t
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
exact h₁
t : Th a✝ : ℕ h₁ : #a✝ ∈ ↑t ⊢ t⊨#a✝
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₁ : f ∈ t := canonicalSatisfaction.mp h₁.left
t : Th f g : Form h₁ : t⊨f&g ⊢ f&g ∈ ↑t
t : Th f g : Form h₁ : t⊨f&g l₁ : f ∈ t ⊢ f&g ∈ ↑t
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₂ : g ∈ t := canonicalSatisfaction.mp h₁.right
t : Th f g : Form h₁ : t⊨f&g l₁ : f ∈ t ⊢ f&g ∈ ↑t
t : Th f g : Form h₁ : t⊨f&g l₁ : f ∈ t l₂ : g ∈ t ⊢ f&g ∈ ↑t
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
exact t.property.mpr ⟨BProof.adj (BProof.ax l₁) (BProof.ax l₂)⟩
t : Th f g : Form h₁ : t⊨f&g l₁ : f ∈ t l₂ : g ∈ t ⊢ f&g ∈ ↑t
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₁ : t ⊨ f := canonicalSatisfaction.mpr $ t.property.mpr ⟨BProof.mp (BProof.ax h₁) BTheorem.andE₁⟩
t : Th f g : Form h₁ : f&g ∈ ↑t ⊢ t⊨f&g
t : Th f g : Form h₁ : f&g ∈ ↑t l₁ : t⊨f ⊢ t⊨f&g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₂ : t ⊨ g := canonicalSatisfaction.mpr $ t.property.mpr ⟨BProof.mp (BProof.ax h₁) BTheorem.andE₂⟩
t : Th f g : Form h₁ : f&g ∈ ↑t l₁ : t⊨f ⊢ t⊨f&g
t : Th f g : Form h₁ : f&g ∈ ↑t l₁ : t⊨f l₂ : t⊨g ⊢ t⊨f&g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
exact ⟨l₁,l₂⟩
t : Th f g : Form h₁ : f&g ∈ ↑t l₁ : t⊨f l₂ : t⊨g ⊢ t⊨f&g
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
rw [primeAnalysis]
t : Th f g : Form h₁ : t⊨f¦g ⊢ f¦g ∈ ↑t
t : Th f g : Form h₁ : t⊨f¦g ⊢ f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
intros p h₂
t : Th f g : Form h₁ : t⊨f¦g ⊢ f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } ⊢ f¦g ∈ p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
let pr : Pr := ⟨⟨p, h₂.right.right⟩,h₂.left⟩
t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } ⊢ f¦g ∈ p
t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } ⊢ f¦g ∈ p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₁ := @h₁ pr h₂.right.left
t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } ⊢ f¦g ∈ p
t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } l₁ : ↑pr⊨f ∨ ↑pr⊨g ⊢ f¦g ∈ p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
cases l₁
t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } l₁ : ↑pr⊨f ∨ ↑pr⊨g ⊢ f¦g ∈ p
case inl t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } h✝ : ↑pr⊨f ⊢ f¦g ∈ p case inr t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } h✝ : ↑pr⊨g ⊢ f¦g ∈ p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
case inl h₃ => have l₂ := canonicalSatisfaction.mp h₃ exact h₂.right.right.mpr ⟨BProof.mp (BProof.ax l₂) BTheorem.orI₁⟩
t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } h₃ : ↑pr⊨f ⊢ f¦g ∈ p
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
case inr h₃ => have l₂ := canonicalSatisfaction.mp h₃ exact h₂.right.right.mpr ⟨BProof.mp (BProof.ax l₂) BTheorem.orI₂⟩
t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } h₃ : ↑pr⊨g ⊢ f¦g ∈ p
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₂ := canonicalSatisfaction.mp h₃
t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } h₃ : ↑pr⊨f ⊢ f¦g ∈ p
t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } h₃ : ↑pr⊨f l₂ : f ∈ ↑↑pr ⊢ f¦g ∈ p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
exact h₂.right.right.mpr ⟨BProof.mp (BProof.ax l₂) BTheorem.orI₁⟩
t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } h₃ : ↑pr⊨f l₂ : f ∈ ↑↑pr ⊢ f¦g ∈ p
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₂ := canonicalSatisfaction.mp h₃
t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } h₃ : ↑pr⊨g ⊢ f¦g ∈ p
t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } h₃ : ↑pr⊨g l₂ : g ∈ ↑↑pr ⊢ f¦g ∈ p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
exact h₂.right.right.mpr ⟨BProof.mp (BProof.ax l₂) BTheorem.orI₂⟩
t : Th f g : Form h₁ : t⊨f¦g p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } h₃ : ↑pr⊨g l₂ : g ∈ ↑↑pr ⊢ f¦g ∈ p
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
intros p h₂
t : Th f g : Form h₁ : f¦g ∈ ↑t ⊢ t⊨f¦g
t : Th f g : Form h₁ : f¦g ∈ ↑t p : Model.primes h₂ : t ≤ ↑p ⊢ ↑p⊨f ∨ ↑p⊨g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
rw [primeAnalysis] at h₁
t : Th f g : Form h₁ : f¦g ∈ ↑t p : Model.primes h₂ : t ≤ ↑p ⊢ ↑p⊨f ∨ ↑p⊨g
t : Th f g : Form h₁ : f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂ : t ≤ ↑p ⊢ ↑p⊨f ∨ ↑p⊨g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₁ : f ¦ g ∈ p.val.val := (Set.mem_interₛ.mp h₁ p) ⟨p.property, h₂, p.val.property⟩
t : Th f g : Form h₁ : f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂ : t ≤ ↑p ⊢ ↑p⊨f ∨ ↑p⊨g
t : Th f g : Form h₁ : f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂ : t ≤ ↑p l₁ : f¦g ∈ ↑↑p ⊢ ↑p⊨f ∨ ↑p⊨g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₂ : f ∈ p.val.val ∨ g ∈ p.val.val := p.property l₁
t : Th f g : Form h₁ : f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂ : t ≤ ↑p l₁ : f¦g ∈ ↑↑p ⊢ ↑p⊨f ∨ ↑p⊨g
t : Th f g : Form h₁ : f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂ : t ≤ ↑p l₁ : f¦g ∈ ↑↑p l₂ : f ∈ ↑↑p ∨ g ∈ ↑↑p ⊢ ↑p⊨f ∨ ↑p⊨g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
cases l₂
t : Th f g : Form h₁ : f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂ : t ≤ ↑p l₁ : f¦g ∈ ↑↑p l₂ : f ∈ ↑↑p ∨ g ∈ ↑↑p ⊢ ↑p⊨f ∨ ↑p⊨g
case inl t : Th f g : Form h₁ : f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂ : t ≤ ↑p l₁ : f¦g ∈ ↑↑p h✝ : f ∈ ↑↑p ⊢ ↑p⊨f ∨ ↑p⊨g case inr t : Th f g : Form h₁ : f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂ : t ≤ ↑p l₁ : f¦g ∈ ↑↑p h✝ : g ∈ ↑↑p ⊢ ↑p⊨f ∨ ↑p⊨g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
case inl h₂ => exact Or.inl $ canonicalSatisfaction.mpr h₂
t : Th f g : Form h₁ : f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂✝ : t ≤ ↑p l₁ : f¦g ∈ ↑↑p h₂ : f ∈ ↑↑p ⊢ ↑p⊨f ∨ ↑p⊨g
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
case inr h₂ => exact Or.inr $ canonicalSatisfaction.mpr h₂
t : Th f g : Form h₁ : f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂✝ : t ≤ ↑p l₁ : f¦g ∈ ↑↑p h₂ : g ∈ ↑↑p ⊢ ↑p⊨f ∨ ↑p⊨g
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
exact Or.inl $ canonicalSatisfaction.mpr h₂
t : Th f g : Form h₁ : f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂✝ : t ≤ ↑p l₁ : f¦g ∈ ↑↑p h₂ : f ∈ ↑↑p ⊢ ↑p⊨f ∨ ↑p⊨g
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
exact Or.inr $ canonicalSatisfaction.mpr h₂
t : Th f g : Form h₁ : f¦g ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂✝ : t ≤ ↑p l₁ : f¦g ∈ ↑↑p h₂ : g ∈ ↑↑p ⊢ ↑p⊨f ∨ ↑p⊨g
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
rw [primeAnalysis]
t : Th f : Form h₁ : t⊨~f ⊢ ~f ∈ ↑t
t : Th f : Form h₁ : t⊨~f ⊢ ~f ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
intros p h₂
t : Th f : Form h₁ : t⊨~f ⊢ ~f ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p }
t : Th f : Form h₁ : t⊨~f p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } ⊢ ~f ∈ p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
let pr : Pr := ⟨⟨p, h₂.right.right⟩,h₂.left⟩
t : Th f : Form h₁ : t⊨~f p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } ⊢ ~f ∈ p
t : Th f : Form h₁ : t⊨~f p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } ⊢ ~f ∈ p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₁ := @h₁ pr h₂.right.left
t : Th f : Form h₁ : t⊨~f p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } ⊢ ~f ∈ p
t : Th f : Form h₁ : t⊨~f p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } l₁ : ¬↑(pr*)⊨f ⊢ ~f ∈ p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₂ := l₁ ∘ canonicalSatisfaction.mpr
t : Th f : Form h₁ : t⊨~f p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } l₁ : ¬↑(pr*)⊨f ⊢ ~f ∈ p
t : Th f : Form h₁ : t⊨~f p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } l₁ : ¬↑(pr*)⊨f l₂ : f ∈ ↑↑(pr*) → False ⊢ ~f ∈ p
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
apply byContradiction
t : Th f : Form h₁ : t⊨~f p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } l₁ : ¬↑(pr*)⊨f l₂ : f ∈ ↑↑(pr*) → False ⊢ ~f ∈ p
case h t : Th f : Form h₁ : t⊨~f p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } l₁ : ¬↑(pr*)⊨f l₂ : f ∈ ↑↑(pr*) → False ⊢ ¬~f ∈ p → False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
exact l₂
case h t : Th f : Form h₁ : t⊨~f p : Set Form h₂ : p ∈ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } pr : Pr := { val := { val := p, property := (_ : ∀ {f : Form}, f ∈ p ↔ p⊢f) }, property := (_ : ∀ {f g : Form}, f¦g ∈ p → f ∈ p ∨ g ∈ p) } l₁ : ¬↑(pr*)⊨f l₂ : f ∈ ↑↑(pr*) → False ⊢ ¬~f ∈ p → False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
intros p h₂ h₃
t : Th f : Form h₁ : ~f ∈ ↑t ⊢ t⊨~f
t : Th f : Form h₁ : ~f ∈ ↑t p : Model.primes h₂ : t ≤ ↑p h₃ : ↑(p*)⊨f ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
rw [primeAnalysis] at h₁
t : Th f : Form h₁ : ~f ∈ ↑t p : Model.primes h₂ : t ≤ ↑p h₃ : ↑(p*)⊨f ⊢ False
t : Th f : Form h₁ : ~f ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂ : t ≤ ↑p h₃ : ↑(p*)⊨f ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
have l₁ : ~f ∈ p.val.val := (Set.mem_interₛ.mp h₁ p) ⟨p.property, h₂, p.val.property⟩
t : Th f : Form h₁ : ~f ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂ : t ≤ ↑p h₃ : ↑(p*)⊨f ⊢ False
t : Th f : Form h₁ : ~f ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂ : t ≤ ↑p h₃ : ↑(p*)⊨f l₁ : ~f ∈ ↑↑p ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
exact canonicalSatisfaction.mp h₃ l₁
t : Th f : Form h₁ : ~f ∈ ⋂₀ { p | isPrimeTheory p ∧ ↑t ≤ p ∧ formalTheory p } p : Model.primes h₂ : t ≤ ↑p h₃ : ↑(p*)⊨f l₁ : ~f ∈ ↑↑p ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
apply byContradiction
t : Th f g : Form h₁ : t⊨f⊃g ⊢ f⊃g ∈ ↑t
case h t : Th f g : Form h₁ : t⊨f⊃g ⊢ ¬f⊃g ∈ ↑t → False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/CanonicalModel.lean
canonicalSatisfaction
[172, 1]
[235, 39]
intros h₂
case h t : Th f g : Form h₁ : t⊨f⊃g ⊢ ¬f⊃g ∈ ↑t → False
case h t : Th f g : Form h₁ : t⊨f⊃g h₂ : ¬f⊃g ∈ ↑t ⊢ False