url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
case inl h₄ => split at l₁ case inl h₅ => exact (Set.not_nonempty_iff_eq_empty.mpr h₅) ⟨w₁, l₁, l₂⟩ case inr h₅ => have ⟨prf₁⟩ := l₁ have ⟨w₂,⟨⟨prf₂⟩,l₄⟩⟩ := Set.nonempty_iff_ne_empty.mpr h₅ have l₅ : w₁¦w₂ ∈ Δ := h₂ ⟨l₂, l₄⟩ clear l₁ l₂ l₄ h₅ have ⟨lst₁,l₆,prf₃⟩ := BProof.sentenceCompactness (Set.union_singleton ▸ prf₁) have ⟨lst₂,l₇,prf₄⟩ := BProof.sentenceCompactness (Set.union_singleton ▸ prf₂) have thm₁ := BTheorem.transitivity prf₃.toTheorem (BTheorem.orI₁ : BTheorem (w₁ ⊃ w₁ ¦ w₂)) have thm₂ := BTheorem.transitivity prf₄.toTheorem (BTheorem.orI₂ : BTheorem (w₂ ⊃ w₁ ¦ w₂)) have thm₃ := BTheorem.mp (BTheorem.adj thm₂ thm₁) BTheorem.orE have ⟨prf₅⟩ := h₄ clear h₄ thm₁ thm₂ prf₁ prf₂ prf₃ prf₄ cases lst₁ all_goals cases lst₂ case' nil.nil => have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp prf₅ thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩ case' nil.cons head tail => have := BProof.proveList l₇ have := BProof.mp (BProof.adj prf₅ this) BTheorem.distRight have := BProof.mp this (BTheorem.orFunctor BTheorem.taut BTheorem.andE₁) have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp this thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩ case' cons.nil head tail => have := BProof.proveList l₆ have := BProof.mp (BProof.adj prf₅ this) BTheorem.distRight have := BProof.mp this (BTheorem.orFunctor BTheorem.andE₁ BTheorem.taut) have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp this thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩ case' cons.cons head tail head' tail'=> have prf₆ := BProof.proveList l₆ have prf₇ := BProof.proveList l₇ have := BProof.mp (BProof.adj prf₅ prf₇) BTheorem.distRight have prf₈ := BProof.mp this (BTheorem.orFunctor BTheorem.taut BTheorem.andE₁) have := BProof.mp (BProof.adj prf₈ prf₆) BTheorem.distRight have prf₉ := BProof.mp this (BTheorem.orFunctor BTheorem.andE₁ BTheorem.taut) have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp prf₉ thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) l₁ : w₁ ∈ ▲if ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ then lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst} else lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd} ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁, l₁, l₂⟩
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : ¬(Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) l₁ : w₁ ∈ ▲lindenbaumSequence t Δ (i, j + 0) ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
split at l₁
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) l₁ : w₁ ∈ ▲if ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ then lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst} else lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd} ⊢ False
case inl t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) h✝ : ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ l₁ : w₁ ∈ ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ⊢ False case inr t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) h✝ : ¬▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ l₁ : w₁ ∈ ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
case inl h₅ => exact (Set.not_nonempty_iff_eq_empty.mpr h₅) ⟨w₁, l₁, l₂⟩
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) h₅ : ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ l₁ : w₁ ∈ ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
case inr h₅ => have ⟨prf₁⟩ := l₁ have ⟨w₂,⟨⟨prf₂⟩,l₄⟩⟩ := Set.nonempty_iff_ne_empty.mpr h₅ have l₅ : w₁¦w₂ ∈ Δ := h₂ ⟨l₂, l₄⟩ clear l₁ l₂ l₄ h₅ have ⟨lst₁,l₆,prf₃⟩ := BProof.sentenceCompactness (Set.union_singleton ▸ prf₁) have ⟨lst₂,l₇,prf₄⟩ := BProof.sentenceCompactness (Set.union_singleton ▸ prf₂) have thm₁ := BTheorem.transitivity prf₃.toTheorem (BTheorem.orI₁ : BTheorem (w₁ ⊃ w₁ ¦ w₂)) have thm₂ := BTheorem.transitivity prf₄.toTheorem (BTheorem.orI₂ : BTheorem (w₂ ⊃ w₁ ¦ w₂)) have thm₃ := BTheorem.mp (BTheorem.adj thm₂ thm₁) BTheorem.orE have ⟨prf₅⟩ := h₄ clear h₄ thm₁ thm₂ prf₁ prf₂ prf₃ prf₄ cases lst₁ all_goals cases lst₂ case' nil.nil => have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp prf₅ thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩ case' nil.cons head tail => have := BProof.proveList l₇ have := BProof.mp (BProof.adj prf₅ this) BTheorem.distRight have := BProof.mp this (BTheorem.orFunctor BTheorem.taut BTheorem.andE₁) have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp this thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩ case' cons.nil head tail => have := BProof.proveList l₆ have := BProof.mp (BProof.adj prf₅ this) BTheorem.distRight have := BProof.mp this (BTheorem.orFunctor BTheorem.andE₁ BTheorem.taut) have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp this thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩ case' cons.cons head tail head' tail'=> have prf₆ := BProof.proveList l₆ have prf₇ := BProof.proveList l₇ have := BProof.mp (BProof.adj prf₅ prf₇) BTheorem.distRight have prf₈ := BProof.mp this (BTheorem.orFunctor BTheorem.taut BTheorem.andE₁) have := BProof.mp (BProof.adj prf₈ prf₆) BTheorem.distRight have prf₉ := BProof.mp this (BTheorem.orFunctor BTheorem.andE₁ BTheorem.taut) have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp prf₉ thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) h₅ : ¬▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ l₁ : w₁ ∈ ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
exact (Set.not_nonempty_iff_eq_empty.mpr h₅) ⟨w₁, l₁, l₂⟩
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) h₅ : ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ l₁ : w₁ ∈ ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have ⟨prf₁⟩ := l₁
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) h₅ : ¬▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ l₁ : w₁ ∈ ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) h₅ : ¬▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ l₁ : w₁ ∈ ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have ⟨w₂,⟨⟨prf₂⟩,l₄⟩⟩ := Set.nonempty_iff_ne_empty.mpr h₅
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) h₅ : ¬▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ l₁ : w₁ ∈ ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) h₅ : ¬▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ l₁ : w₁ ∈ ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₄ : w₂ ∈ Δ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have l₅ : w₁¦w₂ ∈ Δ := h₂ ⟨l₂, l₄⟩
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) h₅ : ¬▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ l₁ : w₁ ∈ ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₄ : w₂ ∈ Δ ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) h₅ : ¬▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ l₁ : w₁ ∈ ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₄ : w₂ ∈ Δ l₅ : w₁¦w₂ ∈ Δ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
clear l₁ l₂ l₄ h₅
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₂ : w₁ ∈ Δ l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) h₅ : ¬▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) ∩ Δ = ∅ l₁ : w₁ ∈ ▲(lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₄ : w₂ ∈ Δ l₅ : w₁¦w₂ ∈ Δ ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₅ : w₁¦w₂ ∈ Δ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have ⟨lst₁,l₆,prf₃⟩ := BProof.sentenceCompactness (Set.union_singleton ▸ prf₁)
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₅ : w₁¦w₂ ∈ Δ ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₅ : w₁¦w₂ ∈ Δ lst₁ : List Form l₆ : { x | x ∈ lst₁ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₃ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁} w₁ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have ⟨lst₂,l₇,prf₄⟩ := BProof.sentenceCompactness (Set.union_singleton ▸ prf₂)
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₅ : w₁¦w₂ ∈ Δ lst₁ : List Form l₆ : { x | x ∈ lst₁ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₃ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁} w₁ ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₅ : w₁¦w₂ ∈ Δ lst₁ : List Form l₆ : { x | x ∈ lst₁ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₃ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁} w₁ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₄ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂} w₂ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have thm₁ := BTheorem.transitivity prf₃.toTheorem (BTheorem.orI₁ : BTheorem (w₁ ⊃ w₁ ¦ w₂))
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₅ : w₁¦w₂ ∈ Δ lst₁ : List Form l₆ : { x | x ∈ lst₁ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₃ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁} w₁ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₄ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂} w₂ ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₅ : w₁¦w₂ ∈ Δ lst₁ : List Form l₆ : { x | x ∈ lst₁ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₃ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁} w₁ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₄ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂} w₂ thm₁ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁⊃w₁¦w₂) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have thm₂ := BTheorem.transitivity prf₄.toTheorem (BTheorem.orI₂ : BTheorem (w₂ ⊃ w₁ ¦ w₂))
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₅ : w₁¦w₂ ∈ Δ lst₁ : List Form l₆ : { x | x ∈ lst₁ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₃ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁} w₁ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₄ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂} w₂ thm₁ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁⊃w₁¦w₂) ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₅ : w₁¦w₂ ∈ Δ lst₁ : List Form l₆ : { x | x ∈ lst₁ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₃ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁} w₁ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₄ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂} w₂ thm₁ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁⊃w₁¦w₂) thm₂ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂⊃w₁¦w₂) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have thm₃ := BTheorem.mp (BTheorem.adj thm₂ thm₁) BTheorem.orE
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₅ : w₁¦w₂ ∈ Δ lst₁ : List Form l₆ : { x | x ∈ lst₁ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₃ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁} w₁ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₄ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂} w₂ thm₁ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁⊃w₁¦w₂) thm₂ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂⊃w₁¦w₂) ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₅ : w₁¦w₂ ∈ Δ lst₁ : List Form l₆ : { x | x ∈ lst₁ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₃ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁} w₁ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₄ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂} w₂ thm₁ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁⊃w₁¦w₂) thm₂ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂⊃w₁¦w₂) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁⊃w₁¦w₂) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have ⟨prf₅⟩ := h₄
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₅ : w₁¦w₂ ∈ Δ lst₁ : List Form l₆ : { x | x ∈ lst₁ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₃ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁} w₁ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₄ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂} w₂ thm₁ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁⊃w₁¦w₂) thm₂ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂⊃w₁¦w₂) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁⊃w₁¦w₂) ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₅ : w₁¦w₂ ∈ Δ lst₁ : List Form l₆ : { x | x ∈ lst₁ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₃ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁} w₁ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₄ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂} w₂ thm₁ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁⊃w₁¦w₂) thm₂ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂⊃w₁¦w₂) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁⊃w₁¦w₂) prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
clear h₄ thm₁ thm₂ prf₁ prf₂ prf₃ prf₄
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ h₄ : (Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd ∈ ▲lindenbaumSequence t Δ (i, j + 0) prf₁ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).snd}) w₁ w₂ : Form prf₂ : BProof (lindenbaumSequence t Δ (i, j + 0) ∪ {(Denumerable.ofNat (Form × Form) (j + 0)).fst}) w₂ l₅ : w₁¦w₂ ∈ Δ lst₁ : List Form l₆ : { x | x ∈ lst₁ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₃ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁} w₁ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₄ : BProof {Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂} w₂ thm₁ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁⊃w₁¦w₂) thm₂ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂⊃w₁¦w₂) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁⊃w₁¦w₂) prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ lst₁ : List Form l₆ : { x | x ∈ lst₁ } ⊆ lindenbaumSequence t Δ (i, j + 0) lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁⊃w₁¦w₂) prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
cases lst₁
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ lst₁ : List Form l₆ : { x | x ∈ lst₁ } ⊆ lindenbaumSequence t Δ (i, j + 0) lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd lst₁⊃w₁¦w₂) prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) ⊢ False
case nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) ⊢ False case cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝ : Form tail✝ : List Form l₆ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝ :: tail✝)⊃w₁¦w₂) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
all_goals cases lst₂
case nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) ⊢ False case cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝ : Form tail✝ : List Form l₆ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝ :: tail✝)⊃w₁¦w₂) ⊢ False
case nil.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) ⊢ False case nil.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) head✝ : Form tail✝ : List Form l₇ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head✝ :: tail✝)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) ⊢ False case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝ : Form tail✝ : List Form l₆ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝ :: tail✝)⊃w₁¦w₂) ⊢ False case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝¹ : Form tail✝¹ : List Form l₆ : { x | x ∈ head✝¹ :: tail✝¹ } ⊆ lindenbaumSequence t Δ (i, j + 0) head✝ : Form tail✝ : List Form l₇ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head✝ :: tail✝)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝¹ :: tail✝¹)⊃w₁¦w₂) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
case' nil.nil => have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp prf₅ thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩
case nil.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) ⊢ False case nil.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) head✝ : Form tail✝ : List Form l₇ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head✝ :: tail✝)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) ⊢ False case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝ : Form tail✝ : List Form l₆ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝ :: tail✝)⊃w₁¦w₂) ⊢ False case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝¹ : Form tail✝¹ : List Form l₆ : { x | x ∈ head✝¹ :: tail✝¹ } ⊆ lindenbaumSequence t Δ (i, j + 0) head✝ : Form tail✝ : List Form l₇ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head✝ :: tail✝)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝¹ :: tail✝¹)⊃w₁¦w₂) ⊢ False
case nil.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) head✝ : Form tail✝ : List Form l₇ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head✝ :: tail✝)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) ⊢ False case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝ : Form tail✝ : List Form l₆ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝ :: tail✝)⊃w₁¦w₂) ⊢ False case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝¹ : Form tail✝¹ : List Form l₆ : { x | x ∈ head✝¹ :: tail✝¹ } ⊆ lindenbaumSequence t Δ (i, j + 0) head✝ : Form tail✝ : List Form l₇ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head✝ :: tail✝)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝¹ :: tail✝¹)⊃w₁¦w₂) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
case' nil.cons head tail => have := BProof.proveList l₇ have := BProof.mp (BProof.adj prf₅ this) BTheorem.distRight have := BProof.mp this (BTheorem.orFunctor BTheorem.taut BTheorem.andE₁) have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp this thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩
case nil.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) head✝ : Form tail✝ : List Form l₇ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head✝ :: tail✝)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) ⊢ False case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝ : Form tail✝ : List Form l₆ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝ :: tail✝)⊃w₁¦w₂) ⊢ False case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝¹ : Form tail✝¹ : List Form l₆ : { x | x ∈ head✝¹ :: tail✝¹ } ⊆ lindenbaumSequence t Δ (i, j + 0) head✝ : Form tail✝ : List Form l₇ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head✝ :: tail✝)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝¹ :: tail✝¹)⊃w₁¦w₂) ⊢ False
case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝ : Form tail✝ : List Form l₆ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝ :: tail✝)⊃w₁¦w₂) ⊢ False case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝¹ : Form tail✝¹ : List Form l₆ : { x | x ∈ head✝¹ :: tail✝¹ } ⊆ lindenbaumSequence t Δ (i, j + 0) head✝ : Form tail✝ : List Form l₇ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head✝ :: tail✝)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝¹ :: tail✝¹)⊃w₁¦w₂) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
case' cons.nil head tail => have := BProof.proveList l₆ have := BProof.mp (BProof.adj prf₅ this) BTheorem.distRight have := BProof.mp this (BTheorem.orFunctor BTheorem.andE₁ BTheorem.taut) have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp this thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩
case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝ : Form tail✝ : List Form l₆ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝ :: tail✝)⊃w₁¦w₂) ⊢ False case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝¹ : Form tail✝¹ : List Form l₆ : { x | x ∈ head✝¹ :: tail✝¹ } ⊆ lindenbaumSequence t Δ (i, j + 0) head✝ : Form tail✝ : List Form l₇ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head✝ :: tail✝)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝¹ :: tail✝¹)⊃w₁¦w₂) ⊢ False
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝¹ : Form tail✝¹ : List Form l₆ : { x | x ∈ head✝¹ :: tail✝¹ } ⊆ lindenbaumSequence t Δ (i, j + 0) head✝ : Form tail✝ : List Form l₇ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head✝ :: tail✝)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝¹ :: tail✝¹)⊃w₁¦w₂) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
case' cons.cons head tail head' tail'=> have prf₆ := BProof.proveList l₆ have prf₇ := BProof.proveList l₇ have := BProof.mp (BProof.adj prf₅ prf₇) BTheorem.distRight have prf₈ := BProof.mp this (BTheorem.orFunctor BTheorem.taut BTheorem.andE₁) have := BProof.mp (BProof.adj prf₈ prf₆) BTheorem.distRight have prf₉ := BProof.mp this (BTheorem.orFunctor BTheorem.andE₁ BTheorem.taut) have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp prf₉ thm₃⟩, l₅⟩ exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝¹ : Form tail✝¹ : List Form l₆ : { x | x ∈ head✝¹ :: tail✝¹ } ⊆ lindenbaumSequence t Δ (i, j + 0) head✝ : Form tail✝ : List Form l₇ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head✝ :: tail✝)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝¹ :: tail✝¹)⊃w₁¦w₂) ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
cases lst₂
case cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ lst₂ : List Form l₇ : { x | x ∈ lst₂ } ⊆ lindenbaumSequence t Δ (i, j + 0) prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝ : Form tail✝ : List Form l₆ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst lst₂¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝ :: tail✝)⊃w₁¦w₂) ⊢ False
case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝ : Form tail✝ : List Form l₆ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝ :: tail✝)⊃w₁¦w₂) ⊢ False case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head✝¹ : Form tail✝¹ : List Form l₆ : { x | x ∈ head✝¹ :: tail✝¹ } ⊆ lindenbaumSequence t Δ (i, j + 0) head✝ : Form tail✝ : List Form l₇ : { x | x ∈ head✝ :: tail✝ } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head✝ :: tail✝)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head✝¹ :: tail✝¹)⊃w₁¦w₂) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp prf₅ thm₃⟩, l₅⟩
case nil.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) ⊢ False
case nil.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) this : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩
case nil.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) this : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have := BProof.proveList l₇
case nil.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) head : Form tail : List Form l₇ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head :: tail)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) ⊢ False
case nil.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) head : Form tail : List Form l₇ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head :: tail)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) this : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have := BProof.mp (BProof.adj prf₅ this) BTheorem.distRight
case nil.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) head : Form tail : List Form l₇ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head :: tail)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) this : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) ⊢ False
case nil.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) head : Form tail : List Form l₇ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head :: tail)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) this : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have := BProof.mp this (BTheorem.orFunctor BTheorem.taut BTheorem.andE₁)
case nil.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) head : Form tail : List Form l₇ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head :: tail)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) this : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) ⊢ False
case nil.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) head : Form tail : List Form l₇ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head :: tail)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) this✝¹ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) this : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp this thm₃⟩, l₅⟩
case nil.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) head : Form tail : List Form l₇ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head :: tail)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) this✝¹ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) this : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) ⊢ False
case nil.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) head : Form tail : List Form l₇ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head :: tail)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) this✝² : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) this✝¹ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) this : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩
case nil.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) l₆ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) head : Form tail : List Form l₇ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head :: tail)¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd []⊃w₁¦w₂) this✝² : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) this✝¹ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) this : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have := BProof.proveList l₆
case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) ⊢ False
case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) this : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have := BProof.mp (BProof.adj prf₅ this) BTheorem.distRight
case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) this : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) ⊢ False
case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) this : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have := BProof.mp this (BTheorem.orFunctor BTheorem.andE₁ BTheorem.taut)
case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) this : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) ⊢ False
case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) this✝¹ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) this : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp this thm₃⟩, l₅⟩
case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) this✝¹ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) this : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) ⊢ False
case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) this✝² : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) this✝¹ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) this : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩
case cons.nil t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) l₇ : { x | x ∈ [] } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst []¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) this✝² : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) this✝¹ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) this : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have prf₆ := BProof.proveList l₆
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) ⊢ False
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) prf₆ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have prf₇ := BProof.proveList l₇
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) prf₆ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) ⊢ False
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) prf₆ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) prf₇ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head' tail') ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have := BProof.mp (BProof.adj prf₅ prf₇) BTheorem.distRight
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) prf₆ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) prf₇ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head' tail') ⊢ False
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) prf₆ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) prf₇ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head' tail') this : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head' tail') ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have prf₈ := BProof.mp this (BTheorem.orFunctor BTheorem.taut BTheorem.andE₁)
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) prf₆ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) prf₇ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head' tail') this : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head' tail') ⊢ False
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) prf₆ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) prf₇ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head' tail') this : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head' tail') prf₈ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have := BProof.mp (BProof.adj prf₈ prf₆) BTheorem.distRight
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) prf₆ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) prf₇ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head' tail') this : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head' tail') prf₈ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) ⊢ False
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) prf₆ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) prf₇ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head' tail') this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head' tail') prf₈ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) this : BProof (lindenbaumSequence t Δ (i, j + 0)) ((((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have prf₉ := BProof.mp this (BTheorem.orFunctor BTheorem.andE₁ BTheorem.taut)
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) prf₆ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) prf₇ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head' tail') this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head' tail') prf₈ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) this : BProof (lindenbaumSequence t Δ (i, j + 0)) ((((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) ⊢ False
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) prf₆ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) prf₇ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head' tail') this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head' tail') prf₈ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) this : BProof (lindenbaumSequence t Δ (i, j + 0)) ((((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) prf₉ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
have : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ := ⟨⟨BProof.mp prf₉ thm₃⟩, l₅⟩
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) prf₆ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) prf₇ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head' tail') this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head' tail') prf₈ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) this : BProof (lindenbaumSequence t Δ (i, j + 0)) ((((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) prf₉ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) ⊢ False
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) prf₆ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) prf₇ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head' tail') this✝¹ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head' tail') prf₈ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) prf₉ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) this : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumAvoids
[188, 1]
[265, 62]
exact (Set.not_nonempty_iff_eq_empty.mpr l₃) ⟨w₁¦w₂, this⟩
case cons.cons t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ i j : ℕ w₁ : Form l₃ : ▲lindenbaumSequence t Δ (i, j) ∩ Δ = ∅ w₂ : Form l₅ : w₁¦w₂ ∈ Δ prf₅ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((Denumerable.ofNat (Form × Form) (j + 0)).fst¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) head : Form tail : List Form l₆ : { x | x ∈ head :: tail } ⊆ lindenbaumSequence t Δ (i, j + 0) head' : Form tail' : List Form l₇ : { x | x ∈ head' :: tail' } ⊆ lindenbaumSequence t Δ (i, j + 0) thm₃ : BTheorem (Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).fst (head' :: tail')¦Form.conjoinList (Denumerable.ofNat (Form × Form) (j + 0)).snd (head :: tail)⊃w₁¦w₂) prf₆ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head tail) prf₇ : BProof (lindenbaumSequence t Δ (i, j + 0)) (Form.conjoinList head' tail') this✝¹ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head' tail') prf₈ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd) this✝ : BProof (lindenbaumSequence t Δ (i, j + 0)) ((((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')&Form.conjoinList head tail)¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) prf₉ : BProof (lindenbaumSequence t Δ (i, j + 0)) (((Denumerable.ofNat (Form × Form) (j + 0)).fst&Form.conjoinList head' tail')¦(Denumerable.ofNat (Form × Form) (j + 0)).snd&Form.conjoinList head tail) this : w₁¦w₂ ∈ ▲lindenbaumSequence t Δ (i, j) ∩ Δ ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumTheorem
[267, 1]
[274, 59]
unfold lindenbaumExtension
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ ⊢ lindenbaumExtension t Δ ∩ Δ = ∅
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ ⊢ { f | ∃ ij, f ∈ lindenbaumSequence t Δ ij } ∩ Δ = ∅
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumTheorem
[267, 1]
[274, 59]
apply Set.not_nonempty_iff_eq_empty.mp
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ ⊢ { f | ∃ ij, f ∈ lindenbaumSequence t Δ ij } ∩ Δ = ∅
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ ⊢ ¬Set.Nonempty ({ f | ∃ ij, f ∈ lindenbaumSequence t Δ ij } ∩ Δ)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumTheorem
[267, 1]
[274, 59]
intros h₃
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ ⊢ ¬Set.Nonempty ({ f | ∃ ij, f ∈ lindenbaumSequence t Δ ij } ∩ Δ)
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ h₃ : Set.Nonempty ({ f | ∃ ij, f ∈ lindenbaumSequence t Δ ij } ∩ Δ) ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumTheorem
[267, 1]
[274, 59]
have ⟨f, ⟨ij, h₄⟩, h₅⟩ := h₃
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ h₃ : Set.Nonempty ({ f | ∃ ij, f ∈ lindenbaumSequence t Δ ij } ∩ Δ) ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ h₃ : Set.Nonempty ({ f | ∃ ij, f ∈ lindenbaumSequence t Δ ij } ∩ Δ) f : Form ij : ℕ × ℕ h₄ : f ∈ lindenbaumSequence t Δ ij h₅ : f ∈ Δ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumTheorem
[267, 1]
[274, 59]
have l₁ := lindenbaumAvoids h₁ h₂ ij
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ h₃ : Set.Nonempty ({ f | ∃ ij, f ∈ lindenbaumSequence t Δ ij } ∩ Δ) f : Form ij : ℕ × ℕ h₄ : f ∈ lindenbaumSequence t Δ ij h₅ : f ∈ Δ ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ h₃ : Set.Nonempty ({ f | ∃ ij, f ∈ lindenbaumSequence t Δ ij } ∩ Δ) f : Form ij : ℕ × ℕ h₄ : f ∈ lindenbaumSequence t Δ ij h₅ : f ∈ Δ l₁ : ▲lindenbaumSequence t Δ ij ∩ Δ = ∅ ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumTheorem
[267, 1]
[274, 59]
have l₂ : f ∈ ▲lindenbaumSequence t Δ ij := ⟨BProof.ax h₄⟩
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ h₃ : Set.Nonempty ({ f | ∃ ij, f ∈ lindenbaumSequence t Δ ij } ∩ Δ) f : Form ij : ℕ × ℕ h₄ : f ∈ lindenbaumSequence t Δ ij h₅ : f ∈ Δ l₁ : ▲lindenbaumSequence t Δ ij ∩ Δ = ∅ ⊢ False
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ h₃ : Set.Nonempty ({ f | ∃ ij, f ∈ lindenbaumSequence t Δ ij } ∩ Δ) f : Form ij : ℕ × ℕ h₄ : f ∈ lindenbaumSequence t Δ ij h₅ : f ∈ Δ l₁ : ▲lindenbaumSequence t Δ ij ∩ Δ = ∅ l₂ : f ∈ ▲lindenbaumSequence t Δ ij ⊢ False
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Lindenbaum.lean
lindenbaumTheorem
[267, 1]
[274, 59]
exact Set.not_nonempty_iff_eq_empty.mpr l₁ $ ⟨f, l₂, h₅⟩
t : Th Δ : Ctx h₁ : ↑t ∩ Δ = ∅ h₂ : isDisjunctionClosed Δ h₃ : Set.Nonempty ({ f | ∃ ij, f ∈ lindenbaumSequence t Δ ij } ∩ Δ) f : Form ij : ℕ × ℕ h₄ : f ∈ lindenbaumSequence t Δ ij h₅ : f ∈ Δ l₁ : ▲lindenbaumSequence t Δ ij ∩ Δ = ∅ l₂ : f ∈ ▲lindenbaumSequence t Δ ij ⊢ False
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/PropositionalLanguage.lean
Form.toConsExp_injective
[26, 1]
[28, 64]
intros f1 f2
⊢ Function.Injective toConsExp
f1 f2 : Form ⊢ toConsExp f1 = toConsExp f2 → f1 = f2
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/PropositionalLanguage.lean
Form.toConsExp_injective
[26, 1]
[28, 64]
induction f1 generalizing f2 <;> cases f2 <;> simp! <;> aesop
f1 f2 : Form ⊢ toConsExp f1 = toConsExp f2 → f1 = f2
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/PropositionalLanguage.lean
Form.nat_injection
[30, 1]
[33, 15]
unfold Function.Injective
⊢ Function.Injective atom
⊢ ∀ ⦃a₁ a₂ : ℕ⦄, #a₁ = #a₂ → a₁ = a₂
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/PropositionalLanguage.lean
Form.nat_injection
[30, 1]
[33, 15]
intros n m h₁
⊢ ∀ ⦃a₁ a₂ : ℕ⦄, #a₁ = #a₂ → a₁ = a₂
n m : ℕ h₁ : #n = #m ⊢ n = m
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/PropositionalLanguage.lean
Form.nat_injection
[30, 1]
[33, 15]
injection h₁
n m : ℕ h₁ : #n = #m ⊢ n = m
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/PropositionalLanguage.lean
toForm_toConsExp_eq
[52, 1]
[53, 28]
induction f <;> simp! [*]
f : Form ⊢ ConsExp.toForm (Form.toConsExp f) = some f
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
intros prf₁
Γ : Ctx f : Form ⊢ BProof Γ f → (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) f
Γ : Ctx f : Form prf₁ : BProof Γ f ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) f
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
induction prf₁
Γ : Ctx f : Form prf₁ : BProof Γ f ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) f
case ax Γ : Ctx f p✝ : Form h✝ : p✝ ∈ Γ ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) p✝ case mp Γ : Ctx f p✝ q✝ : Form h₁✝ : BProof Γ p✝ h₂✝ : BTheorem (p✝⊃q✝) h₁_ih✝ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) p✝ ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) q✝ case adj Γ : Ctx f p✝ q✝ : Form h₁✝ : BProof Γ p✝ h₂✝ : BProof Γ q✝ h₁_ih✝ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) p✝ h₂_ih✝ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) q✝ ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (p✝&q✝)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
case ax g h₁ => let Gsing : Finset Form := {g} have l₁ : g ∈ {g} := Finset.mem_singleton.mpr rfl have l₂ : Gsing = ({g} : Ctx) := Finset.coe_singleton g have l₃ : ↑Gsing ⊆ Γ := by intros g' h₂ rw [l₂] at h₂ rw [h₂] assumption have prf₂ : BProof ↑{g} g := by rw [←l₂] apply ax l₁ rw [←l₂] at prf₂ exact ⟨Gsing, l₃, prf₂⟩
Γ : Ctx f g : Form h₁ : g ∈ Γ ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) g
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
case mp P Q _ h₂ ih => have ⟨fin, h₁, prf⟩ := ih exact ⟨fin, h₁, mp prf h₂⟩
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂ : BTheorem (P⊃Q) ih : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
case adj P Q _ _ ih₁ ih₂ => have ⟨fin₁, h₁, prf₁⟩ := ih₁ have ⟨fin₂, h₂, prf₂⟩ := ih₂ have prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P := BProof.monotone (Set.subset_union_left ↑fin₁ ↑fin₂) prf₁ have prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q := BProof.monotone (Set.subset_union_right ↑fin₁ ↑fin₂) prf₂ have prf₅ := adj prf₃ prf₄ have l₁ : ↑(fin₁ ∪ fin₂) ⊆ Γ := by intros f h₃ rw [Finset.coe_union] at h₃ cases h₃ case inl h₄ => exact h₁ h₄ case inr h₄ => exact h₂ h₄ rw [←Finset.coe_union] at prf₅ exact ⟨↑(fin₁ ∪ fin₂), l₁, prf₅⟩
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
let Gsing : Finset Form := {g}
Γ : Ctx f g : Form h₁ : g ∈ Γ ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) g
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
have l₁ : g ∈ {g} := Finset.mem_singleton.mpr rfl
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) g
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
have l₂ : Gsing = ({g} : Ctx) := Finset.coe_singleton g
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) g
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
have l₃ : ↑Gsing ⊆ Γ := by intros g' h₂ rw [l₂] at h₂ rw [h₂] assumption
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) g
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} l₃ : ↑Gsing ⊆ Γ ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
have prf₂ : BProof ↑{g} g := by rw [←l₂] apply ax l₁
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} l₃ : ↑Gsing ⊆ Γ ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) g
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} l₃ : ↑Gsing ⊆ Γ prf₂ : BProof {g} g ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
rw [←l₂] at prf₂
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} l₃ : ↑Gsing ⊆ Γ prf₂ : BProof {g} g ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) g
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} l₃ : ↑Gsing ⊆ Γ prf₂ : BProof (↑Gsing) g ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
exact ⟨Gsing, l₃, prf₂⟩
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} l₃ : ↑Gsing ⊆ Γ prf₂ : BProof (↑Gsing) g ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) g
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
intros g' h₂
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} ⊢ ↑Gsing ⊆ Γ
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} g' : Form h₂ : g' ∈ ↑Gsing ⊢ g' ∈ Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
rw [l₂] at h₂
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} g' : Form h₂ : g' ∈ ↑Gsing ⊢ g' ∈ Γ
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} g' : Form h₂ : g' ∈ {g} ⊢ g' ∈ Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
rw [h₂]
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} g' : Form h₂ : g' ∈ {g} ⊢ g' ∈ Γ
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} g' : Form h₂ : g' ∈ {g} ⊢ g ∈ Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
assumption
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} g' : Form h₂ : g' ∈ {g} ⊢ g ∈ Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
rw [←l₂]
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} l₃ : ↑Gsing ⊆ Γ ⊢ BProof {g} g
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} l₃ : ↑Gsing ⊆ Γ ⊢ BProof (↑Gsing) g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
apply ax l₁
Γ : Ctx f g : Form h₁ : g ∈ Γ Gsing : Finset Form := {g} l₁ : g ∈ {g} l₂ : ↑Gsing = {g} l₃ : ↑Gsing ⊆ Γ ⊢ BProof (↑Gsing) g
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
have ⟨fin, h₁, prf⟩ := ih
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂ : BTheorem (P⊃Q) ih : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂ : BTheorem (P⊃Q) ih : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P fin : Finset Form h₁ : ↑fin ⊆ Γ prf : BProof (↑fin) P ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
exact ⟨fin, h₁, mp prf h₂⟩
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂ : BTheorem (P⊃Q) ih : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P fin : Finset Form h₁ : ↑fin ⊆ Γ prf : BProof (↑fin) P ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
have ⟨fin₁, h₁, prf₁⟩ := ih₁
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
have ⟨fin₂, h₂, prf₂⟩ := ih₂
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
have prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P := BProof.monotone (Set.subset_union_left ↑fin₁ ↑fin₂) prf₁
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
have prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q := BProof.monotone (Set.subset_union_right ↑fin₁ ↑fin₂) prf₂
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
have prf₅ := adj prf₃ prf₄
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
have l₁ : ↑(fin₁ ∪ fin₂) ⊆ Γ := by intros f h₃ rw [Finset.coe_union] at h₃ cases h₃ case inl h₄ => exact h₁ h₄ case inr h₄ => exact h₂ h₄
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) l₁ : ↑(fin₁ ∪ fin₂) ⊆ Γ ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
rw [←Finset.coe_union] at prf₅
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) l₁ : ↑(fin₁ ∪ fin₂) ⊆ Γ ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅✝ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) prf₅ : BProof (↑(fin₁ ∪ fin₂)) (P&Q) l₁ : ↑(fin₁ ∪ fin₂) ⊆ Γ ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
exact ⟨↑(fin₁ ∪ fin₂), l₁, prf₅⟩
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅✝ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) prf₅ : BProof (↑(fin₁ ∪ fin₂)) (P&Q) l₁ : ↑(fin₁ ∪ fin₂) ⊆ Γ ⊢ (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) (P&Q)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
intros f h₃
Γ : Ctx f P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) ⊢ ↑(fin₁ ∪ fin₂) ⊆ Γ
Γ : Ctx f✝ P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) f : Form h₃ : f ∈ ↑(fin₁ ∪ fin₂) ⊢ f ∈ Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
rw [Finset.coe_union] at h₃
Γ : Ctx f✝ P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) f : Form h₃ : f ∈ ↑(fin₁ ∪ fin₂) ⊢ f ∈ Γ
Γ : Ctx f✝ P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) f : Form h₃ : f ∈ ↑fin₁ ∪ ↑fin₂ ⊢ f ∈ Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
cases h₃
Γ : Ctx f✝ P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) f : Form h₃ : f ∈ ↑fin₁ ∪ ↑fin₂ ⊢ f ∈ Γ
case inl Γ : Ctx f✝ P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) f : Form h✝ : f ∈ ↑fin₁ ⊢ f ∈ Γ case inr Γ : Ctx f✝ P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) f : Form h✝ : f ∈ ↑fin₂ ⊢ f ∈ Γ
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
case inl h₄ => exact h₁ h₄
Γ : Ctx f✝ P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) f : Form h₄ : f ∈ ↑fin₁ ⊢ f ∈ Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
case inr h₄ => exact h₂ h₄
Γ : Ctx f✝ P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) f : Form h₄ : f ∈ ↑fin₂ ⊢ f ∈ Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
exact h₁ h₄
Γ : Ctx f✝ P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) f : Form h₄ : f ∈ ↑fin₁ ⊢ f ∈ Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.compactness
[169, 1]
[201, 37]
exact h₂ h₄
Γ : Ctx f✝ P Q : Form h₁✝ : BProof Γ P h₂✝ : BProof Γ Q ih₁ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) P ih₂ : (s : Finset Form) × (_ : ↑s ⊆ Γ) ×' BProof (↑s) Q fin₁ : Finset Form h₁ : ↑fin₁ ⊆ Γ prf₁ : BProof (↑fin₁) P fin₂ : Finset Form h₂ : ↑fin₂ ⊆ Γ prf₂ : BProof (↑fin₂) Q prf₃ : BProof (↑fin₁ ∪ ↑fin₂) P prf₄ : BProof (↑fin₁ ∪ ↑fin₂) Q prf₅ : BProof (↑fin₁ ∪ ↑fin₂) (P&Q) f : Form h₄ : f ∈ ↑fin₂ ⊢ f ∈ Γ
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.listCompression
[203, 1]
[207, 60]
intros prf₁
l : List Form f g : Form ⊢ BProof { h | h = f ∨ h ∈ l } g → BProof {Form.conjoinList f l} g
l : List Form f g : Form prf₁ : BProof { h | h = f ∨ h ∈ l } g ⊢ BProof {Form.conjoinList f l} g
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.listCompression
[203, 1]
[207, 60]
induction prf₁
l : List Form f g : Form prf₁ : BProof { h | h = f ∨ h ∈ l } g ⊢ BProof {Form.conjoinList f l} g
case ax l : List Form f g p✝ : Form h✝ : p✝ ∈ { h | h = f ∨ h ∈ l } ⊢ BProof {Form.conjoinList f l} p✝ case mp l : List Form f g p✝ q✝ : Form h₁✝ : BProof { h | h = f ∨ h ∈ l } p✝ h₂✝ : BTheorem (p✝⊃q✝) h₁_ih✝ : BProof {Form.conjoinList f l} p✝ ⊢ BProof {Form.conjoinList f l} q✝ case adj l : List Form f g p✝ q✝ : Form h₁✝ : BProof { h | h = f ∨ h ∈ l } p✝ h₂✝ : BProof { h | h = f ∨ h ∈ l } q✝ h₁_ih✝ : BProof {Form.conjoinList f l} p✝ h₂_ih✝ : BProof {Form.conjoinList f l} q✝ ⊢ BProof {Form.conjoinList f l} (p✝&q✝)
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.listCompression
[203, 1]
[207, 60]
case ax p h₁ => exact BProof.proveFromList $ List.mem_cons.mpr h₁
l : List Form f g p : Form h₁ : p ∈ { h | h = f ∨ h ∈ l } ⊢ BProof {Form.conjoinList f l} p
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.listCompression
[203, 1]
[207, 60]
case mp p q _ prf₂ ih => exact BProof.mp ih prf₂
l : List Form f g p q : Form h₁✝ : BProof { h | h = f ∨ h ∈ l } p prf₂ : BTheorem (p⊃q) ih : BProof {Form.conjoinList f l} p ⊢ BProof {Form.conjoinList f l} q
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.listCompression
[203, 1]
[207, 60]
case adj p q _ _ prf₁ prf₂ => exact BProof.adj prf₁ prf₂
l : List Form f g p q : Form h₁✝ : BProof { h | h = f ∨ h ∈ l } p h₂✝ : BProof { h | h = f ∨ h ∈ l } q prf₁ : BProof {Form.conjoinList f l} p prf₂ : BProof {Form.conjoinList f l} q ⊢ BProof {Form.conjoinList f l} (p&q)
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.listCompression
[203, 1]
[207, 60]
exact BProof.proveFromList $ List.mem_cons.mpr h₁
l : List Form f g p : Form h₁ : p ∈ { h | h = f ∨ h ∈ l } ⊢ BProof {Form.conjoinList f l} p
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.listCompression
[203, 1]
[207, 60]
exact BProof.mp ih prf₂
l : List Form f g p q : Form h₁✝ : BProof { h | h = f ∨ h ∈ l } p prf₂ : BTheorem (p⊃q) ih : BProof {Form.conjoinList f l} p ⊢ BProof {Form.conjoinList f l} q
no goals
https://github.com/gleachkr/Completeness-For-Fine-Semantics.git
0d8cc9a4c9c53181a2bf1541d2ed5a39c2593f0f
Fine/SystemB/Hilbert.lean
BProof.listCompression
[203, 1]
[207, 60]
exact BProof.adj prf₁ prf₂
l : List Form f g p q : Form h₁✝ : BProof { h | h = f ∨ h ∈ l } p h₂✝ : BProof { h | h = f ∨ h ∈ l } q prf₁ : BProof {Form.conjoinList f l} p prf₂ : BProof {Form.conjoinList f l} q ⊢ BProof {Form.conjoinList f l} (p&q)
no goals