url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Semantics/Satisfaction.lean
starCompatLeft
[88, 1]
[94, 29]
have ⟨x, l₁⟩ := nonconstruction h₁
α : Type inst : Model α p : Model.primes f : Form h₁ : ¬p⊨~f ⊢ p*⊨f
α : Type inst : Model α p : Model.primes f : Form h₁ : ¬p⊨~f x : Model.primes l₁ : ¬(↑p ≤ ↑x → ¬↑(x*)⊨f) ⊢ p*⊨f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Semantics/Satisfaction.lean
starCompatLeft
[88, 1]
[94, 29]
have ⟨l₂,l₃⟩ := nonconstruction l₁
α : Type inst : Model α p : Model.primes f : Form h₁ : ¬p⊨~f x : Model.primes l₁ : ¬(↑p ≤ ↑x → ¬↑(x*)⊨f) ⊢ p*⊨f
α : Type inst : Model α p : Model.primes f : Form h₁ : ¬p⊨~f x : Model.primes l₁ : ¬(↑p ≤ ↑x → ¬↑(x*)⊨f) l₂ : ↑p ≤ ↑x l₃ : ¬¬↑(x*)⊨f ⊢ p*⊨f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Semantics/Satisfaction.lean
starCompatLeft
[88, 1]
[94, 29]
have l₄ := byContradiction l₃
α : Type inst : Model α p : Model.primes f : Form h₁ : ¬p⊨~f x : Model.primes l₁ : ¬(↑p ≤ ↑x → ¬↑(x*)⊨f) l₂ : ↑p ≤ ↑x l₃ : ¬¬↑(x*)⊨f ⊢ p*⊨f
α : Type inst : Model α p : Model.primes f : Form h₁ : ¬p⊨~f x : Model.primes l₁ : ¬(↑p ≤ ↑x → ¬↑(x*)⊨f) l₂ : ↑p ≤ ↑x l₃ : ¬¬↑(x*)⊨f l₄ : ↑(x*)⊨f ⊢ p*⊨f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Semantics/Satisfaction.lean
starCompatLeft
[88, 1]
[94, 29]
have l₅ := inst.starAntitone l₂
α : Type inst : Model α p : Model.primes f : Form h₁ : ¬p⊨~f x : Model.primes l₁ : ¬(↑p ≤ ↑x → ¬↑(x*)⊨f) l₂ : ↑p ≤ ↑x l₃ : ¬¬↑(x*)⊨f l₄ : ↑(x*)⊨f ⊢ p*⊨f
α : Type inst : Model α p : Model.primes f : Form h₁ : ¬p⊨~f x : Model.primes l₁ : ¬(↑p ≤ ↑x → ¬↑(x*)⊨f) l₂ : ↑p ≤ ↑x l₃ : ¬¬↑(x*)⊨f l₄ : ↑(x*)⊨f l₅ : x* ≤ p* ⊢ p*⊨f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/Semantics/Satisfaction.lean
starCompatLeft
[88, 1]
[94, 29]
exact upwardsClosure l₅ l₄
α : Type inst : Model α p : Model.primes f : Form h₁ : ¬p⊨~f x : Model.primes l₁ : ¬(↑p ≤ ↑x → ¬↑(x*)⊨f) l₂ : ↑p ≤ ↑x l₃ : ¬¬↑(x*)⊨f l₄ : ↑(x*)⊨f l₅ : x* ≤ p* ⊢ p*⊨f
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
unfold formalTheory
⊢ ∀ (Γ : Ctx), formalTheory (▲Γ)
⊢ ∀ (Γ : Ctx) {f : Form}, f ∈ ▲Γ ↔ ▲Γ⊢f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
intros Γ f
⊢ ∀ (Γ : Ctx) {f : Form}, f ∈ ▲Γ ↔ ▲Γ⊢f
Γ : Ctx f : Form ⊢ f ∈ ▲Γ ↔ ▲Γ⊢f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
apply Iff.intro
Γ : Ctx f : Form ⊢ f ∈ ▲Γ ↔ ▲Γ⊢f
case mp Γ : Ctx f : Form ⊢ f ∈ ▲Γ → ▲Γ⊢f case mpr Γ : Ctx f : Form ⊢ ▲Γ⊢f → f ∈ ▲Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
case mp => intros h₁ exact Nonempty.intro $ BProof.ax h₁
Γ : Ctx f : Form ⊢ f ∈ ▲Γ → ▲Γ⊢f
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
case mpr => intros h₁ have ⟨w⟩ := h₁ induction w case ax => assumption case mp P Q prf thm ih => have ⟨prf₂⟩ := ih ⟨prf⟩ exact ⟨BProof.mp prf₂ thm⟩ case adj P Q prf₁ prf₂ ih₁ ih₂ => have ⟨prf₃⟩ := ih₁ ⟨prf₁⟩ have ⟨prf₄⟩ := ih₂ ⟨prf₂⟩ exact ⟨BProof.adj prf₃ prf₄⟩
Γ : Ctx f : Form ⊢ ▲Γ⊢f → f ∈ ▲Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
intros h₁
Γ : Ctx f : Form ⊢ f ∈ ▲Γ → ▲Γ⊢f
Γ : Ctx f : Form h₁ : f ∈ ▲Γ ⊢ ▲Γ⊢f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
exact Nonempty.intro $ BProof.ax h₁
Γ : Ctx f : Form h₁ : f ∈ ▲Γ ⊢ ▲Γ⊢f
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
intros h₁
Γ : Ctx f : Form ⊢ ▲Γ⊢f → f ∈ ▲Γ
Γ : Ctx f : Form h₁ : ▲Γ⊢f ⊢ f ∈ ▲Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
have ⟨w⟩ := h₁
Γ : Ctx f : Form h₁ : ▲Γ⊢f ⊢ f ∈ ▲Γ
Γ : Ctx f : Form h₁ : ▲Γ⊢f w : BProof (▲Γ) f ⊢ f ∈ ▲Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
induction w
Γ : Ctx f : Form h₁ : ▲Γ⊢f w : BProof (▲Γ) f ⊢ f ∈ ▲Γ
case ax Γ : Ctx f p✝ : Form h✝ : p✝ ∈ ▲Γ h₁ : ▲Γ⊢p✝ ⊢ p✝ ∈ ▲Γ case mp Γ : Ctx f p✝ q✝ : Form h₁✝ : BProof (▲Γ) p✝ h₂✝ : BTheorem (p✝⊃q✝) h₁_ih✝ : ▲Γ⊢p✝ → p✝ ∈ ▲Γ h₁ : ▲Γ⊢q✝ ⊢ q✝ ∈ ▲Γ case adj Γ : Ctx f p✝ q✝ : Form h₁✝ : BProof (▲Γ) p✝ h₂✝ : BProof (▲Γ) q✝ h₁_ih✝ : ▲Γ⊢p✝ → p✝ ∈ ▲Γ h₂_ih✝ : ▲Γ⊢q✝ → q✝ ∈ ▲Γ h₁ : ▲Γ⊢p✝&q✝ ⊢ p✝&q✝ ∈ ▲Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
case ax => assumption
Γ : Ctx f p✝ : Form h✝ : p✝ ∈ ▲Γ h₁ : ▲Γ⊢p✝ ⊢ p✝ ∈ ▲Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
case mp P Q prf thm ih => have ⟨prf₂⟩ := ih ⟨prf⟩ exact ⟨BProof.mp prf₂ thm⟩
Γ : Ctx f P Q : Form prf : BProof (▲Γ) P thm : BTheorem (P⊃Q) ih : ▲Γ⊢P → P ∈ ▲Γ h₁ : ▲Γ⊢Q ⊢ Q ∈ ▲Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
case adj P Q prf₁ prf₂ ih₁ ih₂ => have ⟨prf₃⟩ := ih₁ ⟨prf₁⟩ have ⟨prf₄⟩ := ih₂ ⟨prf₂⟩ exact ⟨BProof.adj prf₃ prf₄⟩
Γ : Ctx f P Q : Form prf₁ : BProof (▲Γ) P prf₂ : BProof (▲Γ) Q ih₁ : ▲Γ⊢P → P ∈ ▲Γ ih₂ : ▲Γ⊢Q → Q ∈ ▲Γ h₁ : ▲Γ⊢P&Q ⊢ P&Q ∈ ▲Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
assumption
Γ : Ctx f p✝ : Form h✝ : p✝ ∈ ▲Γ h₁ : ▲Γ⊢p✝ ⊢ p✝ ∈ ▲Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
have ⟨prf₂⟩ := ih ⟨prf⟩
Γ : Ctx f P Q : Form prf : BProof (▲Γ) P thm : BTheorem (P⊃Q) ih : ▲Γ⊢P → P ∈ ▲Γ h₁ : ▲Γ⊢Q ⊢ Q ∈ ▲Γ
Γ : Ctx f P Q : Form prf : BProof (▲Γ) P thm : BTheorem (P⊃Q) ih : ▲Γ⊢P → P ∈ ▲Γ h₁ : ▲Γ⊢Q prf₂ : BProof Γ P ⊢ Q ∈ ▲Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
exact ⟨BProof.mp prf₂ thm⟩
Γ : Ctx f P Q : Form prf : BProof (▲Γ) P thm : BTheorem (P⊃Q) ih : ▲Γ⊢P → P ∈ ▲Γ h₁ : ▲Γ⊢Q prf₂ : BProof Γ P ⊢ Q ∈ ▲Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
have ⟨prf₃⟩ := ih₁ ⟨prf₁⟩
Γ : Ctx f P Q : Form prf₁ : BProof (▲Γ) P prf₂ : BProof (▲Γ) Q ih₁ : ▲Γ⊢P → P ∈ ▲Γ ih₂ : ▲Γ⊢Q → Q ∈ ▲Γ h₁ : ▲Γ⊢P&Q ⊢ P&Q ∈ ▲Γ
Γ : Ctx f P Q : Form prf₁ : BProof (▲Γ) P prf₂ : BProof (▲Γ) Q ih₁ : ▲Γ⊢P → P ∈ ▲Γ ih₂ : ▲Γ⊢Q → Q ∈ ▲Γ h₁ : ▲Γ⊢P&Q prf₃ : BProof Γ P ⊢ P&Q ∈ ▲Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
have ⟨prf₄⟩ := ih₂ ⟨prf₂⟩
Γ : Ctx f P Q : Form prf₁ : BProof (▲Γ) P prf₂ : BProof (▲Γ) Q ih₁ : ▲Γ⊢P → P ∈ ▲Γ ih₂ : ▲Γ⊢Q → Q ∈ ▲Γ h₁ : ▲Γ⊢P&Q prf₃ : BProof Γ P ⊢ P&Q ∈ ▲Γ
Γ : Ctx f P Q : Form prf₁ : BProof (▲Γ) P prf₂ : BProof (▲Γ) Q ih₁ : ▲Γ⊢P → P ∈ ▲Γ ih₂ : ▲Γ⊢Q → Q ∈ ▲Γ h₁ : ▲Γ⊢P&Q prf₃ : BProof Γ P prf₄ : BProof Γ Q ⊢ P&Q ∈ ▲Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedFormal
[17, 1]
[35, 36]
exact ⟨BProof.adj prf₃ prf₄⟩
Γ : Ctx f P Q : Form prf₁ : BProof (▲Γ) P prf₂ : BProof (▲Γ) Q ih₁ : ▲Γ⊢P → P ∈ ▲Γ ih₂ : ▲Γ⊢Q → Q ∈ ▲Γ h₁ : ▲Γ⊢P&Q prf₃ : BProof Γ P prf₄ : BProof Γ Q ⊢ P&Q ∈ ▲Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedDisjunction
[49, 1]
[55, 21]
intros h₁
f g h : Form ⊢ f ∈ ▲{g} ∧ f ∈ ▲{h} → f ∈ ▲{g¦h}
f g h : Form h₁ : f ∈ ▲{g} ∧ f ∈ ▲{h} ⊢ f ∈ ▲{g¦h}
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedDisjunction
[49, 1]
[55, 21]
have ⟨⟨prf₁⟩,⟨prf₂⟩⟩ := h₁
f g h : Form h₁ : f ∈ ▲{g} ∧ f ∈ ▲{h} ⊢ f ∈ ▲{g¦h}
f g h : Form h₁ : f ∈ ▲{g} ∧ f ∈ ▲{h} prf₁ : BProof {g} f prf₂ : BProof {h} f ⊢ f ∈ ▲{g¦h}
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedDisjunction
[49, 1]
[55, 21]
have l₁ := prf₁.toTheorem
f g h : Form h₁ : f ∈ ▲{g} ∧ f ∈ ▲{h} prf₁ : BProof {g} f prf₂ : BProof {h} f ⊢ f ∈ ▲{g¦h}
f g h : Form h₁ : f ∈ ▲{g} ∧ f ∈ ▲{h} prf₁ : BProof {g} f prf₂ : BProof {h} f l₁ : BTheorem (g⊃f) ⊢ f ∈ ▲{g¦h}
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedDisjunction
[49, 1]
[55, 21]
have l₂ := prf₂.toTheorem
f g h : Form h₁ : f ∈ ▲{g} ∧ f ∈ ▲{h} prf₁ : BProof {g} f prf₂ : BProof {h} f l₁ : BTheorem (g⊃f) ⊢ f ∈ ▲{g¦h}
f g h : Form h₁ : f ∈ ▲{g} ∧ f ∈ ▲{h} prf₁ : BProof {g} f prf₂ : BProof {h} f l₁ : BTheorem (g⊃f) l₂ : BTheorem (h⊃f) ⊢ f ∈ ▲{g¦h}
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedDisjunction
[49, 1]
[55, 21]
have l₃ := (BTheorem.mp (BTheorem.adj l₁ l₂) BTheorem.orE)
f g h : Form h₁ : f ∈ ▲{g} ∧ f ∈ ▲{h} prf₁ : BProof {g} f prf₂ : BProof {h} f l₁ : BTheorem (g⊃f) l₂ : BTheorem (h⊃f) ⊢ f ∈ ▲{g¦h}
f g h : Form h₁ : f ∈ ▲{g} ∧ f ∈ ▲{h} prf₁ : BProof {g} f prf₂ : BProof {h} f l₁ : BTheorem (g⊃f) l₂ : BTheorem (h⊃f) l₃ : BTheorem (g¦h⊃f) ⊢ f ∈ ▲{g¦h}
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedDisjunction
[49, 1]
[55, 21]
exact ⟨l₃.toProof⟩
f g h : Form h₁ : f ∈ ▲{g} ∧ f ∈ ▲{h} prf₁ : BProof {g} f prf₂ : BProof {h} f l₁ : BTheorem (g⊃f) l₂ : BTheorem (h⊃f) l₃ : BTheorem (g¦h⊃f) ⊢ f ∈ ▲{g¦h}
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
intros h₁ f h₂
Γ : Ctx Δ : Th ⊢ Γ ⊆ ↑Δ → ▲Γ ⊆ ↑Δ
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f : Form h₂ : f ∈ ▲Γ ⊢ f ∈ ↑Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
have ⟨prf⟩ := h₂
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f : Form h₂ : f ∈ ▲Γ ⊢ f ∈ ↑Δ
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f : Form h₂ : f ∈ ▲Γ prf : BProof Γ f ⊢ f ∈ ↑Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
induction prf
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f : Form h₂ : f ∈ ▲Γ prf : BProof Γ f ⊢ f ∈ ↑Δ
case ax Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p✝ : Form h✝ : p✝ ∈ Γ h₂ : p✝ ∈ ▲Γ ⊢ p✝ ∈ ↑Δ case mp Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p✝ q✝ : Form h₁✝ : BProof Γ p✝ h₂✝ : BTheorem (p✝⊃q✝) h₁_ih✝ : p✝ ∈ ▲Γ → p✝ ∈ ↑Δ h₂ : q✝ ∈ ▲Γ ⊢ q✝ ∈ ↑Δ case adj Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p✝ q✝ : Form h₁✝ : BProof Γ p✝ h₂✝ : BProof Γ q✝ h₁_ih✝ : p✝ ∈ ▲Γ → p✝ ∈ ↑Δ h₂_ih✝ : q✝ ∈ ▲Γ → q✝ ∈ ↑Δ h₂ : p✝&q✝ ∈ ▲Γ ⊢ p✝&q✝ ∈ ↑Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
case ax p ih => exact h₁ ih
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p : Form ih : p ∈ Γ h₂ : p ∈ ▲Γ ⊢ p ∈ ↑Δ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
case mp p q prf₁ prf₂ ih => have l₁ := ih ⟨prf₁⟩ have ⟨prf₃⟩ := Δ.property.mp l₁ exact Δ.property.mpr ⟨BProof.mp prf₃ prf₂⟩
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BTheorem (p⊃q) ih : p ∈ ▲Γ → p ∈ ↑Δ h₂ : q ∈ ▲Γ ⊢ q ∈ ↑Δ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
case adj p q prf₁ prf₂ ih₁ ih₂ => have l₁ := ih₁ ⟨prf₁⟩ have l₂ := ih₂ ⟨prf₂⟩ have ⟨prf₃⟩ := Δ.property.mp l₁ have ⟨prf₄⟩ := Δ.property.mp l₂ exact Δ.property.mpr ⟨BProof.adj prf₃ prf₄⟩
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BProof Γ q ih₁ : p ∈ ▲Γ → p ∈ ↑Δ ih₂ : q ∈ ▲Γ → q ∈ ↑Δ h₂ : p&q ∈ ▲Γ ⊢ p&q ∈ ↑Δ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
exact h₁ ih
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p : Form ih : p ∈ Γ h₂ : p ∈ ▲Γ ⊢ p ∈ ↑Δ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
have l₁ := ih ⟨prf₁⟩
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BTheorem (p⊃q) ih : p ∈ ▲Γ → p ∈ ↑Δ h₂ : q ∈ ▲Γ ⊢ q ∈ ↑Δ
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BTheorem (p⊃q) ih : p ∈ ▲Γ → p ∈ ↑Δ h₂ : q ∈ ▲Γ l₁ : p ∈ ↑Δ ⊢ q ∈ ↑Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
have ⟨prf₃⟩ := Δ.property.mp l₁
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BTheorem (p⊃q) ih : p ∈ ▲Γ → p ∈ ↑Δ h₂ : q ∈ ▲Γ l₁ : p ∈ ↑Δ ⊢ q ∈ ↑Δ
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BTheorem (p⊃q) ih : p ∈ ▲Γ → p ∈ ↑Δ h₂ : q ∈ ▲Γ l₁ : p ∈ ↑Δ prf₃ : BProof (↑Δ) p ⊢ q ∈ ↑Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
exact Δ.property.mpr ⟨BProof.mp prf₃ prf₂⟩
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BTheorem (p⊃q) ih : p ∈ ▲Γ → p ∈ ↑Δ h₂ : q ∈ ▲Γ l₁ : p ∈ ↑Δ prf₃ : BProof (↑Δ) p ⊢ q ∈ ↑Δ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
have l₁ := ih₁ ⟨prf₁⟩
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BProof Γ q ih₁ : p ∈ ▲Γ → p ∈ ↑Δ ih₂ : q ∈ ▲Γ → q ∈ ↑Δ h₂ : p&q ∈ ▲Γ ⊢ p&q ∈ ↑Δ
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BProof Γ q ih₁ : p ∈ ▲Γ → p ∈ ↑Δ ih₂ : q ∈ ▲Γ → q ∈ ↑Δ h₂ : p&q ∈ ▲Γ l₁ : p ∈ ↑Δ ⊢ p&q ∈ ↑Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
have l₂ := ih₂ ⟨prf₂⟩
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BProof Γ q ih₁ : p ∈ ▲Γ → p ∈ ↑Δ ih₂ : q ∈ ▲Γ → q ∈ ↑Δ h₂ : p&q ∈ ▲Γ l₁ : p ∈ ↑Δ ⊢ p&q ∈ ↑Δ
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BProof Γ q ih₁ : p ∈ ▲Γ → p ∈ ↑Δ ih₂ : q ∈ ▲Γ → q ∈ ↑Δ h₂ : p&q ∈ ▲Γ l₁ : p ∈ ↑Δ l₂ : q ∈ ↑Δ ⊢ p&q ∈ ↑Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
have ⟨prf₃⟩ := Δ.property.mp l₁
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BProof Γ q ih₁ : p ∈ ▲Γ → p ∈ ↑Δ ih₂ : q ∈ ▲Γ → q ∈ ↑Δ h₂ : p&q ∈ ▲Γ l₁ : p ∈ ↑Δ l₂ : q ∈ ↑Δ ⊢ p&q ∈ ↑Δ
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BProof Γ q ih₁ : p ∈ ▲Γ → p ∈ ↑Δ ih₂ : q ∈ ▲Γ → q ∈ ↑Δ h₂ : p&q ∈ ▲Γ l₁ : p ∈ ↑Δ l₂ : q ∈ ↑Δ prf₃ : BProof (↑Δ) p ⊢ p&q ∈ ↑Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
have ⟨prf₄⟩ := Δ.property.mp l₂
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BProof Γ q ih₁ : p ∈ ▲Γ → p ∈ ↑Δ ih₂ : q ∈ ▲Γ → q ∈ ↑Δ h₂ : p&q ∈ ▲Γ l₁ : p ∈ ↑Δ l₂ : q ∈ ↑Δ prf₃ : BProof (↑Δ) p ⊢ p&q ∈ ↑Δ
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BProof Γ q ih₁ : p ∈ ▲Γ → p ∈ ↑Δ ih₂ : q ∈ ▲Γ → q ∈ ↑Δ h₂ : p&q ∈ ▲Γ l₁ : p ∈ ↑Δ l₂ : q ∈ ↑Δ prf₃ : BProof (↑Δ) p prf₄ : BProof (↑Δ) q ⊢ p&q ∈ ↑Δ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
generatedContained
[57, 1]
[71, 48]
exact Δ.property.mpr ⟨BProof.adj prf₃ prf₄⟩
Γ : Ctx Δ : Th h₁ : Γ ⊆ ↑Δ f p q : Form prf₁ : BProof Γ p prf₂ : BProof Γ q ih₁ : p ∈ ▲Γ → p ∈ ↑Δ ih₂ : q ∈ ▲Γ → q ∈ ↑Δ h₂ : p&q ∈ ▲Γ l₁ : p ∈ ↑Δ l₂ : q ∈ ↑Δ prf₃ : BProof (↑Δ) p prf₄ : BProof (↑Δ) q ⊢ p&q ∈ ↑Δ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalFixed
[73, 1]
[82, 20]
intros h₁
Γ : Ctx ⊢ formalTheory Γ → ▲Γ = Γ
Γ : Ctx h₁ : formalTheory Γ ⊢ ▲Γ = Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalFixed
[73, 1]
[82, 20]
funext
Γ : Ctx h₁ : formalTheory Γ ⊢ ▲Γ = Γ
case h Γ : Ctx h₁ : formalTheory Γ x✝ : Form ⊢ (▲Γ) x✝ = Γ x✝
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalFixed
[73, 1]
[82, 20]
ext
Γ : Ctx h₁ : formalTheory Γ x : Form ⊢ (▲Γ) x = Γ x
case a Γ : Ctx h₁ : formalTheory Γ x : Form ⊢ (▲Γ) x ↔ Γ x
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalFixed
[73, 1]
[82, 20]
apply Iff.intro
case a Γ : Ctx h₁ : formalTheory Γ x : Form ⊢ (▲Γ) x ↔ Γ x
case a.mp Γ : Ctx h₁ : formalTheory Γ x : Form ⊢ (▲Γ) x → Γ x case a.mpr Γ : Ctx h₁ : formalTheory Γ x : Form ⊢ Γ x → (▲Γ) x
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
BisFormal
[84, 1]
[100, 33]
intros f
⊢ formalTheory BTheory
f : Form ⊢ f ∈ BTheory ↔ BTheory⊢f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
BisFormal
[84, 1]
[100, 33]
apply Iff.intro
f : Form ⊢ f ∈ BTheory ↔ BTheory⊢f
case mp f : Form ⊢ f ∈ BTheory → BTheory⊢f case mpr f : Form ⊢ BTheory⊢f → f ∈ BTheory
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
BisFormal
[84, 1]
[100, 33]
have l₁ := ih ⟨prf₁⟩
f P Q : Form prf₁ : BProof BTheory P thm₁ : BTheorem (P⊃Q) ih : BTheory⊢P → P ∈ BTheory h₁ : BTheory⊢Q ⊢ Q ∈ BTheory
f P Q : Form prf₁ : BProof BTheory P thm₁ : BTheorem (P⊃Q) ih : BTheory⊢P → P ∈ BTheory h₁ : BTheory⊢Q l₁ : P ∈ BTheory ⊢ Q ∈ BTheory
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
BisFormal
[84, 1]
[100, 33]
have ⟨thm₂⟩ := l₁
f P Q : Form prf₁ : BProof BTheory P thm₁ : BTheorem (P⊃Q) ih : BTheory⊢P → P ∈ BTheory h₁ : BTheory⊢Q l₁ : P ∈ BTheory ⊢ Q ∈ BTheory
f P Q : Form prf₁ : BProof BTheory P thm₁ : BTheorem (P⊃Q) ih : BTheory⊢P → P ∈ BTheory h₁ : BTheory⊢Q l₁ : P ∈ BTheory thm₂ : BTheorem P ⊢ Q ∈ BTheory
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
BisFormal
[84, 1]
[100, 33]
exact ⟨BTheorem.mp thm₂ thm₁⟩
f P Q : Form prf₁ : BProof BTheory P thm₁ : BTheorem (P⊃Q) ih : BTheory⊢P → P ∈ BTheory h₁ : BTheory⊢Q l₁ : P ∈ BTheory thm₂ : BTheorem P ⊢ Q ∈ BTheory
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
BisFormal
[84, 1]
[100, 33]
have ⟨l₁⟩ := ih₁ ⟨prf₁⟩
f P Q : Form prf₁ : BProof BTheory P prf₂ : BProof BTheory Q ih₁ : BTheory⊢P → P ∈ BTheory ih₂ : BTheory⊢Q → Q ∈ BTheory h₁ : BTheory⊢P&Q ⊢ P&Q ∈ BTheory
f P Q : Form prf₁ : BProof BTheory P prf₂ : BProof BTheory Q ih₁ : BTheory⊢P → P ∈ BTheory ih₂ : BTheory⊢Q → Q ∈ BTheory h₁ : BTheory⊢P&Q l₁ : BTheorem P ⊢ P&Q ∈ BTheory
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
BisFormal
[84, 1]
[100, 33]
have ⟨l₂⟩ := ih₂ ⟨prf₂⟩
f P Q : Form prf₁ : BProof BTheory P prf₂ : BProof BTheory Q ih₁ : BTheory⊢P → P ∈ BTheory ih₂ : BTheory⊢Q → Q ∈ BTheory h₁ : BTheory⊢P&Q l₁ : BTheorem P ⊢ P&Q ∈ BTheory
f P Q : Form prf₁ : BProof BTheory P prf₂ : BProof BTheory Q ih₁ : BTheory⊢P → P ∈ BTheory ih₂ : BTheory⊢Q → Q ∈ BTheory h₁ : BTheory⊢P&Q l₁ : BTheorem P l₂ : BTheorem Q ⊢ P&Q ∈ BTheory
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
BisFormal
[84, 1]
[100, 33]
exact ⟨BTheorem.adj l₁ l₂⟩
f P Q : Form prf₁ : BProof BTheory P prf₂ : BProof BTheory Q ih₁ : BTheory⊢P → P ∈ BTheory ih₂ : BTheory⊢Q → Q ∈ BTheory h₁ : BTheory⊢P&Q l₁ : BTheorem P l₂ : BTheorem Q ⊢ P&Q ∈ BTheory
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppMonotoneLeft
[106, 1]
[109, 34]
intros Γ a b h₁ A h₂
⊢ ∀ (Γ : Ctx), Monotone (formalApplication Γ)
Γ a b : Ctx h₁ : a ≤ b A : Form h₂ : A ∈ formalApplication Γ a ⊢ A ∈ formalApplication Γ b
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppMonotoneLeft
[106, 1]
[109, 34]
have ⟨g,h₃⟩ := h₂
Γ a b : Ctx h₁ : a ≤ b A : Form h₂ : A ∈ formalApplication Γ a ⊢ A ∈ formalApplication Γ b
Γ a b : Ctx h₁ : a ≤ b A : Form h₂ : A ∈ formalApplication Γ a g : Form h₃ : g ∈ a ∧ g⊃A ∈ Γ ⊢ A ∈ formalApplication Γ b
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppMonotoneLeft
[106, 1]
[109, 34]
exact ⟨g, h₁ h₃.left, h₃.right⟩
Γ a b : Ctx h₁ : a ≤ b A : Form h₂ : A ∈ formalApplication Γ a g : Form h₃ : g ∈ a ∧ g⊃A ∈ Γ ⊢ A ∈ formalApplication Γ b
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppMonotoneRight
[111, 1]
[114, 34]
intros Γ a b h₁ A h₂
⊢ ∀ (Γ : Ctx), Monotone (flip formalApplication Γ)
Γ a b : Ctx h₁ : a ≤ b A : Form h₂ : A ∈ flip formalApplication Γ a ⊢ A ∈ flip formalApplication Γ b
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppMonotoneRight
[111, 1]
[114, 34]
have ⟨g,h₃⟩ := h₂
Γ a b : Ctx h₁ : a ≤ b A : Form h₂ : A ∈ flip formalApplication Γ a ⊢ A ∈ flip formalApplication Γ b
Γ a b : Ctx h₁ : a ≤ b A : Form h₂ : A ∈ flip formalApplication Γ a g : Form h₃ : g ∈ Γ ∧ g⊃A ∈ a ⊢ A ∈ flip formalApplication Γ b
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppMonotoneRight
[111, 1]
[114, 34]
exact ⟨g, h₃.left, h₁ h₃.right⟩
Γ a b : Ctx h₁ : a ≤ b A : Form h₂ : A ∈ flip formalApplication Γ a g : Form h₃ : g ∈ Γ ∧ g⊃A ∈ a ⊢ A ∈ flip formalApplication Γ b
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppFunctionMonotoneRight
[153, 1]
[155, 36]
intros Γ _ _ h₁
⊢ ∀ (Γ : Th), Monotone (flip formalApplicationFunction Γ)
Γ a✝ b✝ : Th h₁ : a✝ ≤ b✝ ⊢ flip formalApplicationFunction Γ a✝ ≤ flip formalApplicationFunction Γ b✝
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppFunctionMonotoneRight
[153, 1]
[155, 36]
exact formalAppMonotoneRight Γ h₁
Γ a✝ b✝ : Th h₁ : a✝ ≤ b✝ ⊢ flip formalApplicationFunction Γ a✝ ≤ flip formalApplicationFunction Γ b✝
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppFunctionMonotoneLeft
[157, 1]
[159, 35]
intros Γ _ _ h₁
⊢ ∀ (Γ : Th), Monotone (formalApplicationFunction Γ)
Γ a✝ b✝ : Th h₁ : a✝ ≤ b✝ ⊢ formalApplicationFunction Γ a✝ ≤ formalApplicationFunction Γ b✝
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppFunctionMonotoneLeft
[157, 1]
[159, 35]
exact formalAppMonotoneLeft Γ h₁
Γ a✝ b✝ : Th h₁ : a✝ ≤ b✝ ⊢ formalApplicationFunction Γ a✝ ≤ formalApplicationFunction Γ b✝
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppIdentLeft
[161, 1]
[171, 35]
intros Γ
⊢ ∀ (Γ : Th), formalApplicationFunction BTh Γ = Γ
Γ : Th ⊢ formalApplicationFunction BTh Γ = Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppIdentLeft
[161, 1]
[171, 35]
ext f
Γ : Th ⊢ formalApplicationFunction BTh Γ = Γ
case a.h Γ : Th f : Form ⊢ f ∈ ↑(formalApplicationFunction BTh Γ) ↔ f ∈ ↑Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppIdentLeft
[161, 1]
[171, 35]
apply Iff.intro
case a.h Γ : Th f : Form ⊢ f ∈ ↑(formalApplicationFunction BTh Γ) ↔ f ∈ ↑Γ
case a.h.mp Γ : Th f : Form ⊢ f ∈ ↑(formalApplicationFunction BTh Γ) → f ∈ ↑Γ case a.h.mpr Γ : Th f : Form ⊢ f ∈ ↑Γ → f ∈ ↑(formalApplicationFunction BTh Γ)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppIdentLeft
[161, 1]
[171, 35]
case a.h.mp => intros h₁ have ⟨g,h₂,⟨h₃⟩⟩ := h₁ exact Γ.property.mpr ⟨BProof.mp (BProof.ax h₂) h₃⟩
Γ : Th f : Form ⊢ f ∈ ↑(formalApplicationFunction BTh Γ) → f ∈ ↑Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppIdentLeft
[161, 1]
[171, 35]
case a.h.mpr => intros h₁ exact ⟨f, h₁, ⟨BTheorem.taut⟩⟩
Γ : Th f : Form ⊢ f ∈ ↑Γ → f ∈ ↑(formalApplicationFunction BTh Γ)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppIdentLeft
[161, 1]
[171, 35]
intros h₁
Γ : Th f : Form ⊢ f ∈ ↑(formalApplicationFunction BTh Γ) → f ∈ ↑Γ
Γ : Th f : Form h₁ : f ∈ ↑(formalApplicationFunction BTh Γ) ⊢ f ∈ ↑Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppIdentLeft
[161, 1]
[171, 35]
have ⟨g,h₂,⟨h₃⟩⟩ := h₁
Γ : Th f : Form h₁ : f ∈ ↑(formalApplicationFunction BTh Γ) ⊢ f ∈ ↑Γ
Γ : Th f : Form h₁ : f ∈ ↑(formalApplicationFunction BTh Γ) g : Form h₂ : g ∈ ↑Γ h₃ : BTheorem (g⊃f) ⊢ f ∈ ↑Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppIdentLeft
[161, 1]
[171, 35]
exact Γ.property.mpr ⟨BProof.mp (BProof.ax h₂) h₃⟩
Γ : Th f : Form h₁ : f ∈ ↑(formalApplicationFunction BTh Γ) g : Form h₂ : g ∈ ↑Γ h₃ : BTheorem (g⊃f) ⊢ f ∈ ↑Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppIdentLeft
[161, 1]
[171, 35]
intros h₁
Γ : Th f : Form ⊢ f ∈ ↑Γ → f ∈ ↑(formalApplicationFunction BTh Γ)
Γ : Th f : Form h₁ : f ∈ ↑Γ ⊢ f ∈ ↑(formalApplicationFunction BTh Γ)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalAppIdentLeft
[161, 1]
[171, 35]
exact ⟨f, h₁, ⟨BTheorem.taut⟩⟩
Γ : Th f : Form h₁ : f ∈ ↑Γ ⊢ f ∈ ↑(formalApplicationFunction BTh Γ)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
intros F
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ ⊢ formalTheory (FormalDual Γ)
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F : Form ⊢ F ∈ FormalDual Γ ↔ FormalDual Γ⊢F
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
apply Iff.intro <;> intros h₃ <;> unfold FormalDual
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F : Form ⊢ F ∈ FormalDual Γ ↔ FormalDual Γ⊢F
case mp Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F : Form h₃ : F ∈ FormalDual Γ ⊢ (fun f => ¬~f ∈ Γ)⊢F case mpr Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F : Form h₃ : FormalDual Γ⊢F ⊢ F ∈ fun f => ¬~f ∈ Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
case mp => exact ⟨BProof.ax h₃⟩
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F : Form h₃ : F ∈ FormalDual Γ ⊢ (fun f => ¬~f ∈ Γ)⊢F
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
case mpr => have ⟨prf₁⟩ := h₃ induction prf₁ case ax => assumption case mp P Q prf₂ thm₁ ih₁ => intros h₄ have l₁ := ih₁ ⟨prf₂⟩ unfold FormalDual at l₁ have thm₂ : BTheorem (~Q ⊃ ~P) := BTheorem.cp $ BTheorem.transitivity thm₁ (BTheorem.cp BTheorem.taut) have prf₂ := BProof.mp (BProof.ax h₄) thm₂ exact l₁ (h₁.mpr ⟨prf₂⟩) case adj P Q prf₁ prf₂ ih₁ ih₂ => intros h₄ have l₁ := ih₁ ⟨prf₁⟩ have l₂ := ih₂ ⟨prf₂⟩ have prf₃ := BProof.mp (BProof.ax h₄) BTheorem.demorgansLaw3 have l₃ := h₂ (h₁.mpr ⟨prf₃⟩) cases l₃ case inl left => exact l₁ left case inr right => exact l₂ right
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F : Form h₃ : FormalDual Γ⊢F ⊢ F ∈ fun f => ¬~f ∈ Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
exact ⟨BProof.ax h₃⟩
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F : Form h₃ : F ∈ FormalDual Γ ⊢ (fun f => ¬~f ∈ Γ)⊢F
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
have ⟨prf₁⟩ := h₃
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F : Form h₃ : FormalDual Γ⊢F ⊢ F ∈ fun f => ¬~f ∈ Γ
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F : Form h₃ : FormalDual Γ⊢F prf₁ : BProof (FormalDual Γ) F ⊢ F ∈ fun f => ¬~f ∈ Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
induction prf₁
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F : Form h₃ : FormalDual Γ⊢F prf₁ : BProof (FormalDual Γ) F ⊢ F ∈ fun f => ¬~f ∈ Γ
case ax Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F p✝ : Form h✝ : p✝ ∈ FormalDual Γ h₃ : FormalDual Γ⊢p✝ ⊢ p✝ ∈ fun f => ¬~f ∈ Γ case mp Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F p✝ q✝ : Form h₁✝ : BProof (FormalDual Γ) p✝ h₂✝ : BTheorem (p✝⊃q✝) h₁_ih✝ : FormalDual Γ⊢p✝ → p✝ ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢q✝ ⊢ q✝ ∈ fun f => ¬~f ∈ Γ case adj Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F p✝ q✝ : Form h₁✝ : BProof (FormalDual Γ) p✝ h₂✝ : BProof (FormalDual Γ) q✝ h₁_ih✝ : FormalDual Γ⊢p✝ → p✝ ∈ fun f => ¬~f ∈ Γ h₂_ih✝ : FormalDual Γ⊢q✝ → q✝ ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢p✝&q✝ ⊢ p✝&q✝ ∈ fun f => ¬~f ∈ Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
case ax => assumption
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F p✝ : Form h✝ : p✝ ∈ FormalDual Γ h₃ : FormalDual Γ⊢p✝ ⊢ p✝ ∈ fun f => ¬~f ∈ Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
case mp P Q prf₂ thm₁ ih₁ => intros h₄ have l₁ := ih₁ ⟨prf₂⟩ unfold FormalDual at l₁ have thm₂ : BTheorem (~Q ⊃ ~P) := BTheorem.cp $ BTheorem.transitivity thm₁ (BTheorem.cp BTheorem.taut) have prf₂ := BProof.mp (BProof.ax h₄) thm₂ exact l₁ (h₁.mpr ⟨prf₂⟩)
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₂ : BProof (FormalDual Γ) P thm₁ : BTheorem (P⊃Q) ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢Q ⊢ Q ∈ fun f => ¬~f ∈ Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
case adj P Q prf₁ prf₂ ih₁ ih₂ => intros h₄ have l₁ := ih₁ ⟨prf₁⟩ have l₂ := ih₂ ⟨prf₂⟩ have prf₃ := BProof.mp (BProof.ax h₄) BTheorem.demorgansLaw3 have l₃ := h₂ (h₁.mpr ⟨prf₃⟩) cases l₃ case inl left => exact l₁ left case inr right => exact l₂ right
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q ⊢ P&Q ∈ fun f => ¬~f ∈ Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
assumption
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F p✝ : Form h✝ : p✝ ∈ FormalDual Γ h₃ : FormalDual Γ⊢p✝ ⊢ p✝ ∈ fun f => ¬~f ∈ Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
intros h₄
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₂ : BProof (FormalDual Γ) P thm₁ : BTheorem (P⊃Q) ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢Q ⊢ Q ∈ fun f => ¬~f ∈ Γ
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₂ : BProof (FormalDual Γ) P thm₁ : BTheorem (P⊃Q) ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢Q h₄ : ~Q ∈ Γ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
have l₁ := ih₁ ⟨prf₂⟩
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₂ : BProof (FormalDual Γ) P thm₁ : BTheorem (P⊃Q) ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢Q h₄ : ~Q ∈ Γ ⊢ False
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₂ : BProof (FormalDual Γ) P thm₁ : BTheorem (P⊃Q) ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢Q h₄ : ~Q ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
have thm₂ : BTheorem (~Q ⊃ ~P) := BTheorem.cp $ BTheorem.transitivity thm₁ (BTheorem.cp BTheorem.taut)
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₂ : BProof (FormalDual Γ) P thm₁ : BTheorem (P⊃Q) ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢Q h₄ : ~Q ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ ⊢ False
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₂ : BProof (FormalDual Γ) P thm₁ : BTheorem (P⊃Q) ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢Q h₄ : ~Q ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ thm₂ : BTheorem (~Q⊃~P) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
have prf₂ := BProof.mp (BProof.ax h₄) thm₂
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₂ : BProof (FormalDual Γ) P thm₁ : BTheorem (P⊃Q) ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢Q h₄ : ~Q ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ thm₂ : BTheorem (~Q⊃~P) ⊢ False
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₂✝ : BProof (FormalDual Γ) P thm₁ : BTheorem (P⊃Q) ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢Q h₄ : ~Q ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ thm₂ : BTheorem (~Q⊃~P) prf₂ : BProof Γ ~P ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
exact l₁ (h₁.mpr ⟨prf₂⟩)
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₂✝ : BProof (FormalDual Γ) P thm₁ : BTheorem (P⊃Q) ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢Q h₄ : ~Q ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ thm₂ : BTheorem (~Q⊃~P) prf₂ : BProof Γ ~P ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
intros h₄
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q ⊢ P&Q ∈ fun f => ¬~f ∈ Γ
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q h₄ : ~(P&Q) ∈ Γ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
have l₁ := ih₁ ⟨prf₁⟩
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q h₄ : ~(P&Q) ∈ Γ ⊢ False
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q h₄ : ~(P&Q) ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
have l₂ := ih₂ ⟨prf₂⟩
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q h₄ : ~(P&Q) ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ ⊢ False
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q h₄ : ~(P&Q) ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ l₂ : Q ∈ fun f => ¬~f ∈ Γ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
have prf₃ := BProof.mp (BProof.ax h₄) BTheorem.demorgansLaw3
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q h₄ : ~(P&Q) ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ l₂ : Q ∈ fun f => ¬~f ∈ Γ ⊢ False
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q h₄ : ~(P&Q) ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ l₂ : Q ∈ fun f => ¬~f ∈ Γ prf₃ : BProof Γ (~P¦~Q) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
have l₃ := h₂ (h₁.mpr ⟨prf₃⟩)
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q h₄ : ~(P&Q) ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ l₂ : Q ∈ fun f => ¬~f ∈ Γ prf₃ : BProof Γ (~P¦~Q) ⊢ False
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q h₄ : ~(P&Q) ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ l₂ : Q ∈ fun f => ¬~f ∈ Γ prf₃ : BProof Γ (~P¦~Q) l₃ : ~P ∈ Γ ∨ ~Q ∈ Γ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
cases l₃
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q h₄ : ~(P&Q) ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ l₂ : Q ∈ fun f => ¬~f ∈ Γ prf₃ : BProof Γ (~P¦~Q) l₃ : ~P ∈ Γ ∨ ~Q ∈ Γ ⊢ False
case inl Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q h₄ : ~(P&Q) ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ l₂ : Q ∈ fun f => ¬~f ∈ Γ prf₃ : BProof Γ (~P¦~Q) h✝ : ~P ∈ Γ ⊢ False case inr Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q h₄ : ~(P&Q) ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ l₂ : Q ∈ fun f => ¬~f ∈ Γ prf₃ : BProof Γ (~P¦~Q) h✝ : ~Q ∈ Γ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Theories.lean
formalStarFormal
[173, 1]
[196, 39]
case inl left => exact l₁ left
Γ : Ctx h₁ : formalTheory Γ h₂ : isPrimeTheory Γ F P Q : Form prf₁ : BProof (FormalDual Γ) P prf₂ : BProof (FormalDual Γ) Q ih₁ : FormalDual Γ⊢P → P ∈ fun f => ¬~f ∈ Γ ih₂ : FormalDual Γ⊢Q → Q ∈ fun f => ¬~f ∈ Γ h₃ : FormalDual Γ⊢P&Q h₄ : ~(P&Q) ∈ Γ l₁ : P ∈ fun f => ¬~f ∈ Γ l₂ : Q ∈ fun f => ¬~f ∈ Γ prf₃ : BProof Γ (~P¦~Q) left : ~P ∈ Γ ⊢ False
no goals