url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.v_discr_of_v_ai | [443, 1] | [453, 14] | apply_rules [val_add_ge_of_ge, val_sub_ge_of_ge] <;> . simp
elinarith | R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
q : ℕ
valp : SurjVal p
e : ValidModel R
hq : q > 1
h1 : v valp e.a1 ≥ 1
h2 : v valp e.a2 = 1
h3 : v valp e.a3 ≥ ↑q
h4 : v valp e.a4 ≥ ↑q + 1
h6 : v valp e.a6 ≥ 2 * ↑q
h2' : v valp (Model.b2 e.toModel) ≥ 1
h4' : v valp (Model.b4 e.toModel) ≥ ↑q + 1
h6' : v valp (Model.b6 e.toModel) ≥ 2 * ↑q
h8' : v valp (Model.b8 e.toModel) ≥ 2 * ↑q + 1
⊢ v valp (Model.discr e.toModel) ≥ 2 * ↑q + 3 | no goals |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.v_discr_of_v_ai | [443, 1] | [453, 14] | simp | case hb
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
q : ℕ
valp : SurjVal p
e : ValidModel R
hq : q > 1
h1 : v valp e.a1 ≥ 1
h2 : v valp e.a2 = 1
h3 : v valp e.a3 ≥ ↑q
h4 : v valp e.a4 ≥ ↑q + 1
h6 : v valp e.a6 ≥ 2 * ↑q
h2' : v valp (Model.b2 e.toModel) ≥ 1
h4' : v valp (Model.b4 e.toModel) ≥ ↑q + 1
h6' : v valp (Model.b6 e.toModel) ≥ 2 * ↑q
h8' : v valp (Model.b8 e.toModel) ≥ 2 * ↑q + 1
h2_symm : 1 = v valp e.a2
⊢ 2 * ↑q + 3 ≤ v valp (9 * Model.b2 e.toModel * Model.b4 e.toModel * Model.b6 e.toModel) | case hb
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
q : ℕ
valp : SurjVal p
e : ValidModel R
hq : q > 1
h1 : v valp e.a1 ≥ 1
h2 : v valp e.a2 = 1
h3 : v valp e.a3 ≥ ↑q
h4 : v valp e.a4 ≥ ↑q + 1
h6 : v valp e.a6 ≥ 2 * ↑q
h2' : v valp (Model.b2 e.toModel) ≥ 1
h4' : v valp (Model.b4 e.toModel) ≥ ↑q + 1
h6' : v valp (Model.b6 e.toModel) ≥ 2 * ↑q
h8' : v valp (Model.b8 e.toModel) ≥ 2 * ↑q + 1
h2_symm : 1 = v valp e.a2
⊢ 2 * ↑q + 3 ≤ v valp 9 + v valp (Model.b2 e.toModel) + v valp (Model.b4 e.toModel) + v valp (Model.b6 e.toModel) |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.v_discr_of_v_ai | [443, 1] | [453, 14] | elinarith | case hb
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
q : ℕ
valp : SurjVal p
e : ValidModel R
hq : q > 1
h1 : v valp e.a1 ≥ 1
h2 : v valp e.a2 = 1
h3 : v valp e.a3 ≥ ↑q
h4 : v valp e.a4 ≥ ↑q + 1
h6 : v valp e.a6 ≥ 2 * ↑q
h2' : v valp (Model.b2 e.toModel) ≥ 1
h4' : v valp (Model.b4 e.toModel) ≥ ↑q + 1
h6' : v valp (Model.b6 e.toModel) ≥ 2 * ↑q
h8' : v valp (Model.b8 e.toModel) ≥ 2 * ↑q + 1
h2_symm : 1 = v valp e.a2
⊢ 2 * ↑q + 3 ≤ v valp 9 + v valp (Model.b2 e.toModel) + v valp (Model.b4 e.toModel) + v valp (Model.b6 e.toModel) | no goals |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.small_char_div_12 | [507, 1] | [518, 45] | cases hp with
| inl p2 =>
rw [(show (12 : R) = 2 * 6 by norm_num)]
apply val_mul_ge_of_left_ge
rw [←p2]
exact le_of_eq (valp.v_uniformizer).symm
| inr p3 =>
rw [(show (12 : R) = 3 * 4 by norm_num)]
apply val_mul_ge_of_left_ge
rw [←p3]
exact le_of_eq (valp.v_uniformizer).symm | R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
hp : p = 2 ∨ p = 3
valp : SurjVal p
⊢ v valp 12 ≥ 1 | no goals |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.small_char_div_12 | [507, 1] | [518, 45] | rw [(show (12 : R) = 2 * 6 by norm_num)] | case inl
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p2 : p = 2
⊢ v valp 12 ≥ 1 | case inl
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p2 : p = 2
⊢ v valp (2 * 6) ≥ 1 |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.small_char_div_12 | [507, 1] | [518, 45] | apply val_mul_ge_of_left_ge | case inl
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p2 : p = 2
⊢ v valp (2 * 6) ≥ 1 | case inl.ha
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p2 : p = 2
⊢ 1 ≤ v valp 2 |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.small_char_div_12 | [507, 1] | [518, 45] | rw [←p2] | case inl.ha
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p2 : p = 2
⊢ 1 ≤ v valp 2 | case inl.ha
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p2 : p = 2
⊢ 1 ≤ v valp p |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.small_char_div_12 | [507, 1] | [518, 45] | exact le_of_eq (valp.v_uniformizer).symm | case inl.ha
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p2 : p = 2
⊢ 1 ≤ v valp p | no goals |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.small_char_div_12 | [507, 1] | [518, 45] | norm_num | R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p2 : p = 2
⊢ 12 = 2 * 6 | no goals |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.small_char_div_12 | [507, 1] | [518, 45] | rw [(show (12 : R) = 3 * 4 by norm_num)] | case inr
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p3 : p = 3
⊢ v valp 12 ≥ 1 | case inr
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p3 : p = 3
⊢ v valp (3 * 4) ≥ 1 |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.small_char_div_12 | [507, 1] | [518, 45] | apply val_mul_ge_of_left_ge | case inr
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p3 : p = 3
⊢ v valp (3 * 4) ≥ 1 | case inr.ha
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p3 : p = 3
⊢ 1 ≤ v valp 3 |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.small_char_div_12 | [507, 1] | [518, 45] | rw [←p3] | case inr.ha
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p3 : p = 3
⊢ 1 ≤ v valp 3 | case inr.ha
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p3 : p = 3
⊢ 1 ≤ v valp p |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.small_char_div_12 | [507, 1] | [518, 45] | exact le_of_eq (valp.v_uniformizer).symm | case inr.ha
R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p3 : p = 3
⊢ 1 ≤ v valp p | no goals |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.small_char_div_12 | [507, 1] | [518, 45] | norm_num | R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
p3 : p = 3
⊢ 12 = 3 * 4 | no goals |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.v_rst_b2_of_small_char | [520, 1] | [526, 39] | simp only [rst_iso] | R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
e : ValidModel R
r s t : R
h_b2 : v valp (Model.b2 e.toModel) ≥ 1
h_p : v valp 12 ≥ 1
⊢ v valp (Model.b2 (rst_iso r s t e).toModel) ≥ 1 | R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
e : ValidModel R
r s t : R
h_b2 : v valp (Model.b2 e.toModel) ≥ 1
h_p : v valp 12 ≥ 1
⊢ v valp (Model.b2 (Model.rst_iso r s t e.toModel)) ≥ 1 |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.v_rst_b2_of_small_char | [520, 1] | [526, 39] | rw [Model.rst_b2] | R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
e : ValidModel R
r s t : R
h_b2 : v valp (Model.b2 e.toModel) ≥ 1
h_p : v valp 12 ≥ 1
⊢ v valp (Model.b2 (Model.rst_iso r s t e.toModel)) ≥ 1 | R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
e : ValidModel R
r s t : R
h_b2 : v valp (Model.b2 e.toModel) ≥ 1
h_p : v valp 12 ≥ 1
⊢ v valp (Model.b2 e.toModel + 12 * r) ≥ 1 |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.v_rst_b2_of_small_char | [520, 1] | [526, 39] | apply val_add_ge_of_ge valp h_b2 | R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
e : ValidModel R
r s t : R
h_b2 : v valp (Model.b2 e.toModel) ≥ 1
h_p : v valp 12 ≥ 1
⊢ v valp (Model.b2 e.toModel + 12 * r) ≥ 1 | R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
e : ValidModel R
r s t : R
h_b2 : v valp (Model.b2 e.toModel) ≥ 1
h_p : v valp 12 ≥ 1
⊢ 1 ≤ v valp (12 * r) |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Algebra/EllipticCurve/LocalEC.lean | ValidModel.v_rst_b2_of_small_char | [520, 1] | [526, 39] | exact val_mul_ge_of_left_ge valp h_p | R : Type u
inst✝ : CommRing R
inst : IsDomain R
p : R
valp : SurjVal p
e : ValidModel R
r s t : R
h_b2 : v valp (Model.b2 e.toModel) ≥ 1
h_p : v valp 12 ≥ 1
⊢ 1 ≤ v valp (12 * r) | no goals |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Data/Nat/Enat.lean | ENat.mul_infty | [687, 1] | [693, 21] | simp | case top
R : Type u
inst✝ : CommRing R
x : R
I : Ideal R
J : Ideal (R ⧸ I)
⊢ ⊤ * ⊤ = if ⊤ = 0 then 0 else ⊤ | no goals |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Data/Nat/Enat.lean | ENat.mul_infty | [687, 1] | [693, 21] | cases n | case nat
R : Type u
inst✝ : CommRing R
x : R
I : Ideal R
J : Ideal (R ⧸ I)
n : ℕ
⊢ ↑n * ⊤ = if ↑n = 0 then 0 else ⊤ | case nat.zero
R : Type u
inst✝ : CommRing R
x : R
I : Ideal R
J : Ideal (R ⧸ I)
⊢ ↑Nat.zero * ⊤ = if ↑Nat.zero = 0 then 0 else ⊤
case nat.succ
R : Type u
inst✝ : CommRing R
x : R
I : Ideal R
J : Ideal (R ⧸ I)
n✝ : ℕ
⊢ ↑(Nat.succ n✝) * ⊤ = if ↑(Nat.succ n✝) = 0 then 0 else ⊤ |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Data/Nat/Enat.lean | ENat.mul_infty | [687, 1] | [693, 21] | simp | case nat.zero
R : Type u
inst✝ : CommRing R
x : R
I : Ideal R
J : Ideal (R ⧸ I)
⊢ ↑Nat.zero * ⊤ = if ↑Nat.zero = 0 then 0 else ⊤ | no goals |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Data/Nat/Enat.lean | ENat.mul_infty | [687, 1] | [693, 21] | simp [add_mul] | case nat.succ
R : Type u
inst✝ : CommRing R
x : R
I : Ideal R
J : Ideal (R ⧸ I)
n✝ : ℕ
⊢ ↑(Nat.succ n✝) * ⊤ = if ↑(Nat.succ n✝) = 0 then 0 else ⊤ | no goals |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Data/Nat/Enat.lean | ENat.infty_mul | [695, 1] | [701, 21] | simp | case top
R : Type u
inst✝ : CommRing R
x : R
I : Ideal R
J : Ideal (R ⧸ I)
⊢ ⊤ * ⊤ = if ⊤ = 0 then 0 else ⊤ | no goals |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Data/Nat/Enat.lean | ENat.infty_mul | [695, 1] | [701, 21] | cases n | case nat
R : Type u
inst✝ : CommRing R
x : R
I : Ideal R
J : Ideal (R ⧸ I)
n : ℕ
⊢ ⊤ * ↑n = if ↑n = 0 then 0 else ⊤ | case nat.zero
R : Type u
inst✝ : CommRing R
x : R
I : Ideal R
J : Ideal (R ⧸ I)
⊢ ⊤ * ↑Nat.zero = if ↑Nat.zero = 0 then 0 else ⊤
case nat.succ
R : Type u
inst✝ : CommRing R
x : R
I : Ideal R
J : Ideal (R ⧸ I)
n✝ : ℕ
⊢ ⊤ * ↑(Nat.succ n✝) = if ↑(Nat.succ n✝) = 0 then 0 else ⊤ |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Data/Nat/Enat.lean | ENat.infty_mul | [695, 1] | [701, 21] | simp | case nat.zero
R : Type u
inst✝ : CommRing R
x : R
I : Ideal R
J : Ideal (R ⧸ I)
⊢ ⊤ * ↑Nat.zero = if ↑Nat.zero = 0 then 0 else ⊤ | no goals |
https://github.com/KisaraBlue/ec-tate-lean.git | b9d36a5b70bb0958bf9741ae6216a43b35c87ed4 | ECTate/Data/Nat/Enat.lean | ENat.infty_mul | [695, 1] | [701, 21] | simp [mul_add] | case nat.succ
R : Type u
inst✝ : CommRing R
x : R
I : Ideal R
J : Ideal (R ⧸ I)
n✝ : ℕ
⊢ ⊤ * ↑(Nat.succ n✝) = if ↑(Nat.succ n✝) = 0 then 0 else ⊤ | no goals |
https://github.com/lurk-lab/yatima.git | d9f20f51bca748878b8561661fe8bc19a7dba609 | Fixtures/Termination/Init/Prelude.lean | usize_size_eq | [1888, 1] | [1892, 40] | decide | ⊢ Eq (hPow 2 32) 4294967296 | no goals |
https://github.com/lurk-lab/yatima.git | d9f20f51bca748878b8561661fe8bc19a7dba609 | Fixtures/Termination/Init/Prelude.lean | usize_size_eq | [1888, 1] | [1892, 40] | decide | ⊢ Eq (hPow 2 64) 18446744073709551616 | no goals |
https://github.com/lurk-lab/yatima.git | d9f20f51bca748878b8561661fe8bc19a7dba609 | Fixtures/Termination/Init/Prelude.lean | isValidChar_UInt32 | [1973, 1] | [1976, 48] | decide | n : Nat
h✝ : Nat.isValidChar n
h : LT.lt n 55296
⊢ LT.lt 55296 UInt32.size | no goals |
https://github.com/lurk-lab/yatima.git | d9f20f51bca748878b8561661fe8bc19a7dba609 | Fixtures/Termination/Init/Prelude.lean | isValidChar_UInt32 | [1973, 1] | [1976, 48] | decide | n : Nat
h✝ : Nat.isValidChar n
left✝ : LT.lt 57343 n
h : LT.lt n 1114112
⊢ LT.lt 1114112 UInt32.size | no goals |
https://github.com/lurk-lab/yatima.git | d9f20f51bca748878b8561661fe8bc19a7dba609 | Fixtures/Debug/AddComm.lean | add_comm | [1, 1] | [7, 15] | have : Nat.succ (n + m) = Nat.succ (m + n) :=
by apply congrArg; apply Nat.add_comm | n m : Nat
⊢ n + (m + 1) = m + 1 + n | n m : Nat
this : Nat.succ (n + m) = Nat.succ (m + n)
⊢ n + (m + 1) = m + 1 + n |
https://github.com/lurk-lab/yatima.git | d9f20f51bca748878b8561661fe8bc19a7dba609 | Fixtures/Debug/AddComm.lean | add_comm | [1, 1] | [7, 15] | rw [Nat.succ_add m n] | n m : Nat
this : Nat.succ (n + m) = Nat.succ (m + n)
⊢ n + (m + 1) = m + 1 + n | n m : Nat
this : Nat.succ (n + m) = Nat.succ (m + n)
⊢ n + (m + 1) = Nat.succ (m + n) |
https://github.com/lurk-lab/yatima.git | d9f20f51bca748878b8561661fe8bc19a7dba609 | Fixtures/Debug/AddComm.lean | add_comm | [1, 1] | [7, 15] | apply this | n m : Nat
this : Nat.succ (n + m) = Nat.succ (m + n)
⊢ n + (m + 1) = Nat.succ (m + n) | no goals |
https://github.com/lurk-lab/yatima.git | d9f20f51bca748878b8561661fe8bc19a7dba609 | Fixtures/Debug/AddComm.lean | add_comm | [1, 1] | [7, 15] | apply congrArg | n m : Nat
⊢ Nat.succ (n + m) = Nat.succ (m + n) | case h
n m : Nat
⊢ n + m = m + n |
https://github.com/lurk-lab/yatima.git | d9f20f51bca748878b8561661fe8bc19a7dba609 | Fixtures/Debug/AddComm.lean | add_comm | [1, 1] | [7, 15] | apply Nat.add_comm | case h
n m : Nat
⊢ n + m = m + n | no goals |
https://github.com/lurk-lab/yatima.git | d9f20f51bca748878b8561661fe8bc19a7dba609 | Fixtures/Typechecker/TypecheckInLurk.lean | add_comm | [17, 1] | [23, 15] | have : Nat.succ (n + m) = Nat.succ (m + n) :=
by apply congrArg; apply Nat.add_comm | n m : Nat
⊢ n + (m + 1) = m + 1 + n | n m : Nat
this : Nat.succ (n + m) = Nat.succ (m + n)
⊢ n + (m + 1) = m + 1 + n |
https://github.com/lurk-lab/yatima.git | d9f20f51bca748878b8561661fe8bc19a7dba609 | Fixtures/Typechecker/TypecheckInLurk.lean | add_comm | [17, 1] | [23, 15] | rw [Nat.succ_add m n] | n m : Nat
this : Nat.succ (n + m) = Nat.succ (m + n)
⊢ n + (m + 1) = m + 1 + n | n m : Nat
this : Nat.succ (n + m) = Nat.succ (m + n)
⊢ n + (m + 1) = Nat.succ (m + n) |
https://github.com/lurk-lab/yatima.git | d9f20f51bca748878b8561661fe8bc19a7dba609 | Fixtures/Typechecker/TypecheckInLurk.lean | add_comm | [17, 1] | [23, 15] | apply this | n m : Nat
this : Nat.succ (n + m) = Nat.succ (m + n)
⊢ n + (m + 1) = Nat.succ (m + n) | no goals |
https://github.com/lurk-lab/yatima.git | d9f20f51bca748878b8561661fe8bc19a7dba609 | Fixtures/Typechecker/TypecheckInLurk.lean | add_comm | [17, 1] | [23, 15] | apply congrArg | n m : Nat
⊢ Nat.succ (n + m) = Nat.succ (m + n) | case h
n m : Nat
⊢ n + m = m + n |
https://github.com/lurk-lab/yatima.git | d9f20f51bca748878b8561661fe8bc19a7dba609 | Fixtures/Typechecker/TypecheckInLurk.lean | add_comm | [17, 1] | [23, 15] | apply Nat.add_comm | case h
n m : Nat
⊢ n + m = m + n | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | intros p h₃ h₄ | α : Type
inst : Model α
s t : α
f : Form
h₁ : s ≤ t
g : Form
h₂ : s⊨~g
⊢ t⊨~g | α : Type
inst : Model α
s t : α
f : Form
h₁ : s ≤ t
g : Form
h₂ : s⊨~g
p : Model.primes
h₃ : t ≤ ↑p
h₄ : ↑(p*)⊨g
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | exact h₂ (le_trans h₁ h₃) h₄ | α : Type
inst : Model α
s t : α
f : Form
h₁ : s ≤ t
g : Form
h₂ : s⊨~g
p : Model.primes
h₃ : t ≤ ↑p
h₄ : ↑(p*)⊨g
⊢ False | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | apply And.intro | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f&g
⊢ t⊨f&g | case left
α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f&g
⊢ t⊨f
case right
α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f&g
⊢ t⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | case left => exact upwardsClosure h₁ h₂.left | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f&g
⊢ t⊨f | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | case right => exact upwardsClosure h₁ h₂.right | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f&g
⊢ t⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | exact upwardsClosure h₁ h₂.left | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f&g
⊢ t⊨f | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | exact upwardsClosure h₁ h₂.right | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f&g
⊢ t⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | intros p h₃ | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f¦g
⊢ t⊨f¦g | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f¦g
p : Model.primes
h₃ : t ≤ ↑p
⊢ ↑p⊨f ∨ ↑p⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | apply Or.elim (h₂ (le_trans' h₃ h₁)) | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f¦g
p : Model.primes
h₃ : t ≤ ↑p
⊢ ↑p⊨f ∨ ↑p⊨g | case left
α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f¦g
p : Model.primes
h₃ : t ≤ ↑p
⊢ ↑p⊨f → ↑p⊨f ∨ ↑p⊨g
case right
α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f¦g
p : Model.primes
h₃ : t ≤ ↑p
⊢ ↑p⊨g → ↑p⊨f ∨ ↑p⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | case left => intro h₄; exact Or.inl h₄ | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f¦g
p : Model.primes
h₃ : t ≤ ↑p
⊢ ↑p⊨f → ↑p⊨f ∨ ↑p⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | case right => intro h₄; exact Or.inr h₄ | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f¦g
p : Model.primes
h₃ : t ≤ ↑p
⊢ ↑p⊨g → ↑p⊨f ∨ ↑p⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | intro h₄ | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f¦g
p : Model.primes
h₃ : t ≤ ↑p
⊢ ↑p⊨f → ↑p⊨f ∨ ↑p⊨g | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f¦g
p : Model.primes
h₃ : t ≤ ↑p
h₄ : ↑p⊨f
⊢ ↑p⊨f ∨ ↑p⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | exact Or.inl h₄ | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f¦g
p : Model.primes
h₃ : t ≤ ↑p
h₄ : ↑p⊨f
⊢ ↑p⊨f ∨ ↑p⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | intro h₄ | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f¦g
p : Model.primes
h₃ : t ≤ ↑p
⊢ ↑p⊨g → ↑p⊨f ∨ ↑p⊨g | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f¦g
p : Model.primes
h₃ : t ≤ ↑p
h₄ : ↑p⊨g
⊢ ↑p⊨f ∨ ↑p⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | exact Or.inr h₄ | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f¦g
p : Model.primes
h₃ : t ≤ ↑p
h₄ : ↑p⊨g
⊢ ↑p⊨f ∨ ↑p⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | intros u h₃ | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f⊃g
⊢ t⊨f⊃g | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f⊃g
u : α
h₃ : u⊨f
⊢ t∙u⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | have l₁ : s ∙ u ≤ t ∙ u := inst.appMonotoneRight u h₁ | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f⊃g
u : α
h₃ : u⊨f
⊢ t∙u⊨g | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f⊃g
u : α
h₃ : u⊨f
l₁ : s∙u ≤ t∙u
⊢ t∙u⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | have l₂ : (s ∙ u) ⊨ g := h₂ h₃ | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f⊃g
u : α
h₃ : u⊨f
l₁ : s∙u ≤ t∙u
⊢ t∙u⊨g | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f⊃g
u : α
h₃ : u⊨f
l₁ : s∙u ≤ t∙u
l₂ : s∙u⊨g
⊢ t∙u⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | upwardsClosure | [23, 1] | [38, 53] | exact upwardsClosure l₁ l₂ | α : Type
inst : Model α
s t : α
f✝ : Form
h₁ : s ≤ t
f g : Form
h₂ : s⊨f⊃g
u : α
h₃ : u⊨f
l₁ : s∙u ≤ t∙u
l₂ : s∙u⊨g
⊢ t∙u⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | intros p h₂ h₃ | α : Type
inst : Model α
t : α
f✝ f : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨~f
⊢ t⊨~f | α : Type
inst : Model α
t : α
f✝ f : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨~f
p : Model.primes
h₂ : t ≤ ↑p
h₃ : ↑(p*)⊨f
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | exact h₁ p h₂ (le_refl p.val) h₃ | α : Type
inst : Model α
t : α
f✝ f : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨~f
p : Model.primes
h₂ : t ≤ ↑p
h₃ : ↑(p*)⊨f
⊢ False | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | apply And.intro | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
⊢ t⊨f&g | case left
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
⊢ t⊨f
case right
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
⊢ t⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | case left =>
have l₁ : ∀p : inst.primes, t ≤ p → p ⊨ f := by
intros p h₂
exact (h₁ p h₂).left
exact primeDetermination l₁ | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
⊢ t⊨f | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | case right =>
have l₁ : ∀p : inst.primes, t ≤ p → p ⊨ g := by
intros p h₂
exact (h₁ p h₂).right
exact primeDetermination l₁ | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
⊢ t⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | have l₁ : ∀p : inst.primes, t ≤ p → p ⊨ f := by
intros p h₂
exact (h₁ p h₂).left | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
⊢ t⊨f | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
l₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f
⊢ t⊨f |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | exact primeDetermination l₁ | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
l₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f
⊢ t⊨f | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | intros p h₂ | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
⊢ ∀ (p : Model.primes), t ≤ ↑p → p⊨f | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
p : Model.primes
h₂ : t ≤ ↑p
⊢ p⊨f |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | exact (h₁ p h₂).left | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
p : Model.primes
h₂ : t ≤ ↑p
⊢ p⊨f | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | have l₁ : ∀p : inst.primes, t ≤ p → p ⊨ g := by
intros p h₂
exact (h₁ p h₂).right | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
⊢ t⊨g | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
l₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨g
⊢ t⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | exact primeDetermination l₁ | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
l₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨g
⊢ t⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | intros p h₂ | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
⊢ ∀ (p : Model.primes), t ≤ ↑p → p⊨g | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
p : Model.primes
h₂ : t ≤ ↑p
⊢ p⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | exact (h₁ p h₂).right | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f&g
p : Model.primes
h₂ : t ≤ ↑p
⊢ p⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | intros p h₂ | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f¦g
⊢ t⊨f¦g | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f¦g
p : Model.primes
h₂ : t ≤ ↑p
⊢ ↑p⊨f ∨ ↑p⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | cases h₁ p h₂ (le_refl p.val) | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f¦g
p : Model.primes
h₂ : t ≤ ↑p
⊢ ↑p⊨f ∨ ↑p⊨g | case inl
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f¦g
p : Model.primes
h₂ : t ≤ ↑p
h✝ : ↑p⊨f
⊢ ↑p⊨f ∨ ↑p⊨g
case inr
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f¦g
p : Model.primes
h₂ : t ≤ ↑p
h✝ : ↑p⊨g
⊢ ↑p⊨f ∨ ↑p⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | case inl => apply Or.inl; assumption | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f¦g
p : Model.primes
h₂ : t ≤ ↑p
h✝ : ↑p⊨f
⊢ ↑p⊨f ∨ ↑p⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | case inr => apply Or.inr; assumption | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f¦g
p : Model.primes
h₂ : t ≤ ↑p
h✝ : ↑p⊨g
⊢ ↑p⊨f ∨ ↑p⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | apply Or.inl | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f¦g
p : Model.primes
h₂ : t ≤ ↑p
h✝ : ↑p⊨f
⊢ ↑p⊨f ∨ ↑p⊨g | case h
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f¦g
p : Model.primes
h₂ : t ≤ ↑p
h✝ : ↑p⊨f
⊢ ↑p⊨f |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | assumption | case h
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f¦g
p : Model.primes
h₂ : t ≤ ↑p
h✝ : ↑p⊨f
⊢ ↑p⊨f | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | apply Or.inr | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f¦g
p : Model.primes
h₂ : t ≤ ↑p
h✝ : ↑p⊨g
⊢ ↑p⊨f ∨ ↑p⊨g | case h
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f¦g
p : Model.primes
h₂ : t ≤ ↑p
h✝ : ↑p⊨g
⊢ ↑p⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | assumption | case h
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f¦g
p : Model.primes
h₂ : t ≤ ↑p
h✝ : ↑p⊨g
⊢ ↑p⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | intros u h₂ | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f⊃g
⊢ t⊨f⊃g | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f⊃g
u : α
h₂ : u⊨f
⊢ t∙u⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | apply primeDetermination | α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f⊃g
u : α
h₂ : u⊨f
⊢ t∙u⊨g | case h₁
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f⊃g
u : α
h₂ : u⊨f
⊢ ∀ (p : Model.primes), t∙u ≤ ↑p → p⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | intros p h₃ | case h₁
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f⊃g
u : α
h₂ : u⊨f
⊢ ∀ (p : Model.primes), t∙u ≤ ↑p → p⊨g | case h₁
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f⊃g
u : α
h₂ : u⊨f
p : Model.primes
h₃ : t∙u ≤ ↑p
⊢ p⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | have ⟨q, _, l₃,_,l₄,_⟩ : ∃q r : inst.primes, t ≤ q ∧ u ≤ r ∧ (↑q ∙ u) ≤ p ∧ (t ∙ r) ≤ p.val := inst.appBounding t u p h₃ | case h₁
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f⊃g
u : α
h₂ : u⊨f
p : Model.primes
h₃ : t∙u ≤ ↑p
⊢ p⊨g | case h₁
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f⊃g
u : α
h₂ : u⊨f
p : Model.primes
h₃ : t∙u ≤ ↑p
q w✝ : Subtype Model.prime
l₃ : t ≤ ↑q
left✝ : u ≤ ↑w✝
l₄ : ↑q∙u ≤ ↑p
right✝ : t∙↑w✝ ≤ ↑p
⊢ p⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | have l₅ : (↑q ∙ u) ⊨ g := h₁ q l₃ h₂ | case h₁
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f⊃g
u : α
h₂ : u⊨f
p : Model.primes
h₃ : t∙u ≤ ↑p
q w✝ : Subtype Model.prime
l₃ : t ≤ ↑q
left✝ : u ≤ ↑w✝
l₄ : ↑q∙u ≤ ↑p
right✝ : t∙↑w✝ ≤ ↑p
⊢ p⊨g | case h₁
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f⊃g
u : α
h₂ : u⊨f
p : Model.primes
h₃ : t∙u ≤ ↑p
q w✝ : Subtype Model.prime
l₃ : t ≤ ↑q
left✝ : u ≤ ↑w✝
l₄ : ↑q∙u ≤ ↑p
right✝ : t∙↑w✝ ≤ ↑p
l₅ : ↑q∙u⊨g
⊢ p⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | primeDetermination | [40, 1] | [65, 53] | exact upwardsClosure l₄ l₅ | case h₁
α : Type
inst : Model α
t : α
f✝ f g : Form
h₁ : ∀ (p : Model.primes), t ≤ ↑p → p⊨f⊃g
u : α
h₂ : u⊨f
p : Model.primes
h₃ : t∙u ≤ ↑p
q w✝ : Subtype Model.prime
l₃ : t ≤ ↑q
left✝ : u ≤ ↑w✝
l₄ : ↑q∙u ≤ ↑p
right✝ : t∙↑w✝ ≤ ↑p
l₅ : ↑q∙u⊨g
⊢ p⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | starCompatRight | [67, 1] | [71, 32] | intro h₁ h₂ | α : Type
inst : Model α
p : Model.primes
f : Form
⊢ p*⊨f → ¬p⊨~f | α : Type
inst : Model α
p : Model.primes
f : Form
h₁ : p*⊨f
h₂ : p⊨~f
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | starCompatRight | [67, 1] | [71, 32] | unfold psatisfies at h₂ | α : Type
inst : Model α
p : Model.primes
f : Form
h₁ : p*⊨f
h₂ : p⊨~f
⊢ False | α : Type
inst : Model α
p : Model.primes
f : Form
h₁ : p*⊨f
h₂ : ↑p⊨~f
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | starCompatRight | [67, 1] | [71, 32] | unfold satisfies at h₂ | α : Type
inst : Model α
p : Model.primes
f : Form
h₁ : p*⊨f
h₂ : ↑p⊨~f
⊢ False | α : Type
inst : Model α
p : Model.primes
f : Form
h₁ : p*⊨f
h₂ : ∀ {p_1 : Model.primes}, ↑p ≤ ↑p_1 → ¬↑(p_1*)⊨f
⊢ False |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | starCompatRight | [67, 1] | [71, 32] | exact h₂ (le_refl p.val) h₁ | α : Type
inst : Model α
p : Model.primes
f : Form
h₁ : p*⊨f
h₂ : ∀ {p_1 : Model.primes}, ↑p ≤ ↑p_1 → ¬↑(p_1*)⊨f
⊢ False | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | logicInIdentity | [73, 1] | [82, 18] | apply Iff.intro | α : Type
inst : Model α
f g : Form
⊢ Model.identity⊨f⊃g ↔ ∀ (x : α), x⊨f → x⊨g | case mp
α : Type
inst : Model α
f g : Form
⊢ Model.identity⊨f⊃g → ∀ (x : α), x⊨f → x⊨g
case mpr
α : Type
inst : Model α
f g : Form
⊢ (∀ (x : α), x⊨f → x⊨g) → Model.identity⊨f⊃g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | logicInIdentity | [73, 1] | [82, 18] | case mp =>
intros h₁ x h₂
rw [←inst.appLeftIdent x]
exact h₁ h₂ | α : Type
inst : Model α
f g : Form
⊢ Model.identity⊨f⊃g → ∀ (x : α), x⊨f → x⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | logicInIdentity | [73, 1] | [82, 18] | case mpr =>
intro h₁ u h₂
rw [inst.appLeftIdent u]
exact h₁ u h₂ | α : Type
inst : Model α
f g : Form
⊢ (∀ (x : α), x⊨f → x⊨g) → Model.identity⊨f⊃g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | logicInIdentity | [73, 1] | [82, 18] | intros h₁ x h₂ | α : Type
inst : Model α
f g : Form
⊢ Model.identity⊨f⊃g → ∀ (x : α), x⊨f → x⊨g | α : Type
inst : Model α
f g : Form
h₁ : Model.identity⊨f⊃g
x : α
h₂ : x⊨f
⊢ x⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | logicInIdentity | [73, 1] | [82, 18] | rw [←inst.appLeftIdent x] | α : Type
inst : Model α
f g : Form
h₁ : Model.identity⊨f⊃g
x : α
h₂ : x⊨f
⊢ x⊨g | α : Type
inst : Model α
f g : Form
h₁ : Model.identity⊨f⊃g
x : α
h₂ : x⊨f
⊢ Model.identity∙x⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | logicInIdentity | [73, 1] | [82, 18] | exact h₁ h₂ | α : Type
inst : Model α
f g : Form
h₁ : Model.identity⊨f⊃g
x : α
h₂ : x⊨f
⊢ Model.identity∙x⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | logicInIdentity | [73, 1] | [82, 18] | intro h₁ u h₂ | α : Type
inst : Model α
f g : Form
⊢ (∀ (x : α), x⊨f → x⊨g) → Model.identity⊨f⊃g | α : Type
inst : Model α
f g : Form
h₁ : ∀ (x : α), x⊨f → x⊨g
u : α
h₂ : u⊨f
⊢ Model.identity∙u⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | logicInIdentity | [73, 1] | [82, 18] | rw [inst.appLeftIdent u] | α : Type
inst : Model α
f g : Form
h₁ : ∀ (x : α), x⊨f → x⊨g
u : α
h₂ : u⊨f
⊢ Model.identity∙u⊨g | α : Type
inst : Model α
f g : Form
h₁ : ∀ (x : α), x⊨f → x⊨g
u : α
h₂ : u⊨f
⊢ u⊨g |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | logicInIdentity | [73, 1] | [82, 18] | exact h₁ u h₂ | α : Type
inst : Model α
f g : Form
h₁ : ∀ (x : α), x⊨f → x⊨g
u : α
h₂ : u⊨f
⊢ u⊨g | no goals |
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git | 0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f | Fine/Semantics/Satisfaction.lean | starCompatLeft | [88, 1] | [94, 29] | intros h₁ | α : Type
inst : Model α
p : Model.primes
f : Form
⊢ ¬p⊨~f → p*⊨f | α : Type
inst : Model α
p : Model.primes
f : Form
h₁ : ¬p⊨~f
⊢ p*⊨f |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.