modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
โŒ€
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
โŒ€
likes
float64
0
712
โŒ€
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Akashpb13/Galician_xlsr
6d7c65bc6ee00db4b0dceab044affedd4ea486b5
2022-03-24T11:56:24.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "gl", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Akashpb13
null
Akashpb13/Galician_xlsr
18
null
transformers
8,700
--- language: - gl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - gl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: Akashpb13/Galician_xlsr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: kmr metrics: - name: Test WER type: wer value: 0.11308483789555426 - name: Test CER type: cer value: 0.023982371794871796 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: gl metrics: - name: Test WER type: wer value: 0.11308483789555426 - name: Test CER type: cer value: 0.023982371794871796 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: gl metrics: - name: Test WER type: wer value: 11.31 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: gl metrics: - name: Test WER type: wer value: 39.05 --- # Akashpb13/Galician_xlsr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - hu dataset. It achieves the following results on the evaluation set (which is 10 percent of train data set merged with invalidated data, reported, other, and dev datasets): - Loss: 0.137096 - Wer: 0.196230 ## Model description "facebook/wav2vec2-xls-r-300m" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Galician train.tsv, dev.tsv, invalidated.tsv, reported.tsv, and other.tsv Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0 ## Training procedure For creating the training dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000096 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 500 | 5.038100 | 3.035432 | 1.000000 | | 1000 | 2.180000 | 0.406300 | 0.557964 | | 1500 | 0.331700 | 0.153797 | 0.262394 | | 2000 | 0.171600 | 0.145268 | 0.235627 | | 2500 | 0.125900 | 0.136622 | 0.228087 | | 3000 | 0.105400 | 0.131650 | 0.224128 | | 3500 | 0.087600 | 0.141032 | 0.217531 | | 4000 | 0.078300 | 0.143675 | 0.214515 | | 4500 | 0.070000 | 0.144607 | 0.208106 | | 5000 | 0.061500 | 0.135259 | 0.202828 | | 5500 | 0.055600 | 0.130638 | 0.203959 | | 6000 | 0.050500 | 0.137416 | 0.202451 | | 6500 | 0.046600 | 0.140379 | 0.200000 | | 7000 | 0.040800 | 0.140179 | 0.200377 | | 7500 | 0.041000 | 0.138089 | 0.196795 | | 8000 | 0.038400 | 0.136927 | 0.197172 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Akashpb13/Galician_xlsr --dataset mozilla-foundation/common_voice_8_0 --config gl --split test ```
AlexMaclean/sentence-compression-roberta
79c877c8f5a67df3bfe4990da73e290c733134cf
2021-12-06T04:22:17.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
AlexMaclean
null
AlexMaclean/sentence-compression-roberta
18
1
transformers
8,701
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: sentence-compression-roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentence-compression-roberta This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3465 - Accuracy: 0.8473 - F1: 0.6835 - Precision: 0.6835 - Recall: 0.6835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5312 | 1.0 | 50 | 0.5251 | 0.7591 | 0.0040 | 0.75 | 0.0020 | | 0.4 | 2.0 | 100 | 0.4003 | 0.8200 | 0.5341 | 0.7113 | 0.4275 | | 0.3355 | 3.0 | 150 | 0.3465 | 0.8473 | 0.6835 | 0.6835 | 0.6835 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
CAMeL-Lab/bert-base-arabic-camelbert-da-poetry
d1072d4b81dccf65cebc2280f26b518fb474c460
2021-10-17T12:09:56.000Z
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-da-poetry
18
null
transformers
8,702
--- language: - ar license: apache-2.0 widget: - text: 'ุงู„ุฎูŠู„ ูˆุงู„ู„ูŠู„ ูˆุงู„ุจูŠุฏุงุก ุชุนุฑูู†ูŠ [SEP] ูˆุงู„ุณูŠู ูˆุงู„ุฑู…ุญ ูˆุงู„ู‚ุฑุทุงุณ ูˆุงู„ู‚ู„ู…' --- # CAMeLBERT-DA Poetry Classification Model ## Model description **CAMeLBERT-DA Poetry Classification Model** is a poetry classification model that was built by fine-tuning the [CAMeLBERT Dialectal Arabic (DA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da/) model. For the fine-tuning, we used the [APCD](https://arxiv.org/pdf/1905.05700.pdf) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-DA Poetry Classification model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> poetry = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-da-poetry') >>> # A list of verses where each verse consists of two parts. >>> verses = [ ['ุงู„ุฎูŠู„ ูˆุงู„ู„ูŠู„ ูˆุงู„ุจูŠุฏุงุก ุชุนุฑูู†ูŠ' ,'ูˆุงู„ุณูŠู ูˆุงู„ุฑู…ุญ ูˆุงู„ู‚ุฑุทุงุณ ูˆุงู„ู‚ู„ู…'], ['ู‚ู… ู„ู„ู…ุนู„ู… ูˆูู‡ ุงู„ุชุจุฌูŠู„ุง' ,'ูƒุงุฏ ุงู„ู…ุนู„ู… ุงู† ูŠูƒูˆู† ุฑุณูˆู„ุง'] ] >>> # A function that concatenates the halves of each verse by using the [SEP] token. >>> join_verse = lambda half: ' [SEP] '.join(half) >>> # Apply this to all the verses in the list. >>> verses = [join_verse(verse) for verse in verses] >>> poetry(sentences) [{'label': 'ุงู„ุจุณูŠุท', 'score': 0.9874765276908875}, {'label': 'ุงู„ุณู„ุณู„ุฉ', 'score': 0.6877778172492981}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
Cinnamon/electra-small-japanese-generator
f74cb40569de2648344639c51b4969b230523ea1
2020-12-11T21:26:17.000Z
[ "pytorch", "electra", "fill-mask", "ja", "transformers", "autotrain_compatible" ]
fill-mask
false
Cinnamon
null
Cinnamon/electra-small-japanese-generator
18
1
transformers
8,703
--- language: ja --- ## Japanese ELECTRA-small We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately. ``` # ELECTRA-small generator usage from transformers import BertJapaneseTokenizer, ElectraForMaskedLM tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-generator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"}) model = ElectraForMaskedLM.from_pretrained('Cinnamon/electra-small-japanese-generator') ```
DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2
076b731294cfae58998b40daf54d4595a2667fb0
2022-03-23T18:30:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "bg", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2
18
1
transformers
8,704
--- language: - bg license: apache-2.0 tags: - automatic-speech-recognition - bg - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-bg-d2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bg metrics: - name: Test WER type: wer value: 0.28775471338792613 - name: Test CER type: cer value: 0.06861971204625049 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: bg metrics: - name: Test WER type: wer value: 0.49783147459727384 - name: Test CER type: cer value: 0.1591062599627158 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: bg metrics: - name: Test WER type: wer value: 51.25 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bg-d2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset. It achieves the following results on the evaluation set: - Loss: 0.3421 - Wer: 0.2860 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2 --dataset mozilla-foundation/common_voice_8_0 --config bg --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2 --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 700 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.8791 | 1.74 | 200 | 3.1902 | 1.0 | | 3.0441 | 3.48 | 400 | 2.8098 | 0.9864 | | 1.1499 | 5.22 | 600 | 0.4668 | 0.5014 | | 0.4968 | 6.96 | 800 | 0.4162 | 0.4472 | | 0.3553 | 8.7 | 1000 | 0.3580 | 0.3777 | | 0.3027 | 10.43 | 1200 | 0.3422 | 0.3506 | | 0.2562 | 12.17 | 1400 | 0.3556 | 0.3639 | | 0.2272 | 13.91 | 1600 | 0.3621 | 0.3583 | | 0.2125 | 15.65 | 1800 | 0.3436 | 0.3358 | | 0.1904 | 17.39 | 2000 | 0.3650 | 0.3545 | | 0.1695 | 19.13 | 2200 | 0.3366 | 0.3241 | | 0.1532 | 20.87 | 2400 | 0.3550 | 0.3311 | | 0.1453 | 22.61 | 2600 | 0.3582 | 0.3131 | | 0.1359 | 24.35 | 2800 | 0.3524 | 0.3084 | | 0.1233 | 26.09 | 3000 | 0.3503 | 0.2973 | | 0.1114 | 27.83 | 3200 | 0.3434 | 0.2946 | | 0.1051 | 29.57 | 3400 | 0.3474 | 0.2956 | | 0.0965 | 31.3 | 3600 | 0.3426 | 0.2907 | | 0.0923 | 33.04 | 3800 | 0.3478 | 0.2894 | | 0.0894 | 34.78 | 4000 | 0.3421 | 0.2860 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
EasthShin/Android_Ios_Classification
4058e1b08c146f9f2fc5ed0e64120d728cae1466
2021-08-22T16:18:37.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
EasthShin
null
EasthShin/Android_Ios_Classification
18
null
transformers
8,705
## Bert-base-uncased for Android-Ios Question Classification **Code**: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/EastHShin/Android-Ios-Classification-Workspace) <br> **Android-Ios-Classification DEMO**: [Ainize Endpoint](https://main-android-ios-classification-east-h-shin.endpoint.ainize.ai/) <br> **Demo web Code**: [Github](https://github.com/EastHShin/Android-Ios-Classification) <br> **Android-Ios-Classification API**: [Ainize API](https://ainize.ai/EastHShin/Android-Ios-Classification) <br> <br> ## Overview **Language model**: bert-base-cased <br> **Language**: English <br> **Training data**: Question classification Android-Ios dataset from [Kaggle](https://www.kaggle.com/xhlulu/question-classification-android-or-ios) ## Usage ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_path = "EasthShin/Android_Ios_Classification" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) classifier = pipeline('text-classification', model=model_path, tokenizer=tokenizer) question = "I bought goodnote in Appstore" result = dict() result[0] = classifier(question)[0] ```
EhsanAghazadeh/xlnet-large-cased-CoLA_C
b710afe83a3a8203502d65a5efef6741b6b8021b
2021-04-18T18:42:36.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/xlnet-large-cased-CoLA_C
18
null
transformers
8,706
Entry not found
Harveenchadha/wav2vec2-pretrained-clsril-23-10k
026bd5f2c194197e032c91940b88fdc71455aad8
2021-08-06T13:40:49.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "arxiv:2107.07402", "transformers" ]
feature-extraction
false
Harveenchadha
null
Harveenchadha/wav2vec2-pretrained-clsril-23-10k
18
2
transformers
8,707
## Overview We present a CLSRIL-23 (Cross Lingual Speech Representations on Indic Languages), a self supervised learning based audio pre-trained model which learns cross lingual speech representations from raw audio across **23 Indic languages**. It is built on top of wav2vec 2.0 which is solved by training a contrastive task over masked latent speech representations and jointly learns the quantization of latents shared across all languages. [Arxiv Link](https://arxiv.org/pdf/2107.07402.pdf) [Original Repo](https://github.com/Open-Speech-EkStep/vakyansh-models) contains models in fairseq format. ## Languages in the pretraining dataset | Language | Data (In Hrs) | |-----------|---------------| | Assamese | 254.9 | | Bengali | 331.3 | | Bodo | 26.9 | | Dogri | 17.1 | | English | 819.7 | | Gujarati | 336.7 | | Hindi | 4563.7 | | Kannada | 451.8 | | Kashmiri | 67.8 | | Konkani | 36.8 | | Maithili | 113.8 | | Malayalam | 297.7 | | Manipuri | 171.9 | | Marathi | 458.2 | | Nepali | 31.6 | | Odia | 131.4 | | Punjabi | 486.05 | | Sanskrit | 58.8 | | Santali | 6.56 | | Sindhi | 16 | | Tamil | 542.6 | | Telugu | 302.8 | | Urdu | 259.68 | ## Repo for training: [Experimentation](https://github.com/Open-Speech-EkStep/vakyansh-wav2vec2-experimentation) platform built on top of fairseq.
Hate-speech-CNERG/dehatebert-mono-italian
aeb70b454d5fc3046aa2a062c525d1ac60f2f01b
2021-09-25T13:56:50.000Z
[ "pytorch", "jax", "bert", "text-classification", "it", "arxiv:2004.06465", "transformers", "license:apache-2.0" ]
text-classification
false
Hate-speech-CNERG
null
Hate-speech-CNERG/dehatebert-mono-italian
18
null
transformers
8,708
--- language: it license: apache-2.0 --- This model is used detecting **hatespeech** in **Italian language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.837288 for a learning rate of 3e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
Helsinki-NLP/opus-mt-be-es
fb10b7c6cd82bc7662ce52f2986f927579483fad
2021-01-18T07:49:34.000Z
[ "pytorch", "marian", "text2text-generation", "be", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-be-es
18
null
transformers
8,709
--- language: - be - es tags: - translation license: apache-2.0 --- ### bel-spa * source group: Belarusian * target group: Spanish * OPUS readme: [bel-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bel-spa/README.md) * model: transformer-align * source language(s): bel bel_Latn * target language(s): spa * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bel-spa/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bel-spa/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bel-spa/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.bel.spa | 11.8 | 0.272 | ### System Info: - hf_name: bel-spa - source_languages: bel - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bel-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['be', 'es'] - src_constituents: {'bel', 'bel_Latn'} - tgt_constituents: {'spa'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/bel-spa/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/bel-spa/opus-2020-06-16.test.txt - src_alpha3: bel - tgt_alpha3: spa - short_pair: be-es - chrF2_score: 0.272 - bleu: 11.8 - brevity_penalty: 0.892 - ref_len: 1412.0 - src_name: Belarusian - tgt_name: Spanish - train_date: 2020-06-16 - src_alpha2: be - tgt_alpha2: es - prefer_old: False - long_pair: bel-spa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ca-de
0ba8e70435e98ce0a17866dbf8c3906b1c13a8d7
2021-01-18T07:52:44.000Z
[ "pytorch", "marian", "text2text-generation", "ca", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ca-de
18
null
transformers
8,710
--- language: - ca - de tags: - translation license: apache-2.0 --- ### cat-deu * source group: Catalan * target group: German * OPUS readme: [cat-deu](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cat-deu/README.md) * model: transformer-align * source language(s): cat * target language(s): deu * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-deu/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-deu/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-deu/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.cat.deu | 39.5 | 0.593 | ### System Info: - hf_name: cat-deu - source_languages: cat - target_languages: deu - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cat-deu/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ca', 'de'] - src_constituents: {'cat'} - tgt_constituents: {'deu'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/cat-deu/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/cat-deu/opus-2020-06-16.test.txt - src_alpha3: cat - tgt_alpha3: deu - short_pair: ca-de - chrF2_score: 0.593 - bleu: 39.5 - brevity_penalty: 1.0 - ref_len: 5643.0 - src_name: Catalan - tgt_name: German - train_date: 2020-06-16 - src_alpha2: ca - tgt_alpha2: de - prefer_old: False - long_pair: cat-deu - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-da-de
2e4d10f7054f579178b167e5082b0e57726eee44
2021-09-09T21:29:48.000Z
[ "pytorch", "marian", "text2text-generation", "da", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-da-de
18
null
transformers
8,711
--- tags: - translation license: apache-2.0 --- ### opus-mt-da-de * source languages: da * target languages: de * OPUS readme: [da-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/da-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/da-de/opus-2020-01-26.zip) * test set translations: [opus-2020-01-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/da-de/opus-2020-01-26.test.txt) * test set scores: [opus-2020-01-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/da-de/opus-2020-01-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.da.de | 57.4 | 0.740 |
Helsinki-NLP/opus-mt-en-chk
a57e025c3f8a7a9b20968190b6a6db234ef1541a
2021-09-09T21:34:34.000Z
[ "pytorch", "marian", "text2text-generation", "en", "chk", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-chk
18
null
transformers
8,712
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-chk * source languages: en * target languages: chk * OPUS readme: [en-chk](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-chk/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-chk/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-chk/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-chk/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.chk | 26.1 | 0.468 |
Helsinki-NLP/opus-mt-en-crs
1f25af1f9d1c0680005a9f0d16ed8bb412784c32
2021-09-09T21:34:38.000Z
[ "pytorch", "marian", "text2text-generation", "en", "crs", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-crs
18
null
transformers
8,713
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-crs * source languages: en * target languages: crs * OPUS readme: [en-crs](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-crs/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-crs/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-crs/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-crs/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.crs | 45.2 | 0.617 |
Helsinki-NLP/opus-mt-en-luo
fafd6071295dbf194acd2bf04cf51f4e46b9f10b
2021-09-09T21:37:19.000Z
[ "pytorch", "marian", "text2text-generation", "en", "luo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-luo
18
1
transformers
8,714
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-luo * source languages: en * target languages: luo * OPUS readme: [en-luo](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-luo/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-luo/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-luo/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-luo/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.luo | 27.6 | 0.495 |
Helsinki-NLP/opus-mt-en-pon
78431adc00a85251bad917dd0d99f57b7dff5519
2021-09-09T21:38:37.000Z
[ "pytorch", "marian", "text2text-generation", "en", "pon", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-pon
18
null
transformers
8,715
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-pon * source languages: en * target languages: pon * OPUS readme: [en-pon](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-pon/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-pon/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-pon/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-pon/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.pon | 32.4 | 0.542 |
Helsinki-NLP/opus-mt-en-run
71f1ba7d823772630debcf2664556316b29c4bc7
2021-09-09T21:38:51.000Z
[ "pytorch", "marian", "text2text-generation", "en", "run", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-run
18
null
transformers
8,716
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-run * source languages: en * target languages: run * OPUS readme: [en-run](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-run/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-run/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-run/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-run/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.run | 34.2 | 0.591 |
Helsinki-NLP/opus-mt-en-sn
8270891c929d30483217b2dd31cd3784b4863da9
2021-09-09T21:39:11.000Z
[ "pytorch", "marian", "text2text-generation", "en", "sn", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-sn
18
null
transformers
8,717
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-sn * source languages: en * target languages: sn * OPUS readme: [en-sn](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-sn/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-sn/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-sn/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-sn/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.sn | 38.0 | 0.646 |
Helsinki-NLP/opus-mt-en-ss
bec263f6023f89a296c8ac5b345772709a8587ad
2021-09-09T21:39:20.000Z
[ "pytorch", "marian", "text2text-generation", "en", "ss", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-ss
18
null
transformers
8,718
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-ss * source languages: en * target languages: ss * OPUS readme: [en-ss](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-ss/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-ss/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ss/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ss/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.ss | 25.7 | 0.541 |
Helsinki-NLP/opus-mt-en-swc
d94d46a6b644d279595a3002622e491682a8658d
2021-09-09T21:39:34.000Z
[ "pytorch", "marian", "text2text-generation", "en", "swc", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-swc
18
null
transformers
8,719
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-swc * source languages: en * target languages: swc * OPUS readme: [en-swc](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-swc/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-swc/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-swc/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-swc/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.swc | 40.1 | 0.613 |
Helsinki-NLP/opus-mt-en-tvl
515d37d27b5e9781bad9c809e501f68773824d0f
2021-09-09T21:40:16.000Z
[ "pytorch", "marian", "text2text-generation", "en", "tvl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-tvl
18
null
transformers
8,720
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-tvl * source languages: en * target languages: tvl * OPUS readme: [en-tvl](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-tvl/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-tvl/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-tvl/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-tvl/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.tvl | 46.9 | 0.625 |
Helsinki-NLP/opus-mt-es-NORWAY
3c5425e7514f9f47f9822d5947ac5f56d68b572c
2021-09-09T21:41:05.000Z
[ "pytorch", "marian", "text2text-generation", "es", "no", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-NORWAY
18
null
transformers
8,721
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-NORWAY * source languages: es * target languages: nb_NO,nb,nn_NO,nn,nog,no_nb,no * OPUS readme: [es-nb_NO+nb+nn_NO+nn+nog+no_nb+no](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-nb_NO+nb+nn_NO+nn+nog+no_nb+no/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-nb_NO+nb+nn_NO+nn+nog+no_nb+no/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-nb_NO+nb+nn_NO+nn+nog+no_nb+no/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-nb_NO+nb+nn_NO+nn+nog+no_nb+no/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.no | 31.6 | 0.523 |
Helsinki-NLP/opus-mt-es-lus
6a8ac408bcb84e553747298b5ae96986398f6e85
2021-09-09T21:43:35.000Z
[ "pytorch", "marian", "text2text-generation", "es", "lus", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-lus
18
null
transformers
8,722
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-lus * source languages: es * target languages: lus * OPUS readme: [es-lus](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-lus/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-lus/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-lus/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-lus/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.lus | 20.9 | 0.414 |
Helsinki-NLP/opus-mt-fr-he
fd07a640906ea642940eefaf7f5b07fae013ba63
2021-01-18T08:43:43.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "he", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-he
18
null
transformers
8,723
--- language: - fr - he tags: - translation license: apache-2.0 --- ### fr-he * source group: French * target group: Hebrew * OPUS readme: [fra-heb](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-heb/README.md) * model: transformer * source language(s): fra * target language(s): heb * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-12-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-heb/opus-2020-12-10.zip) * test set translations: [opus-2020-12-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-heb/opus-2020-12-10.test.txt) * test set scores: [opus-2020-12-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-heb/opus-2020-12-10.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.fra.heb | 39.2 | 0.598 | ### System Info: - hf_name: fr-he - source_languages: fra - target_languages: heb - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-heb/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['fr', 'he'] - src_constituents: ('French', {'fra'}) - tgt_constituents: ('Hebrew', {'heb'}) - src_multilingual: False - tgt_multilingual: False - long_pair: fra-heb - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-heb/opus-2020-12-10.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-heb/opus-2020-12-10.test.txt - src_alpha3: fra - tgt_alpha3: heb - chrF2_score: 0.598 - bleu: 39.2 - brevity_penalty: 1.0 - ref_len: 20655.0 - src_name: French - tgt_name: Hebrew - train_date: 2020-12-10 00:00:00 - src_alpha2: fr - tgt_alpha2: he - prefer_old: False - short_pair: fr-he - helsinki_git_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96 - transformers_git_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de - port_machine: LM0-400-22516.local - port_time: 2020-12-11-16:02
Helsinki-NLP/opus-mt-fr-to
3ad564b525751784417060ca0c2e1b3d170cd52c
2021-09-09T21:57:29.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "to", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-to
18
null
transformers
8,724
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-to * source languages: fr * target languages: to * OPUS readme: [fr-to](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-to/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-to/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-to/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-to/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.to | 37.0 | 0.518 |
Helsinki-NLP/opus-mt-it-ms
c954aae9852f40ee4d8ede1d14fa06b36dd95c36
2020-08-21T14:42:46.000Z
[ "pytorch", "marian", "text2text-generation", "it", "ms", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-it-ms
18
null
transformers
8,725
--- language: - it - ms tags: - translation license: apache-2.0 --- ### ita-msa * source group: Italian * target group: Malay (macrolanguage) * OPUS readme: [ita-msa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-msa/README.md) * model: transformer-align * source language(s): ita * target language(s): ind zsm_Latn * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-msa/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-msa/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-msa/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ita.msa | 26.0 | 0.536 | ### System Info: - hf_name: ita-msa - source_languages: ita - target_languages: msa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-msa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['it', 'ms'] - src_constituents: {'ita'} - tgt_constituents: {'zsm_Latn', 'ind', 'max_Latn', 'zlm_Latn', 'min'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-msa/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-msa/opus-2020-06-17.test.txt - src_alpha3: ita - tgt_alpha3: msa - short_pair: it-ms - chrF2_score: 0.536 - bleu: 26.0 - brevity_penalty: 0.9209999999999999 - ref_len: 2765.0 - src_name: Italian - tgt_name: Malay (macrolanguage) - train_date: 2020-06-17 - src_alpha2: it - tgt_alpha2: ms - prefer_old: False - long_pair: ita-msa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-lue-en
1780ade95cbfcd12acec3e3f67218312e3c35ab9
2021-09-10T13:56:22.000Z
[ "pytorch", "marian", "text2text-generation", "lue", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lue-en
18
null
transformers
8,726
--- tags: - translation license: apache-2.0 --- ### opus-mt-lue-en * source languages: lue * target languages: en * OPUS readme: [lue-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lue-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lue-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lue-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lue-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lue.en | 31.7 | 0.469 |
Helsinki-NLP/opus-mt-sla-sla
ca62c5189ed8e6593f101da91fe2aadb9bd57f51
2020-08-21T14:42:49.000Z
[ "pytorch", "marian", "text2text-generation", "be", "hr", "mk", "cs", "ru", "pl", "bg", "uk", "sl", "sla", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sla-sla
18
null
transformers
8,727
--- language: - be - hr - mk - cs - ru - pl - bg - uk - sl - sla tags: - translation license: apache-2.0 --- ### sla-sla * source group: Slavic languages * target group: Slavic languages * OPUS readme: [sla-sla](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/sla-sla/README.md) * model: transformer * source language(s): bel bel_Latn bos_Latn bul bul_Latn ces dsb hrv hsb mkd orv_Cyrl pol rus slv srp_Cyrl srp_Latn ukr * target language(s): bel bel_Latn bos_Latn bul bul_Latn ces dsb hrv hsb mkd orv_Cyrl pol rus slv srp_Cyrl srp_Latn ukr * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/sla-sla/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/sla-sla/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/sla-sla/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newstest2012-cesrus.ces.rus | 15.9 | 0.437 | | newstest2012-rusces.rus.ces | 13.6 | 0.403 | | newstest2013-cesrus.ces.rus | 19.8 | 0.473 | | newstest2013-rusces.rus.ces | 17.9 | 0.449 | | Tatoeba-test.bel-bul.bel.bul | 100.0 | 1.000 | | Tatoeba-test.bel-ces.bel.ces | 33.5 | 0.630 | | Tatoeba-test.bel-hbs.bel.hbs | 45.4 | 0.644 | | Tatoeba-test.bel-mkd.bel.mkd | 19.3 | 0.531 | | Tatoeba-test.bel-pol.bel.pol | 46.9 | 0.681 | | Tatoeba-test.bel-rus.bel.rus | 58.5 | 0.767 | | Tatoeba-test.bel-ukr.bel.ukr | 55.1 | 0.743 | | Tatoeba-test.bul-bel.bul.bel | 10.7 | 0.423 | | Tatoeba-test.bul-ces.bul.ces | 36.9 | 0.585 | | Tatoeba-test.bul-hbs.bul.hbs | 53.7 | 0.807 | | Tatoeba-test.bul-mkd.bul.mkd | 31.9 | 0.715 | | Tatoeba-test.bul-pol.bul.pol | 38.6 | 0.607 | | Tatoeba-test.bul-rus.bul.rus | 44.8 | 0.655 | | Tatoeba-test.bul-ukr.bul.ukr | 49.9 | 0.691 | | Tatoeba-test.ces-bel.ces.bel | 30.9 | 0.585 | | Tatoeba-test.ces-bul.ces.bul | 75.8 | 0.859 | | Tatoeba-test.ces-hbs.ces.hbs | 50.0 | 0.661 | | Tatoeba-test.ces-hsb.ces.hsb | 7.9 | 0.246 | | Tatoeba-test.ces-mkd.ces.mkd | 24.6 | 0.569 | | Tatoeba-test.ces-pol.ces.pol | 44.3 | 0.652 | | Tatoeba-test.ces-rus.ces.rus | 50.8 | 0.690 | | Tatoeba-test.ces-slv.ces.slv | 4.9 | 0.240 | | Tatoeba-test.ces-ukr.ces.ukr | 52.9 | 0.687 | | Tatoeba-test.dsb-pol.dsb.pol | 16.3 | 0.367 | | Tatoeba-test.dsb-rus.dsb.rus | 12.7 | 0.245 | | Tatoeba-test.hbs-bel.hbs.bel | 32.9 | 0.531 | | Tatoeba-test.hbs-bul.hbs.bul | 100.0 | 1.000 | | Tatoeba-test.hbs-ces.hbs.ces | 40.3 | 0.626 | | Tatoeba-test.hbs-mkd.hbs.mkd | 19.3 | 0.535 | | Tatoeba-test.hbs-pol.hbs.pol | 45.0 | 0.650 | | Tatoeba-test.hbs-rus.hbs.rus | 53.5 | 0.709 | | Tatoeba-test.hbs-ukr.hbs.ukr | 50.7 | 0.684 | | Tatoeba-test.hsb-ces.hsb.ces | 17.9 | 0.366 | | Tatoeba-test.mkd-bel.mkd.bel | 23.6 | 0.548 | | Tatoeba-test.mkd-bul.mkd.bul | 54.2 | 0.833 | | Tatoeba-test.mkd-ces.mkd.ces | 12.1 | 0.371 | | Tatoeba-test.mkd-hbs.mkd.hbs | 19.3 | 0.577 | | Tatoeba-test.mkd-pol.mkd.pol | 53.7 | 0.833 | | Tatoeba-test.mkd-rus.mkd.rus | 34.2 | 0.745 | | Tatoeba-test.mkd-ukr.mkd.ukr | 42.7 | 0.708 | | Tatoeba-test.multi.multi | 48.5 | 0.672 | | Tatoeba-test.orv-pol.orv.pol | 10.1 | 0.355 | | Tatoeba-test.orv-rus.orv.rus | 10.6 | 0.275 | | Tatoeba-test.orv-ukr.orv.ukr | 7.5 | 0.230 | | Tatoeba-test.pol-bel.pol.bel | 29.8 | 0.533 | | Tatoeba-test.pol-bul.pol.bul | 36.8 | 0.578 | | Tatoeba-test.pol-ces.pol.ces | 43.6 | 0.626 | | Tatoeba-test.pol-dsb.pol.dsb | 0.9 | 0.097 | | Tatoeba-test.pol-hbs.pol.hbs | 42.4 | 0.644 | | Tatoeba-test.pol-mkd.pol.mkd | 19.3 | 0.535 | | Tatoeba-test.pol-orv.pol.orv | 0.7 | 0.109 | | Tatoeba-test.pol-rus.pol.rus | 49.6 | 0.680 | | Tatoeba-test.pol-slv.pol.slv | 7.3 | 0.262 | | Tatoeba-test.pol-ukr.pol.ukr | 46.8 | 0.664 | | Tatoeba-test.rus-bel.rus.bel | 34.4 | 0.577 | | Tatoeba-test.rus-bul.rus.bul | 45.5 | 0.657 | | Tatoeba-test.rus-ces.rus.ces | 48.0 | 0.659 | | Tatoeba-test.rus-dsb.rus.dsb | 10.7 | 0.029 | | Tatoeba-test.rus-hbs.rus.hbs | 44.6 | 0.655 | | Tatoeba-test.rus-mkd.rus.mkd | 34.9 | 0.617 | | Tatoeba-test.rus-orv.rus.orv | 0.1 | 0.073 | | Tatoeba-test.rus-pol.rus.pol | 45.2 | 0.659 | | Tatoeba-test.rus-slv.rus.slv | 30.4 | 0.476 | | Tatoeba-test.rus-ukr.rus.ukr | 57.6 | 0.751 | | Tatoeba-test.slv-ces.slv.ces | 42.5 | 0.604 | | Tatoeba-test.slv-pol.slv.pol | 39.6 | 0.601 | | Tatoeba-test.slv-rus.slv.rus | 47.2 | 0.638 | | Tatoeba-test.slv-ukr.slv.ukr | 36.4 | 0.549 | | Tatoeba-test.ukr-bel.ukr.bel | 36.9 | 0.597 | | Tatoeba-test.ukr-bul.ukr.bul | 56.4 | 0.733 | | Tatoeba-test.ukr-ces.ukr.ces | 52.1 | 0.686 | | Tatoeba-test.ukr-hbs.ukr.hbs | 47.1 | 0.670 | | Tatoeba-test.ukr-mkd.ukr.mkd | 20.8 | 0.548 | | Tatoeba-test.ukr-orv.ukr.orv | 0.2 | 0.058 | | Tatoeba-test.ukr-pol.ukr.pol | 50.1 | 0.695 | | Tatoeba-test.ukr-rus.ukr.rus | 63.9 | 0.790 | | Tatoeba-test.ukr-slv.ukr.slv | 14.5 | 0.288 | ### System Info: - hf_name: sla-sla - source_languages: sla - target_languages: sla - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/sla-sla/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['be', 'hr', 'mk', 'cs', 'ru', 'pl', 'bg', 'uk', 'sl', 'sla'] - src_constituents: {'bel', 'hrv', 'orv_Cyrl', 'mkd', 'bel_Latn', 'srp_Latn', 'bul_Latn', 'ces', 'bos_Latn', 'csb_Latn', 'dsb', 'hsb', 'rus', 'srp_Cyrl', 'pol', 'rue', 'bul', 'ukr', 'slv'} - tgt_constituents: {'bel', 'hrv', 'orv_Cyrl', 'mkd', 'bel_Latn', 'srp_Latn', 'bul_Latn', 'ces', 'bos_Latn', 'csb_Latn', 'dsb', 'hsb', 'rus', 'srp_Cyrl', 'pol', 'rue', 'bul', 'ukr', 'slv'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/sla-sla/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/sla-sla/opus-2020-07-27.test.txt - src_alpha3: sla - tgt_alpha3: sla - short_pair: sla-sla - chrF2_score: 0.672 - bleu: 48.5 - brevity_penalty: 1.0 - ref_len: 59320.0 - src_name: Slavic languages - tgt_name: Slavic languages - train_date: 2020-07-27 - src_alpha2: sla - tgt_alpha2: sla - prefer_old: False - long_pair: sla-sla - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-sv-el
2cd4e62c20d1e0003c3043f60301f4da8fb23a3d
2021-09-10T14:06:07.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "el", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-el
18
null
transformers
8,728
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-el * source languages: sv * target languages: el * OPUS readme: [sv-el](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-el/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-el/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-el/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-el/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | GlobalVoices.sv.el | 20.8 | 0.456 |
Helsinki-NLP/opus-mt-toi-en
5e7d9737899431120886a54d998cc37240c24c06
2021-09-11T10:49:09.000Z
[ "pytorch", "marian", "text2text-generation", "toi", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-toi-en
18
null
transformers
8,729
--- tags: - translation license: apache-2.0 --- ### opus-mt-toi-en * source languages: toi * target languages: en * OPUS readme: [toi-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/toi-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/toi-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/toi-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/toi-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.toi.en | 39.0 | 0.539 |
ImAPizza/DialoGPT-medium-albert
20a574e650fd97c3dcf8d03a0a880285bd437265
2021-08-29T11:59:35.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ImAPizza
null
ImAPizza/DialoGPT-medium-albert
18
null
transformers
8,730
--- tags: - conversational --- # Albert DialoGPT Model
Ivo/emscad-skill-extraction-conference
2fedd4e5d2ba4e620e8e1c797faa61b343d83e17
2021-06-15T07:59:57.000Z
[ "pytorch", "tf", "bert", "text-classification", "transformers" ]
text-classification
false
Ivo
null
Ivo/emscad-skill-extraction-conference
18
null
transformers
8,731
Entry not found
Kowsher/model-bangla-bert
11dc9ea77a22f46d65720b5e96beb4b96b19eb67
2021-07-05T16:31:40.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Kowsher
null
Kowsher/model-bangla-bert
18
1
transformers
8,732
Entry not found
LuisG07/wav2vec2-large-xlsr-53-spanish
af2780e93694b39e273467d3fd6e4ae7c824af1f
2022-04-22T08:38:35.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "es", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_6_0", "transformers", "audio", "hf-asr-leaderboard", "mozilla-foundation/common_voice_6_0", "robust-speech-event", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
LuisG07
null
LuisG07/wav2vec2-large-xlsr-53-spanish
18
null
transformers
8,733
--- language: es license: apache-2.0 datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - es - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - robust-speech-event - speech - xlsr-fine-tuning-week model-index: - name: XLSR Wav2Vec2 Spanish by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice es type: common_voice args: es metrics: - name: Test WER type: wer value: 8.82 - name: Test CER type: cer value: 2.58 - name: Test WER (+LM) type: wer value: 6.27 - name: Test CER (+LM) type: cer value: 2.06 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Dev WER type: wer value: 30.19 - name: Dev CER type: cer value: 13.56 - name: Dev WER (+LM) type: wer value: 24.71 - name: Dev CER (+LM) type: cer value: 12.61 --- # Wav2Vec2-Large-XLSR-53-Spanish Added custom language model to https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Spanish using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library: ```python from asrecognition import ASREngine asr = ASREngine("es", model_path="jonatasgrosman/wav2vec2-large-xlsr-53-spanish") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = asr.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "es" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-spanish" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | HABITA EN AGUAS POCO PROFUNDAS Y ROCOSAS. | HABITAN AGUAS POCO PROFUNDAS Y ROCOSAS | | OPERA PRINCIPALMENTE VUELOS DE CABOTAJE Y REGIONALES DE CARGA. | OPERA PRINCIPALMENTE VUELO DE CARBOTAJES Y REGIONALES DE CARGAN | | PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIร“N. | PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIร“N | | TRES | TRES | | REALIZร“ LOS ESTUDIOS PRIMARIOS EN FRANCIA, PARA CONTINUAR LUEGO EN ESPAร‘A. | REALIZร“ LOS ESTUDIOS PRIMARIOS EN FRANCIA PARA CONTINUAR LUEGO EN ESPAร‘A | | EN LOS Aร‘OS QUE SIGUIERON, ESTE TRABAJO ESPARTA PRODUJO DOCENAS DE BUENOS JUGADORES. | EN LOS Aร‘OS QUE SIGUIERON ESTE TRABAJO ESPARTA PRODUJO DOCENA DE BUENOS JUGADORES | | SE ESTร TRATANDO DE RECUPERAR SU CULTIVO EN LAS ISLAS CANARIAS. | SE ESTร“ TRATANDO DE RECUPERAR SU CULTIVO EN LAS ISLAS CANARIAS | | Sร | Sร | | "FUE ""SACADA"" DE LA SERIE EN EL EPISODIO ""LEAD"", EN QUE ALEXANDRA CABOT REGRESร“." | FUE SACADA DE LA SERIE EN EL EPISODIO LEED EN QUE ALEXANDRA KAOT REGRESร“ | | SE UBICAN ESPECรFICAMENTE EN EL VALLE DE MOKA, EN LA PROVINCIA DE BIOKO SUR. | SE UBICAN ESPECรFICAMENTE EN EL VALLE DE MOCA EN LA PROVINCIA DE PรOCOSUR | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset mozilla-foundation/common_voice_6_0 --config es --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset speech-recognition-community-v2/dev_data --config es --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021wav2vec2-large-xlsr-53-spanish, title={XLSR Wav2Vec2 Spanish by Jonatas Grosman}, author={Grosman, Jonatas}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish}}, year={2021} } ```
M-CLIP/Swedish-500k
0587c780bd4f7ac78b13b767d8fe12de500e8311
2021-05-18T21:36:48.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
M-CLIP
null
M-CLIP/Swedish-500k
18
null
transformers
8,734
<br /> <p align="center"> <h1 align="center">Swe-CLIP 500k</h1> <p align="center"> <a href="https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/Swe-CLIP%20500k">Github Model Card</a> </p> </p> ## Usage To use this model along with the original CLIP vision encoder you need to download the code and additional linear weights from the [Multilingual-CLIP Github](https://github.com/FreddeFrallan/Multilingual-CLIP). Once this is done, you can load and use the model with the following code ```python from src import multilingual_clip model = multilingual_clip.load_model('Swe-CLIP-500k') embeddings = model(['ร„lgen รคr skogens konung!', 'Alla isbjรถrnar รคr vรคnsterhรคnta']) print(embeddings.shape) # Yields: torch.Size([2, 640]) ``` <!-- ABOUT THE PROJECT --> ## About A [KB/Bert-Swedish-Cased](https://huggingface.co/KB/bert-base-swedish-cased) tuned to match the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder. <br> Training data pairs was generated by sampling 500k sentences from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into Swedish. All translation was done using the [Huggingface Opus Model](https://huggingface.co/Helsinki-NLP/opus-mt-en-sv), which seemingly procudes higher quality translations than relying on the [AWS translate service](https://aws.amazon.com/translate/).
Maaly/body-site
9a18bcd3b1508a17c86d9ed46bb153f7b42adacd
2022-05-28T15:32:07.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Maaly
null
Maaly/body-site
18
null
transformers
8,735
body-site model is a Named Entity Recognition (NER) model that identifies and annotates the body-site of microbiome samples in texts. The model is a fine-tuned BioBERT model and the training dataset is available in https://gitlab.com/maaly7/emerald_metagenomics_annotations Testing examples: 1. Scalp hair was collected from behind the right ear, near the right retroauricular crease, and pubic hair was collected from their right pubis, near the right inguinal crease. 2. Field-collected bee samples were dissected on dry ice and separated into head, thorax (excluding legs and wings), and abdomens. 3. TSO modulate the IEC and LPMC transcriptome To gain further insights into the mechanisms of TSO treatment, we performed genome wide expression analysis on intestinal epithelial cells (IEC) and lamina propria mononuclear cells (LPMC) isolated from caecum samples by RNA sequencing (RNAseq). 4. Two catheters were bilaterally placed in the CA1 region of the hippocampus with the coordinates of 4.5 mm anterior to bregma, 1.6 mm ventral to the dura, and two directions of ยฑ 4.0 mm from the interaural line (Park et al. 2013; Yang et al. 2013).
IlyaGusev/rut5_tox
03cf6d0fc6f913774af157ecab5518ea628a2674
2022-07-13T15:35:03.000Z
[ "pytorch", "t5", "text2text-generation", "ru", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
IlyaGusev
null
IlyaGusev/rut5_tox
18
null
transformers
8,736
--- language: - ru tags: - t5 license: - apache-2.0 inference: parameters: num_beams: 5 no_repeat_ngram_size: 4 widget: - text: "ะงั‚ะพ ัั‚ะพ ะทะฐ ะตั€ัƒะฝะดะฐ?" --- # RuT5Tox
MoseliMotsoehli/TswanaBert
2c47d4212adc73968d90142bd3ae440e5ad472d4
2021-05-20T12:13:01.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "tn", "transformers", "autotrain_compatible" ]
fill-mask
false
MoseliMotsoehli
null
MoseliMotsoehli/TswanaBert
18
null
transformers
8,737
--- language: tn --- # TswanaBert Pretrained model on the Tswana language using a masked language modeling (MLM) objective. ## Model Description. TswanaBERT is a transformer model pre-trained on a corpus of Setswana in a self-supervised fashion by masking part of the input words and training to predict the masks by using byte-level tokens. ## Intended uses & limitations The model can be used for either masked language modeling or next word prediction. It can also be fine-tuned on a specific down-stream NLP application. #### How to use ```python >>> from transformers import pipeline >>> from transformers import AutoTokenizer, AutoModelWithLMHead >>> tokenizer = AutoTokenizer.from_pretrained("MoseliMotsoehli/TswanaBert") >>> model = AutoModelWithLMHead.from_pretrained("MoseliMotsoehli/TswanaBert") >>> unmasker = pipeline('fill-mask', model=model, tokenizer=tokenizer) >>> unmasker("Ntshopotse <mask> e godile.") [{'score': 0.32749542593955994, 'sequence': '<s>Ntshopotse setse e godile.</s>', 'token': 538, 'token_str': 'ฤ setse'}, {'score': 0.060260992497205734, 'sequence': '<s>Ntshopotse le e godile.</s>', 'token': 270, 'token_str': 'ฤ le'}, {'score': 0.058460816740989685, 'sequence': '<s>Ntshopotse bone e godile.</s>', 'token': 364, 'token_str': 'ฤ bone'}, {'score': 0.05694682151079178, 'sequence': '<s>Ntshopotse ga e godile.</s>', 'token': 298, 'token_str': 'ฤ ga'}, {'score': 0.0565204992890358, 'sequence': '<s>Ntshopotse, e godile.</s>', 'token': 16, 'token_str': ','}] ``` #### Limitations and bias The model is trained on a relatively small collection of setwana, mostly from news articles and creative writtings, and so is not representative enough of the language as yet. ## Training data 1. The largest portion of this dataset (10k) sentences of text, comes from the [Leipzig Corpora Collection](https://wortschatz.uni-leipzig.de/en/download) 2. I Then added SABC news headlines collected by Marivate Vukosi, & Sefara Tshephisho, (2020) that is generously made available on [zenoodo](http://doi.org/10.5281/zenodo.3668495 ). This added 185 tswana sentences to my corpus. 3. I went on to add 300 more sentences by scrapping following news sites and blogs that mosty originate in Botswana. I actively continue to expand the dataset. * http://setswana.blogspot.com/ * https://omniglot.com/writing/tswana.php * http://www.dailynews.gov.bw/ * http://www.mmegi.bw/index.php * https://tsena.co.bw * http://www.botswana.co.za/Cultural_Issues-travel/botswana-country-guide-en-route.html * https://www.poemhunter.com/poem/2013-setswana/ https://www.poemhunter.com/poem/ngwana-wa-mosetsana/ ### BibTeX entry and citation info ```bibtex @inproceedings{author = {Moseli Motsoehli}, year={2020} } ```
MutazYoune/Ara_DialectBERT
6f89a5650d3b39a100bd83419ee843613b15c680
2021-05-18T21:44:01.000Z
[ "pytorch", "jax", "bert", "fill-mask", "ar", "dataset:HARD-Arabic-Dataset", "transformers", "autotrain_compatible" ]
fill-mask
false
MutazYoune
null
MutazYoune/Ara_DialectBERT
18
null
transformers
8,738
--- language: ar datasets: - HARD-Arabic-Dataset --- # Ara-dialect-BERT We used a pretrained model to further train it on [HARD-Arabic-Dataset](https://github.com/elnagara/HARD-Arabic-Dataset), the weights were initialized using [CAMeL-Lab](https://huggingface.co/CAMeL-Lab/bert-base-camelbert-msa-eighth) "bert-base-camelbert-msa-eighth" model ### Usage The model weights can be loaded using `transformers` library by HuggingFace. ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("MutazYoune/Ara_DialectBERT") model = AutoModel.from_pretrained("MutazYoune/Ara_DialectBERT") ``` Example using `pipeline`: ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="MutazYoune/Ara_DialectBERT", tokenizer="MutazYoune/Ara_DialectBERT" ) fill_mask("ุงู„ูู†ุฏู‚ ุฌู…ูŠู„ ูˆ ู„ูƒู† [MASK] ุจุนูŠุฏ") ``` ```python {'sequence': 'ุงู„ูู†ุฏู‚ ุฌู…ูŠู„ ูˆ ู„ูƒู† ุงู„ู…ูˆู‚ุน ุจุนูŠุฏ', 'score': 0.28233852982521057, 'token': 3221, 'token_str': 'ุงู„ู…ูˆู‚ุน'} {'sequence': 'ุงู„ูู†ุฏู‚ ุฌู…ูŠู„ ูˆ ู„ูƒู† ู…ูˆู‚ุนู‡ ุจุนูŠุฏ', 'score': 0.24436227977275848, 'token': 19218, 'token_str': 'ู…ูˆู‚ุนู‡'} {'sequence': 'ุงู„ูู†ุฏู‚ ุฌู…ูŠู„ ูˆ ู„ูƒู† ุงู„ู…ูƒุงู† ุจุนูŠุฏ', 'score': 0.15372352302074432, 'token': 5401, 'token_str': 'ุงู„ู…ูƒุงู†'} {'sequence': 'ุงู„ูู†ุฏู‚ ุฌู…ูŠู„ ูˆ ู„ูƒู† ุงู„ูู†ุฏู‚ ุจุนูŠุฏ', 'score': 0.029026474803686142, 'token': 11133, 'token_str': 'ุงู„ูู†ุฏู‚'} {'sequence': 'ุงู„ูู†ุฏู‚ ุฌู…ูŠู„ ูˆ ู„ูƒู† ู…ูƒุงู†ู‡ ุจุนูŠุฏ', 'score': 0.024554792791604996, 'token': 10701, 'token_str': 'ู…ูƒุงู†ู‡'}
NDugar/m2m100_418M-fr
b85aaaaad9d123e17324d2e84a87252c75cf671c
2021-12-07T20:09:49.000Z
[ "pytorch", "m2m_100", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
translation
false
NDugar
null
NDugar/m2m100_418M-fr
18
1
transformers
8,739
--- license: mit tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: m2m100_418M-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 51.1339693938271 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-fr This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.7021 - Bleu: 51.1340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.749 | 1.0 | 23645 | 0.7021 | 51.1344 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
PurpleJacketGuy/My_Jarvis_2
71e3889676c3a7697acf7af8b10af8a6271ebf42
2021-11-11T15:50:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
PurpleJacketGuy
null
PurpleJacketGuy/My_Jarvis_2
18
null
transformers
8,740
--- tags: - conversational --- # Jarvis DialoGPT Model
RJ3vans/SSMNspanTagger
b3c2799a071ccf9ad47e200b28312ca39e7b528e
2021-09-07T13:27:38.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
RJ3vans
null
RJ3vans/SSMNspanTagger
18
null
transformers
8,741
This model identifies complex NPs modified by non-finite nominal clauses ("appositives") in the input sentence. Try the test sentence: My name is Sarah and I live in London[,] the capital of England. Note that accuracy is greatly improved if you place square brackets around the left boundary of the non-finite nominal clause. The model was derived using code adapted from an original program written by Dr. Le An Ha at the University of Wolverhampton.
Radvian/t5_liputan6_finetuned_indonesia_summarization
c03ad9b05f62d1e5fd635db928bebfab97e4c68b
2021-10-04T04:29:01.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:Radvian/autonlp-data-indo_summarization", "transformers", "autonlp", "autotrain_compatible" ]
text2text-generation
false
Radvian
null
Radvian/t5_liputan6_finetuned_indonesia_summarization
18
null
transformers
8,742
--- tags: autonlp language: unk widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - Radvian/autonlp-data-indo_summarization --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 14502562 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP", "parameters":{"max_length":1000}}' https://api-inference.huggingface.co/Radvian/autonlp-indo_summarization-14502562 ```
RishabhRawatt/DialoGPT-small-Rickmorty
9765c6355d0903778af326c8d93a5cac6cb5ebfa
2021-09-05T10:08:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
RishabhRawatt
null
RishabhRawatt/DialoGPT-small-Rickmorty
18
null
transformers
8,743
--- tags: - conversational --- # Rick Morty DialogGPT Model
Rolv-Arild/xls-r-300m-npsc-2
008c3baf7df947c3bf9e59d98f2cb520ce89710d
2022-02-01T12:54:36.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Rolv-Arild
null
Rolv-Arild/xls-r-300m-npsc-2
18
null
transformers
8,744
Entry not found
SEBIS/code_trans_t5_large_source_code_summarization_python_multitask
c662d5ce28d50b620de20e9c361631a3ed29e315
2021-06-23T09:15:47.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_source_code_summarization_python_multitask
18
null
transformers
8,745
--- tags: - summarization widget: - text: '''with open ( CODE_STRING , CODE_STRING ) as in_file : buf = in_file . readlines ( ) with open ( CODE_STRING , CODE_STRING ) as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write ( line ) ''' --- # CodeTrans model for source code summarization Python Pretrained model on programming language python using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the Python function or be fine-tuned on other Python code tasks. It can be used on unparsed and untokenized Python code. However, if the Python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate Python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_python_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_python_multitask", skip_special_tokens=True), device=0 ) tokenized_code = '''with open ( CODE_STRING , CODE_STRING ) as in_file : buf = in_file . readlines ( ) with open ( CODE_STRING , CODE_STRING ) as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write ( line ) ''' pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/source%20code%20summarization/python/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Training The model was trained on a single TPU Pod V3-8 for 80,000 steps, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. (We have trained in total 260,000 steps.) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | State of the art | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_php
de4f38660371216b86ed5e007685b7ed8d0115c4
2021-06-23T10:07:07.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_php
18
null
transformers
8,746
--- tags: - summarization widget: - text: "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" --- # CodeTrans model for code documentation generation php Pretrained model on programming language php using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized php code functions: it works best with tokenized php functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus php dataset. ## Intended uses & limitations The model could be used to generate the description for the php function or be fine-tuned on other php code tasks. It can be used on unparsed and untokenized php code. However, if the php code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate php function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_php"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_php", skip_special_tokens=True), device=0 ) tokenized_code = "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/php/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
StevenLimcorn/MelayuBERT
be522cff4a2bf65a839babd232e45414563d1361
2021-06-22T06:37:24.000Z
[ "pytorch", "tf", "bert", "fill-mask", "ms", "dataset:oscar", "arxiv:1810.04805", "transformers", "melayu-bert", "license:mit", "autotrain_compatible" ]
fill-mask
false
StevenLimcorn
null
StevenLimcorn/MelayuBERT
18
null
transformers
8,747
--- language: ms tags: - melayu-bert license: mit datasets: - oscar widget: - text: "Saya [MASK] makan nasi hari ini." --- ## Melayu BERT Melayu BERT is a masked language model based on [BERT](https://arxiv.org/abs/1810.04805). It was trained on the [OSCAR](https://huggingface.co/datasets/oscar) dataset, specifically the `unshuffled_original_ms` subset. The model used was [English BERT model](https://huggingface.co/bert-base-uncased) and fine-tuned on the Malaysian dataset. The model achieved a perplexity of 9.46 on a 20% validation dataset. Many of the techniques used are based on a Hugging Face tutorial [notebook](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb) written by [Sylvain Gugger](https://github.com/sgugger), and [fine-tuning tutorial notebook](https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb) written by [Pierre Guillou](https://huggingface.co/pierreguillou). The model is available both for PyTorch and TensorFlow use. ## Model The model was trained on 3 epochs with a learning rate of 2e-3 and achieved a training loss per steps as shown below. | Step |Training loss| |--------|-------------| |500 | 5.051300 | |1000 | 3.701700 | |1500 | 3.288600 | |2000 | 3.024000 | |2500 | 2.833500 | |3000 | 2.741600 | |3500 | 2.637900 | |4000 | 2.547900 | |4500 | 2.451500 | |5000 | 2.409600 | |5500 | 2.388300 | |6000 | 2.351600 | ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "StevenLimcorn/MelayuBERT" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask("Saya [MASK] makan nasi hari ini.") ``` ### Import Tokenizer and Model ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("StevenLimcorn/MelayuBERT") model = AutoModelForMaskedLM.from_pretrained("StevenLimcorn/MelayuBERT") ``` ## Author Melayu BERT was trained by [Steven Limcorn](https://github.com/stevenlimcorn) and [Wilson Wongso](https://hf.co/w11wo).
Wiirin/BioBERT-finetuned-PubMed-FoodCancer
acd5a4c6530c0baeb24b0a7c63f8005cb1c41bc4
2021-11-08T09:37:51.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Wiirin
null
Wiirin/BioBERT-finetuned-PubMed-FoodCancer
18
null
transformers
8,748
Entry not found
aware-ai/xlmroberta-squadv2
c3dc743e801a1b0133b56b9940c3721d82e0fe7c
2020-12-11T21:31:05.000Z
[ "pytorch", "xlm-roberta", "question-answering", "dataset:squad_v2", "arxiv:1911.02116", "transformers", "autotrain_compatible" ]
question-answering
false
aware-ai
null
aware-ai/xlmroberta-squadv2
18
null
transformers
8,749
--- datasets: - squad_v2 --- # XLM-ROBERTA-LARGE finetuned on SQuADv2 This is xlm-roberta-large model finetuned on SQuADv2 dataset for question answering task ## Model details XLM-Roberta was propsed in the [paper](https://arxiv.org/pdf/1911.02116.pdf) **XLM-R: State-of-the-art cross-lingual understanding through self-supervision ## Model training This model was trained with following parameters using simpletransformers wrapper: ``` train_args = { 'learning_rate': 1e-5, 'max_seq_length': 512, 'doc_stride': 512, 'overwrite_output_dir': True, 'reprocess_input_data': False, 'train_batch_size': 8, 'num_train_epochs': 2, 'gradient_accumulation_steps': 2, 'no_cache': True, 'use_cached_eval_features': False, 'save_model_every_epoch': False, 'output_dir': "bart-squadv2", 'eval_batch_size': 32, 'fp16_opt_level': 'O2', } ``` ## Results ```{"correct": 6961, "similar": 4359, "incorrect": 553, "eval_loss": -12.177856394381962}``` ## Model in Action ๐Ÿš€ ```python3 from transformers import XLMRobertaTokenizer, XLMRobertaForQuestionAnswering import torch tokenizer = XLMRobertaTokenizer.from_pretrained('a-ware/xlmroberta-squadv2') model = XLMRobertaForQuestionAnswering.from_pretrained('a-ware/xlmroberta-squadv2') question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" encoding = tokenizer(question, text, return_tensors='pt') input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] start_scores, end_scores = model(input_ids, attention_mask=attention_mask, output_attentions=False)[:2] all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1]) answer = tokenizer.convert_tokens_to_ids(answer.split()) answer = tokenizer.decode(answer) #answer => 'a nice puppet' ``` > Created with โค๏ธ by A-ware UG [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/aware-ai)
aXhyra/presentation_hate_42
3cdddfa358fcf3fbdfbb567bca944a89072290ef
2021-12-15T11:18:17.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/presentation_hate_42
18
null
transformers
8,750
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_hate_42 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: hate metrics: - name: F1 type: f1 value: 0.7692074096568478 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_hate_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8711 - F1: 0.7692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.436235805743952e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5207 | 1.0 | 282 | 0.4815 | 0.7513 | | 0.3047 | 2.0 | 564 | 0.5557 | 0.7510 | | 0.2335 | 3.0 | 846 | 0.6627 | 0.7585 | | 0.0056 | 4.0 | 1128 | 0.8711 | 0.7692 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
abdouaziiz/bert-base-wolof
931394df80af979a0eed0067ec34a122395b5fbe
2021-11-25T16:35:19.000Z
[ "pytorch", "bert", "fill-mask", "wo", "transformers", "language-model", "wolof", "autotrain_compatible" ]
fill-mask
false
abdouaziiz
null
abdouaziiz/bert-base-wolof
18
null
transformers
8,751
--- language: wo tags: - bert - language-model - wo - wolof --- # Soraberta: Unsupervised Language Model Pre-training for Wolof **bert-base-wolof** is pretrained bert-base model on wolof language . ## Soraberta models | Model name | Number of layers | Attention Heads | Embedding Dimension | Total Parameters | | :------: | :---: | :---: | :---: | :---: | | `bert-base` | 6 | 12 | 514 | 56931622 M | ## Using Soraberta with Hugging Face's Transformers ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='abdouaziiz/bert-base-wolof') >>> unmasker("kuy yoot du [MASK].") [{'sequence': '[CLS] kuy yoot du seqet. [SEP]', 'score': 0.09505125880241394, 'token': 13578}, {'sequence': '[CLS] kuy yoot du daw. [SEP]', 'score': 0.08882280439138412, 'token': 679}, {'sequence': '[CLS] kuy yoot du yoot. [SEP]', 'score': 0.057790059596300125, 'token': 5117}, {'sequence': '[CLS] kuy yoot du seqat. [SEP]', 'score': 0.05671025067567825, 'token': 4992}, {'sequence': '[CLS] kuy yoot du yaqu. [SEP]', 'score': 0.0469999685883522, 'token': 1735}] ``` ## Training data The data sources are [Bible OT](http://biblewolof.com/) , [WOLOF-ONLINE](http://www.wolof-online.com/) [ALFFA_PUBLIC](https://github.com/getalp/ALFFA_PUBLIC/tree/master/ASR/WOLOF) ## Contact Please contact [email protected] for any question, feedback or request.
abryee/TigXLNet
a98a20399af0bea6af37f271a265862fe11c0064
2021-09-21T08:06:12.000Z
[ "pytorch", "xlnet", "arxiv:2006.07698", "transformers" ]
null
false
abryee
null
abryee/TigXLNet
18
null
transformers
8,752
# Transferring Monolingual Model to Low-Resource Language: The Case Of Tigrinya: ## Proposed Method: <img src="data/proposed.png" height = "330" width ="760" > The proposed method transfers a mono-lingual Transformer model into new target language at lexical level by learning new token embeddings. All implementation in this repo uses XLNet as a source Transformer model, however, other Transformer models can also be used similarly. ## Main files: All files are IPython Notebook files which can be excuted simply in Google Colab. - train.ipynb : Fine-tunes XLNet (mono-lingual transformer) on new target language (Tigrinya) sentiment analysis dataset. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bSSrKE-TSphUyrNB2UWhFI-Bkoz0a5l0?usp=sharing) - test.ipynb : Evaluates the fine-tuned model on test data. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/17R1lvRjxILVNk971vzZT79o2OodwaNIX?usp=sharing) - token_embeddings.ipynb : Trains a word2vec token embeddings for Tigrinya language. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1hCtetAllAjBw28EVQkJFpiKdFtXmuxV7?usp=sharing) - process_Tigrinya_comments.ipynb : Extracts Tigrinya comments from mixed language contents. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1-ndLlBV-iLZNBW3Z8OfKAqUUCjvGbdZU?usp=sharing) - extract_YouTube_comments.ipynb : Downloads available comments from a YouTube channel ID. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1b7G85wHKe18y45JIDtvDJdO5dOkRmDdp?usp=sharing) - auto_labelling.ipynb : Automatically labels Tigrinya comments in to positive or negative sentiments based on [Emoji's sentiment](http://kt.ijs.si/data/Emoji_sentiment_ranking/). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1wnZf7CBBCIr966vRUITlxKCrANsMPpV7?usp=sharing) ## Tigrinya Tokenizer: A [sentencepiece](https://github.com/google/sentencepiece) based tokenizer for Tigrinya has been released to the public and can be accessed as in the following: from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("abryee/TigXLNet") tokenizer.tokenize("แ‹‹แ‹‹แ‹‹แ‹ แŠฅแ‹› แแˆŠแˆ แŠซแ‰ฅแ‰ฐแŠ• แ‹˜แ‹ตแŠ•แ‰€แŠ• แˆ“แŠ•แ‰ฒ แŠขแ‹ซ แˆž แ‰ฅแŒฃแ‹•แˆš แŠขแŠ“ แАแˆ˜แˆตแŒแŠ• แˆ“แŠ•แ‰ฒ แŠญแ‰ฅแˆ‹ แ‹ฐแˆแ‹จ แ‹˜แˆŽแŠน แˆ“แ‹ฐแˆซแŠฃแŠนแˆ แŠฃแ‰ฅ แŒŠแ‹œแŠนแˆ แ‰ฐแˆจแŠญแ‰ก") ## TigXLNet: A new general purpose transformer model for low-resource language Tigrinya is also released to the public and be accessed as in the following: from transformers import AutoConfig, AutoModel config = AutoConfig.from_pretrained("abryee/TigXLNet") config.d_head = 64 model = AutoModel.from_pretrained("abryee/TigXLNet", config=config) ## Evaluation: The proposed method is evaluated using two datasets: - A newly created sentiment analysis dataset for low-resource language (Tigriyna). <table> <tr> <td> <table> <thead> <tr> <th><sub>Models</sub></th> <th><sub>Configuration</sub></th> <th><sub>F1-Score</sub></th> </tr> </thead> <tbody> <tr> <td rowspan=3><sub>BERT</sub></td> <td rowspan=1><sub>+Frozen BERT weights</sub></td> <td><sub>54.91</sub></td> </tr> <tr> <td rowspan=1><sub>+Random embeddings</sub></td> <td><sub>74.26</sub></td> </tr> <tr> <td rowspan=1><sub>+Frozen token embeddings</sub></td> <td><sub>76.35</sub></td> </tr> <tr> <td rowspan=3><sub>mBERT</sub></td> <td rowspan=1><sub>+Frozen mBERT weights</sub></td> <td><sub>57.32</sub></td> </tr> <tr> <td rowspan=1><sub>+Random embeddings</sub></td> <td><sub>76.01</sub></td> </tr> <tr> <td rowspan=1><sub>+Frozen token embeddings</sub></td> <td><sub>77.51</sub></td> </tr> <tr> <td rowspan=3><sub>XLNet</sub></td> <td rowspan=1><sub>+Frozen XLNet weights</sub></td> <td><strong><sub>68.14</sub></strong></td> </tr> <tr> <td rowspan=1><sub>+Random embeddings</sub></td> <td><strong><sub>77.83</sub></strong></td> </tr> <tr> <td rowspan=1><sub>+Frozen token embeddings</sub></td> <td><strong><sub>81.62</sub></strong></td> </tr> </tbody> </table> </td> <td><img src="data/effect_of_dataset_size.png" alt="3" width = 480px height = 280px></td> </tr> </table> - Cross-lingual Sentiment dataset ([CLS](https://zenodo.org/record/3251672#.Xs65VzozbIU)). <table> <thead> <tr> <th rowspan=2><sub>Models</sub></th> <th rowspan=1 colspan=3><sub>English</sub></th> <th rowspan=1 colspan=3><sub>German</sub></th> <th rowspan=1 colspan=3><sub>French</sub></th> <th rowspan=1 colspan=3><sub>Japanese</sub></th> <th rowspan=2><sub>Average</sub></th> </tr> <tr> <th colspan=1><sub>Books</sub></th> <th colspan=1><sub>DVD</sub></th> <th colspan=1><sub>Music</sub></th> <th colspan=1><sub>Books</sub></th> <th colspan=1><sub>DVD</sub></th> <th colspan=1><sub>Music</sub></th> <th colspan=1><sub>Books</sub></th> <th colspan=1><sub>DVD</sub></th> <th colspan=1><sub>Music</sub></th> <th colspan=1><sub>Books</sub></th> <th colspan=1><sub>DVD</sub></th> <th colspan=1><sub>Music</sub></th> </tr> </thead> <tbody> <tr> <td colspan=1><sub>XLNet</sub></td> <td colspan=1><sub><strong>92.90</strong></sub></td> <td colspan=1><sub><strong>93.31</strong></sub></td> <td colspan=1><sub><strong>92.02</strong></sub></td> <td colspan=1><sub>85.23</sub></td> <td colspan=1><sub>83.30</sub></td> <td colspan=1><sub>83.89</sub></td> <td colspan=1><sub>73.05</sub></td> <td colspan=1><sub>69.80</sub></td> <td colspan=1><sub>70.12</sub></td> <td colspan=1><sub>83.20</sub></td> <td colspan=1><sub><strong>86.07</strong></sub></td> <td colspan=1><sub>85.24</sub></td> <td colspan=1><sub>83.08</sub></td> </tr> <tr> <td colspan=1><sub>mBERT</sub></td> <td colspan=1><sub>92.78</sub></td> <td colspan=1><sub>90.30</sub></td> <td colspan=1><sub>91.88</sub></td> <td colspan=1><sub><strong>88.65</strong></sub></td> <td colspan=1><sub><strong>85.85</strong></sub></td> <td colspan=1><sub><strong>90.38</strong></sub></td> <td colspan=1><sub><strong>91.09</strong></sub></td> <td colspan=1><sub><strong>88.57</strong></sub></td> <td colspan=1><sub><strong>93.67</strong></sub></td> <td colspan=1><sub><strong>84.35</strong></sub></td> <td colspan=1><sub>81.77</sub></td> <td colspan=1><sub><strong>87.53</strong></sub></td> <td colspan=1><sub><strong>88.90</strong></sub></td> </tr> </tbody> </table> ## Dataset used for this paper: We have constructed new sentiment analysis dataset for Tigrinya language and it can be found in the zip file (Tigrinya Sentiment Analysis Dataset) ## Citing our paper: Our paper can be accessed from ArXiv [link](https://arxiv.org/pdf/2006.07698.pdf), and please consider citing our work. @misc{tela2020transferring, title={Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya}, author={Abrhalei Tela and Abraham Woubie and Ville Hautamaki}, year={2020}, eprint={2006.07698}, archivePrefix={arXiv}, primaryClass={cs.CL} } ## Any questions, comments, feedback is appreciated! And can be forwarded to the following email: [email protected]
addy88/gpt-j-8bit
33582ecfc865cec71439aba1a5f89363a8094e37
2022-01-02T06:34:27.000Z
[ "pytorch", "gptj", "text-generation", "arxiv:2106.09685", "arxiv:2110.02861", "transformers" ]
text-generation
false
addy88
null
addy88/gpt-j-8bit
18
1
transformers
8,753
This Model is 8bit Version of EleutherAI/gpt-j-6B. It is converted by Facebook's bitsandbytes library. The original GPT-J takes 22+ GB memory for float32 parameters alone, and that's before you account for gradients & optimizer. So for finetuning on single GPU This model is converted into 8bit. Here's how to run it: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1KNf5siQdM7ILQM-pHsP6gNVPKl1SJdU1) __The [original GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B/tree/main)__ takes 22+ GB memory for float32 parameters alone, and that's before you account for gradients & optimizer. Even if you cast everything to 16-bit, it will still not fit onto most single-GPU setups short of A6000 and A100. You can inference it [on TPU](https://colab.research.google.com/github/kingoflolz/mesh-transformer-jax/blob/master/colab_demo.ipynb) or CPUs, but fine-tuning is way more expensive. Here, we apply several techniques to make GPT-J usable and fine-tunable on a single GPU with ~11 GB memory: - large weight tensors are quantized using dynamic 8-bit quantization and de-quantized just-in-time for multiplication - using gradient checkpoints to store one only activation per layer: using dramatically less memory at the cost of 30% slower training - scalable fine-tuning with [LoRA](https://arxiv.org/abs/2106.09685) and [8-bit Adam](https://arxiv.org/abs/2110.02861) In other words, all of the large weight-matrices are frozen in 8-bit, and you only train small adapters and optionally 1d tensors (layernorm scales, biases). ![img](https://i.imgur.com/n4XXo1x.png) __Does 8-bit affect model quality?__ Technically yes, but the effect is negligible in practice. [This notebook measures wikitext test perplexity](https://colab.research.google.com/drive/1FxGeYQyE7cx9VNCBC4gUyRVZGORW7c6g) and it is nigh indistinguishable from the original GPT-J. Quantized model is even slightly better, but that is not statistically significant. Our code differs from other 8-bit methods in that we use **8-bit only for storage, and all computations are performed in float16 or float32**. As a result, we can take advantage of nonlinear quantization that fits to each individual weight distribution. Such nonlinear quantization does not accelerate inference, but it allows for much smaller error. __What about performance?__ Both checkpointing and de-quantization has some overhead, but it's surprisingly manageable. Depending on GPU and batch size, the quantized model is 1-10% slower than the original model on top of using gradient checkpoints (which is 30% overhead). In short, this is because block-wise quantization from bitsandbytes is really fast on GPU. ### How should I fine-tune the model? We recommend starting with the original hyperparameters from [the LoRA paper](https://arxiv.org/pdf/2106.09685.pdf). On top of that, there is one more trick to consider: the overhead from de-quantizing weights does not depend on batch size. As a result, the larger batch size you can fit, the more efficient you will train. ### Can I use this technique with other models? The model was converted using [this notebook](https://colab.research.google.com/drive/1rwxh0XRdVi8VEbTx97l9xXr4JbRhZaq5#scrollTo=CX3VHn-J1Zer). It can be adapted to work with other model types. However, please bear in mind that some models replace Linear and Embedding with custom alternatives that require their own BNBWhateverWithAdapters.
airKlizz/xlm-roberta-base-germeval21-toxic-with-task-specific-pretraining
865b80840ac3c350f0a134ab223b1504d39a20ba
2021-07-12T14:51:51.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
airKlizz
null
airKlizz/xlm-roberta-base-germeval21-toxic-with-task-specific-pretraining
18
null
transformers
8,754
Entry not found
airesearch/bert-base-multilingual-cased-finetune-qa
e77e3864b649bacb6cca5a550fde234b5ed2f722
2021-07-14T05:50:52.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
airesearch
null
airesearch/bert-base-multilingual-cased-finetune-qa
18
null
transformers
8,755
--- widget: - text: "เธชเธงเธ™เธเธธเธซเธฅเธฒเธšเน€เธ›เน‡เธ™เน‚เธฃเธ‡เน€เธฃเธตเธขเธ™เธญเธฐเน„เธฃ" context: "เน‚เธฃเธ‡เน€เธฃเธตเธขเธ™เธชเธงเธ™เธเธธเธซเธฅเธฒเธšเธงเธดเธ—เธขเธฒเธฅเธฑเธข (Suankularb Wittayalai School) (เธญเธฑเธเธฉเธฃเธขเนˆเธญ : เธช.เธ. / S.K.) เน€เธ›เน‡เธ™เน‚เธฃเธ‡เน€เธฃเธตเธขเธ™เธŠเธฒเธขเธฅเน‰เธงเธ™ เธฃเธฐเธ”เธฑเธšเธŠเธฑเน‰เธ™เธกเธฑเธ˜เธขเธกเธจเธถเธเธฉเธฒเธ‚เธ™เธฒเธ”เนƒเธซเธเนˆเธžเธดเน€เธจเธฉ เธชเธฑเธ‡เธเธฑเธ”เธชเธณเธ™เธฑเธเธ‡เธฒเธ™เน€เธ‚เธ•เธžเธทเน‰เธ™เธ—เธตเนˆเธเธฒเธฃเธจเธถเธเธฉเธฒเธกเธฑเธ˜เธขเธกเธจเธถเธเธฉเธฒเน€เธ‚เธ• 1 เธชเธณเธ™เธฑเธเธ‡เธฒเธ™เธ„เธ“เธฐเธเธฃเธฃเธกเธเธฒเธฃเธเธฒเธฃเธจเธถเธเธฉเธฒเธ‚เธฑเน‰เธ™เธžเธทเน‰เธ™เธเธฒเธ™ (เธŠเธทเนˆเธญเน€เธ”เธดเธก: เธเธฃเธกเธชเธฒเธกเธฑเธเธจเธถเธเธฉเธฒ) เธเธฃเธฐเธ—เธฃเธงเธ‡เธจเธถเธเธฉเธฒเธ˜เธดเธเธฒเธฃ เธเนˆเธญเธ•เธฑเน‰เธ‡เน‚เธ”เธข เธžเธฃเธฐเธšเธฒเธ—เธชเธกเน€เธ”เน‡เธˆเธžเธฃเธฐเธˆเธธเธฅเธˆเธญเธกเน€เธเธฅเน‰เธฒเน€เธˆเน‰เธฒเธญเธขเธนเนˆเธซเธฑเธง เน„เธ”เน‰เธฃเธฑเธšเธเธฒเธฃเธชเธ–เธฒเธ›เธ™เธฒเธ‚เธถเน‰เธ™เนƒเธ™เธงเธฑเธ™เธ—เธตเนˆ 8 เธกเธตเธ™เธฒเธ„เธก เธž.เธจ. 2424 (เธ‚เธ“เธฐเธ™เธฑเน‰เธ™เธ™เธฑเธšเธงเธฑเธ™เธ—เธตเนˆ 1 เน€เธกเธฉเธฒเธขเธ™ เน€เธ›เน‡เธ™เธงเธฑเธ™เธ‚เธถเน‰เธ™เธ›เธตเนƒเธซเธกเนˆ เน€เธกเธทเนˆเธญเธ™เธฑเธšเธญเธขเนˆเธฒเธ‡เธชเธฒเธเธฅเธ–เธทเธญเน€เธ›เน‡เธ™ เธž.เธจ. 2425) เน‚เธ”เธขเน€เธ›เน‡เธ™เน‚เธฃเธ‡เน€เธฃเธตเธขเธ™เธฃเธฑเธเธšเธฒเธฅเนเธซเนˆเธ‡เนเธฃเธเธ‚เธญเธ‡เธ›เธฃเธฐเน€เธ—เธจเน„เธ—เธข" --- # bert-base-multilingual-cased Finetuning `bert-base-multilingual-cased` with the training set of `iapp_wiki_qa_squad`, `thaiqa_squad`, and `nsc_qa` (removed examples which have cosine similarity with validation and test examples over 0.8; contexts of the latter two are trimmed to be around 300 `newmm` words). Benchmarks shared on [wandb](https://wandb.ai/cstorm125/wangchanberta-qa) using validation and test sets of `iapp_wiki_qa_squad`. Trained with [thai2transformers](https://github.com/vistec-AI/thai2transformers/blob/dev/scripts/downstream/train_question_answering_lm_finetuning.py). Run with: ``` export MODEL_NAME=bert-base-multilingual-cased python train_question_answering_lm_finetuning.py \ --model_name $MODEL_NAME \ --dataset_name chimera_qa \ --output_dir $MODEL_NAME-finetune-chimera_qa-model \ --log_dir $MODEL_NAME-finetune-chimera_qa-log \ --pad_on_right \ --fp16 ```
andi611/bert-large-uncased-ner-conll2003
ab80bee2b4bb1356bb17e0ae71560c413c5a6622
2021-07-04T14:38:08.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
andi611
null
andi611/bert-large-uncased-ner-conll2003
18
null
transformers
8,756
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: bert-large-uncased-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9877039414110284 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-ner This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0591 - Precision: 0.9465 - Recall: 0.9568 - F1: 0.9517 - Accuracy: 0.9877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1702 | 1.0 | 878 | 0.0578 | 0.9202 | 0.9347 | 0.9274 | 0.9836 | | 0.0392 | 2.0 | 1756 | 0.0601 | 0.9306 | 0.9448 | 0.9377 | 0.9851 | | 0.0157 | 3.0 | 2634 | 0.0517 | 0.9405 | 0.9544 | 0.9474 | 0.9875 | | 0.0057 | 4.0 | 3512 | 0.0591 | 0.9465 | 0.9568 | 0.9517 | 0.9877 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
arnolfokam/bert-base-uncased-swa
5a712c5657361aa4742d4fdbd7091f99209222bc
2021-11-24T11:55:34.000Z
[ "pytorch", "bert", "token-classification", "swa", "dataset:masakhaner", "transformers", "NER", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
arnolfokam
null
arnolfokam/bert-base-uncased-swa
18
null
transformers
8,757
--- language: - swa tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." --- # Model description **bert-base-uncased-swa** is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Swahili corpus **(swa)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Swahili corpus **(swa)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **bert-base-uncased-swa**| 83.38 | 89.32 | 86.26 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/bert-base-uncased-swa") model = AutoModelForTokenClassification.from_pretrained("bert-base-uncased-swa") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." ner_results = nlp(example) print(ner_results) ```
auday/paraphraser_model2
01c537cb8eea999f2396aac169e325089c1e0713
2021-06-23T11:30:45.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
auday
null
auday/paraphraser_model2
18
null
transformers
8,758
This folder contain a Google T5 Transformer Fine-tuned to generate paraphrases using: - Quora_pair_train 134337 lines of pair sentences 14 Mbytes - Quora_pair_val 14928 lines of pair sentences 1.6 Mbytes training epoch: 6 Start Time: Sun Mar 14 18:27:15 2021 End Time: Sun Mar 14 22:19:00 2021
baykenney/bert-large-gpt2detector-topp96
bc453feb4a5db8afd23d942f8b921a9b2330d080
2021-05-19T12:26:23.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
baykenney
null
baykenney/bert-large-gpt2detector-topp96
18
null
transformers
8,759
Entry not found
beomi/beep-klue-roberta-base-hate
8899a71760fbb528d861e342456bfb8ce77866df
2021-10-23T06:00:53.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
beomi
null
beomi/beep-klue-roberta-base-hate
18
null
transformers
8,760
Entry not found
boronbrown48/topic_otherTopics_v2
4ada66be13a006ed98ade81c44f571fcf5033cdb
2021-11-25T05:21:06.000Z
[ "pytorch", "camembert", "text-classification", "transformers" ]
text-classification
false
boronbrown48
null
boronbrown48/topic_otherTopics_v2
18
null
transformers
8,761
Entry not found
cahya/roberta-base-indonesian-1.5G
b2fd096430f23671629a5f7fb8bf357aac29c6b3
2021-05-20T14:39:51.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
cahya
null
cahya/roberta-base-indonesian-1.5G
18
1
transformers
8,762
Entry not found
camilodefelipe/t5_squad_v1
e5d6d8f90afe97ccadfb575e7b1f14757302aaeb
2021-11-12T06:28:41.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
camilodefelipe
null
camilodefelipe/t5_squad_v1
18
null
transformers
8,763
Entry not found
chinhon/pegasus-newsroom-commentaries_hdwriter
8a0e533f4cb07eb249fe85a72d60494c326bc2ea
2022-01-14T12:57:41.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
chinhon
null
chinhon/pegasus-newsroom-commentaries_hdwriter
18
1
transformers
8,764
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-newsroom-commentaries_hdwriter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-newsroom-commentaries_hdwriter This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5316 - Rouge1: 21.4079 - Rouge2: 6.2399 - Rougel: 16.6644 - Rougelsum: 17.8501 - Gen Len: 34.4111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.6327 | 1.0 | 4710 | 2.5474 | 20.9392 | 6.1702 | 16.3859 | 17.5963 | 35.6626 | | 2.4322 | 2.0 | 9420 | 2.5198 | 21.4026 | 6.1811 | 16.5874 | 17.8207 | 34.5976 | | 2.2703 | 3.0 | 14130 | 2.5316 | 21.4079 | 6.2399 | 16.6644 | 17.8501 | 34.4111 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
climatebert/distilroberta-base-climate-d-s
b133d6c58cf9c60ee3b0abda664cace43713384b
2021-10-26T08:22:50.000Z
[ "pytorch", "roberta", "fill-mask", "en", "arxiv:2110.12010", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
climatebert
null
climatebert/distilroberta-base-climate-d-s
18
3
transformers
8,765
--- language: en license: apache-2.0 --- Using the [DistilRoBERTa](https://huggingface.co/distilroberta-base) model as starting point, the ClimateBERT Language Model is additionally pretrained on a text corpus comprising climate-related research paper abstracts, corporate and general news and reports from companies. The underlying methodology can be found in our [language model research paper](https://arxiv.org/abs/2110.12010). ### BibTeX entry and citation info ```bibtex @article{wkbl2021, title={ClimateBERT: A Pretrained Language Model for Climate-Related Text}, author={Webersinke, Nicolas and Kraus, Mathias and Bingler, Julia and Leippold, Markus}, journal={arXiv preprint arXiv:2110.12010}, year={2021} } ```
coppercitylabs/uzbek-news-category-classifier
e4de92fb1360a2794c719805e3da1da6876edc09
2021-09-22T08:17:53.000Z
[ "pytorch", "bert", "text-classification", "uz", "dataset:webcrawl", "transformers", "uzbek", "cyrillic", "news category classifier", "license:mit" ]
text-classification
false
coppercitylabs
null
coppercitylabs/uzbek-news-category-classifier
18
1
transformers
8,766
--- language: uz tags: - uzbek - cyrillic - news category classifier license: mit datasets: - webcrawl --- # Uzbek news category classifier (based on UzBERT) UzBERT fine-tuned to classify news articles into one of the following categories: - ะดัƒะฝั‘ - ะถะฐะผะธัั‚ - ะถะธะฝะพัั‚ - ะธา›ั‚ะธัะพะดะธั‘ั‚ - ะผะฐะดะฐะฝะธัั‚ - ั€ะตะบะปะฐะผะฐ - ัะฐะปะพะผะฐั‚ะปะธะบ - ัะธั‘ัะฐั‚ - ัะฟะพั€ั‚ - ั„ะฐะฝ ะฒะฐ ั‚ะตั…ะฝะธะบะฐ - ัˆะพัƒ-ะฑะธะทะฝะตั ## How to use ```python >>> from transformers import pipeline >>> classifier = pipeline('text-classification', model='coppercitylabs/uzbek-news-category-classifier') >>> text = """ะœะฐาณะพั€ะฐั‚ะปะธ ะฟะฐั€ะฐ-ะตะฝะณะธะป ะฐั‚ะปะตั‚ะธะบะฐั‡ะธะผะธะท าฒัƒัะฝะธะดะดะธะฝ ะะพั€ะฑะตะบะพะฒ ะขะพะบะธะพ-2020 ะŸะฐั€ะฐะปะธะผะฟะธั ัžะนะธะฝะปะฐั€ะธะดะฐ า“ะฐะปะฐะฑะฐ า›ะพะทะพะฝะธะฑ, ะดะตะปะตะณะฐั†ะธัะผะธะท าณะธัะพะฑะธะณะฐ ะฝะฐะฒะฑะฐั‚ะดะฐะณะธ ะพะปั‚ะธะฝ ะผะตะดะฐะปะฝะธ ะบะตะปั‚ะธั€ะดะธ. ะ‘ัƒ าณะฐา›ะดะฐ ะœะžาš ั…ะฐะฑะฐั€ ะฑะตั€ะดะธ. ะะพั€ะฑะตะบะพะฒ าณะพะทะธั€ะณะธะฝะฐ ัะดั€ะพ ัƒะปะพา›ั‚ะธั€ะธัˆ ะดะฐัั‚ัƒั€ะธะดะฐ ัžะท า“ะฐะปะฐะฑะฐัะธะฝะธ ั‚ะฐะฝั‚ะฐะฝะฐ า›ะธะปะดะธ. ะฃัˆะฑัƒ ะผะฐัˆา›ะดะฐ ะฒะฐะบะธะปะธะผะธะท 16:13 ะผะตั‚ั€ ะฝะฐั‚ะธะถะฐ ะฑะธะปะฐะฝ ัะฝะณ ัั…ัˆะธ ะบัžั€ัะฐั‚ะบะธั‡ะฝะธ า›ะฐะนะด ัั‚ะดะธ. ะจัƒ ั‚ะฐั€ะธา›ะฐ, ะดะตะปะตะณะฐั†ะธัะผะธะท าณะธัะพะฑะธะดะฐะณะธ ะผะตะดะฐะปะปะฐั€ ัะพะฝะธ 16 (6 ั‚ะฐ ะพะปั‚ะธะฝ, 4 ั‚ะฐ ะบัƒะผัƒัˆ ะฒะฐ 6 ั‚ะฐ ะฑั€ะพะฝะทะฐ) ั‚ะฐะณะฐ ะตั‚ะดะธ. ะšะตะนะธะฝะณะธ ะบัƒะฝ ะดะฐัั‚ัƒั€ะปะฐั€ะธะดะฐ ะธัˆั‚ะธั€ะพะบ ัั‚ะฐะดะธะณะฐะฝ าณะฐะผัŽั€ั‚ะปะฐั€ะธะผะธะทะณะฐ ะพะผะฐะด ั‚ะธะปะฐะฑ า›ะพะปะฐะผะธะท!๏ปฟ""" >>> classifier(text) [{'label': 'ัะฟะพั€ั‚', 'score': 0.9865401983261108}] ``` ## Fine-tuning data Fine-tuned on ~60K news articles for 3 epochs.
cstorm125/wangchanberta-base-att-spm-uncased-finetune-qa
2cd542e8d17dc3c60392eed3e86f9bc6bcb6b49e
2021-07-14T07:24:50.000Z
[ "pytorch", "camembert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
cstorm125
null
cstorm125/wangchanberta-base-att-spm-uncased-finetune-qa
18
null
transformers
8,767
--- widget: - text: "เธชเธงเธ™เธเธธเธซเธฅเธฒเธšเน€เธ›เน‡เธ™เน‚เธฃเธ‡เน€เธฃเธตเธขเธ™เธญเธฐเน„เธฃ" context: "เน‚เธฃเธ‡เน€เธฃเธตเธขเธ™เธชเธงเธ™เธเธธเธซเธฅเธฒเธšเธงเธดเธ—เธขเธฒเธฅเธฑเธข (Suankularb Wittayalai School) (เธญเธฑเธเธฉเธฃเธขเนˆเธญ : เธช.เธ. / S.K.) เน€เธ›เน‡เธ™เน‚เธฃเธ‡เน€เธฃเธตเธขเธ™เธŠเธฒเธขเธฅเน‰เธงเธ™ เธฃเธฐเธ”เธฑเธšเธŠเธฑเน‰เธ™เธกเธฑเธ˜เธขเธกเธจเธถเธเธฉเธฒเธ‚เธ™เธฒเธ”เนƒเธซเธเนˆเธžเธดเน€เธจเธฉ เธชเธฑเธ‡เธเธฑเธ”เธชเธณเธ™เธฑเธเธ‡เธฒเธ™เน€เธ‚เธ•เธžเธทเน‰เธ™เธ—เธตเนˆเธเธฒเธฃเธจเธถเธเธฉเธฒเธกเธฑเธ˜เธขเธกเธจเธถเธเธฉเธฒเน€เธ‚เธ• 1 เธชเธณเธ™เธฑเธเธ‡เธฒเธ™เธ„เธ“เธฐเธเธฃเธฃเธกเธเธฒเธฃเธเธฒเธฃเธจเธถเธเธฉเธฒเธ‚เธฑเน‰เธ™เธžเธทเน‰เธ™เธเธฒเธ™ (เธŠเธทเนˆเธญเน€เธ”เธดเธก: เธเธฃเธกเธชเธฒเธกเธฑเธเธจเธถเธเธฉเธฒ) เธเธฃเธฐเธ—เธฃเธงเธ‡เธจเธถเธเธฉเธฒเธ˜เธดเธเธฒเธฃ เธเนˆเธญเธ•เธฑเน‰เธ‡เน‚เธ”เธข เธžเธฃเธฐเธšเธฒเธ—เธชเธกเน€เธ”เน‡เธˆเธžเธฃเธฐเธˆเธธเธฅเธˆเธญเธกเน€เธเธฅเน‰เธฒเน€เธˆเน‰เธฒเธญเธขเธนเนˆเธซเธฑเธง เน„เธ”เน‰เธฃเธฑเธšเธเธฒเธฃเธชเธ–เธฒเธ›เธ™เธฒเธ‚เธถเน‰เธ™เนƒเธ™เธงเธฑเธ™เธ—เธตเนˆ 8 เธกเธตเธ™เธฒเธ„เธก เธž.เธจ. 2424 (เธ‚เธ“เธฐเธ™เธฑเน‰เธ™เธ™เธฑเธšเธงเธฑเธ™เธ—เธตเนˆ 1 เน€เธกเธฉเธฒเธขเธ™ เน€เธ›เน‡เธ™เธงเธฑเธ™เธ‚เธถเน‰เธ™เธ›เธตเนƒเธซเธกเนˆ เน€เธกเธทเนˆเธญเธ™เธฑเธšเธญเธขเนˆเธฒเธ‡เธชเธฒเธเธฅเธ–เธทเธญเน€เธ›เน‡เธ™ เธž.เธจ. 2425) เน‚เธ”เธขเน€เธ›เน‡เธ™เน‚เธฃเธ‡เน€เธฃเธตเธขเธ™เธฃเธฑเธเธšเธฒเธฅเนเธซเนˆเธ‡เนเธฃเธเธ‚เธญเธ‡เธ›เธฃเธฐเน€เธ—เธจเน„เธ—เธข" --- # airesearch/wangchanberta-base-att-spm-uncased Finetuning `airesearch/wangchanberta-base-att-spm-uncased` with the training set of `iapp_wiki_qa_squad`, `thaiqa_squad`, and `nsc_qa` (removed examples which have cosine similarity with validation and test examples over 0.8; contexts of the latter two are trimmed to be around 300 `newmm` words). Benchmarks shared on [wandb](https://wandb.ai/cstorm125/wangchanberta-qa) using validation and test sets of `iapp_wiki_qa_squad`. Trained with [thai2transformers](https://github.com/vistec-AI/thai2transformers/blob/dev/scripts/downstream/train_question_answering_lm_finetuning.py). Run with: ``` export MODEL_NAME=airesearch/wangchanberta-base-att-spm-uncased python train_question_answering_lm_finetuning.py \ --model_name $MODEL_NAME \ --dataset_name chimera_qa \ --output_dir $MODEL_NAME-finetune-chimera_qa-model \ --log_dir $MODEL_NAME-finetune-chimera_qa-log \ --lowercase \ --pad_on_right \ --fp16 ```
danicodes/autonlp-legal-text-summary-457311749
fdfd2fbdf6c5528ac559ee452f468fe21e0faeab
2021-12-29T22:18:48.000Z
[ "pytorch", "pegasus", "text2text-generation", "unk", "dataset:danicodes/autonlp-data-legal-text-summary", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
danicodes
null
danicodes/autonlp-legal-text-summary-457311749
18
null
transformers
8,768
--- tags: autonlp language: unk widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - danicodes/autonlp-data-legal-text-summary co2_eq_emissions: 10.148805588432941 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 457311749 - CO2 Emissions (in grams): 10.148805588432941 ## Validation Metrics - Loss: 1.647747278213501 - Rouge1: 32.4854 - Rouge2: 19.8974 - RougeL: 30.0602 - RougeLsum: 29.9377 - Gen Len: 46.6556 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/danicodes/autonlp-legal-text-summary-457311749 ```
deepampatel/roberta-mlm-marathi
88bfb8d8c71aeba202aa1dfc150bb7659013c58b
2021-05-20T15:58:32.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "mr", "transformers", "autotrain_compatible" ]
fill-mask
false
deepampatel
null
deepampatel/roberta-mlm-marathi
18
null
transformers
8,769
--- language: "mr" --- # Welcome to Roberta-Marathi-MLM ## Model Description > This is a small language model for [Marathi](https://en.wikipedia.org/wiki/Marathi) language with 1M data samples taken from [OSCAR page](https://oscar-public.huma-num.fr/shuffled/mr_dedup.txt.gz) ## Training params - **Dataset** - 1M data samples are used to train this model from OSCAR page(https://oscar-corpus.com/) eventhough data set is of 2.7 GB due to resource constraint to train I have picked only 1M data from the total 2.7GB data set. If you are interested in collaboration and have computational resources to train on you are most welcome to do so. - **Preprocessing** - ByteLevelBPETokenizer is used to tokenize the sentences at character level and vocabulary size is set to 52k as per standard values given by รฐลธยคโ€” <!-- - **Hyperparameters** - __ByteLevelBPETokenizer__ : vocabulary size = 52_000 and min_frequency = 2 __Trainer__ : num_train_epochs=12 - trained for 12 epochs per_gpu_train_batch_size=64 - batch size for the datasamples is 64 save_steps=10_000 - save model for every 10k steps save_total_limit=2 - save limit is set for 2 --> **Intended uses & limitations** this is for anyone who wants to make use of marathi language models for various tasks like language generation, translation and many more use cases. **Whatever else is helpful!** If you are intersted in collaboration feel free to reach me [Deepam](mailto:[email protected])
devansvd/bert-model-test-2
0447f102321464ad3e2ac84e573d50ae4d5ca7f4
2021-05-19T15:39:56.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
devansvd
null
devansvd/bert-model-test-2
18
null
transformers
8,770
Entry not found
ehdwns1516/gpt2_review_star5
ffff22224ae9f03ba7964c8804394563bc8ff627
2021-07-23T01:07:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ehdwns1516
null
ehdwns1516/gpt2_review_star5
18
null
transformers
8,771
# gpt2_review_star5 * This model has been trained as a review_body dataset with a star of 5 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt2_review_star1](https://huggingface.co/ehdwns1516/gpt2_review_star1) * [ehdwns1516/gpt2_review_star2](https://huggingface.co/ehdwns1516/gpt2_review_star2) * [ehdwns1516/gpt2_review_star3](https://huggingface.co/ehdwns1516/gpt2_review_star3) * [ehdwns1516/gpt2_review_star4](https://huggingface.co/ehdwns1516/gpt2_review_star4) * [ehdwns1516/gpt2_review_star5](https://huggingface.co/ehdwns1516/gpt2_review_star5) ## Overview Language model: [gpt2](https://huggingface.co/gpt2) Language: English Training data: review_body dataset with a star of 5 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt2_review_star5") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt2_review_star5") generator = pipeline( "text-generation", model="ehdwns1516/gpt2_review_star5", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
ekkasilina/big_baseline
0c1e97ab9da06ab6ac73c33dd8325b2040449e0c
2021-11-01T11:24:41.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ekkasilina
null
ekkasilina/big_baseline
18
null
transformers
8,772
Entry not found
emrecan/bert-base-multilingual-cased-multinli_tr
34672963e95d65dcb94071a698b039929290465d
2021-12-01T19:45:01.000Z
[ "pytorch", "bert", "text-classification", "tr", "dataset:nli_tr", "transformers", "zero-shot-classification", "nli", "license:apache-2.0" ]
zero-shot-classification
false
emrecan
null
emrecan/bert-base-multilingual-cased-multinli_tr
18
null
transformers
8,773
--- language: - tr tags: - zero-shot-classification - nli - pytorch pipeline_tag: zero-shot-classification license: apache-2.0 datasets: - nli_tr widget: - text: "Dolar yรผkselmeye devam ediyor." candidate_labels: "ekonomi, siyaset, spor" - text: "Senaryo รงok saรงmaydฤฑ, beฤŸendim diyemem." candidate_labels: "olumlu, olumsuz" ---
emrecan/convbert-base-turkish-mc4-cased-allnli_tr
84be0ca74dbb0ac436ee46eef0ddd0f6b47cd579
2021-12-02T14:57:01.000Z
[ "pytorch", "convbert", "text-classification", "tr", "dataset:nli_tr", "transformers", "zero-shot-classification", "nli", "license:apache-2.0" ]
zero-shot-classification
false
emrecan
null
emrecan/convbert-base-turkish-mc4-cased-allnli_tr
18
1
transformers
8,774
--- language: - tr tags: - zero-shot-classification - nli - pytorch pipeline_tag: zero-shot-classification license: apache-2.0 datasets: - nli_tr metrics: - accuracy widget: - text: "Dolar yรผkselmeye devam ediyor." candidate_labels: "ekonomi, siyaset, spor" - text: "Senaryo รงok saรงmaydฤฑ, beฤŸendim diyemem." candidate_labels: "olumlu, olumsuz" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convbert-base-turkish-mc4-cased_allnli_tr This model is a fine-tuned version of [dbmdz/convbert-base-turkish-mc4-cased](https://huggingface.co/dbmdz/convbert-base-turkish-mc4-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5541 - Accuracy: 0.8111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7338 | 0.03 | 1000 | 0.6722 | 0.7236 | | 0.603 | 0.07 | 2000 | 0.6465 | 0.7399 | | 0.5605 | 0.1 | 3000 | 0.5801 | 0.7728 | | 0.55 | 0.14 | 4000 | 0.5994 | 0.7626 | | 0.529 | 0.17 | 5000 | 0.5720 | 0.7697 | | 0.5196 | 0.2 | 6000 | 0.5692 | 0.7769 | | 0.5117 | 0.24 | 7000 | 0.5725 | 0.7785 | | 0.5044 | 0.27 | 8000 | 0.5532 | 0.7787 | | 0.5016 | 0.31 | 9000 | 0.5546 | 0.7812 | | 0.5031 | 0.34 | 10000 | 0.5461 | 0.7870 | | 0.4949 | 0.37 | 11000 | 0.5725 | 0.7826 | | 0.4894 | 0.41 | 12000 | 0.5419 | 0.7933 | | 0.4796 | 0.44 | 13000 | 0.5278 | 0.7914 | | 0.4795 | 0.48 | 14000 | 0.5193 | 0.7953 | | 0.4713 | 0.51 | 15000 | 0.5534 | 0.7771 | | 0.4738 | 0.54 | 16000 | 0.5098 | 0.8039 | | 0.481 | 0.58 | 17000 | 0.5244 | 0.7958 | | 0.4634 | 0.61 | 18000 | 0.5215 | 0.7972 | | 0.465 | 0.65 | 19000 | 0.5129 | 0.7985 | | 0.4624 | 0.68 | 20000 | 0.5062 | 0.8047 | | 0.4597 | 0.71 | 21000 | 0.5114 | 0.8029 | | 0.4571 | 0.75 | 22000 | 0.5070 | 0.8073 | | 0.4602 | 0.78 | 23000 | 0.5115 | 0.7993 | | 0.4552 | 0.82 | 24000 | 0.5085 | 0.8052 | | 0.4538 | 0.85 | 25000 | 0.5118 | 0.7974 | | 0.4517 | 0.88 | 26000 | 0.5036 | 0.8044 | | 0.4517 | 0.92 | 27000 | 0.4930 | 0.8062 | | 0.4413 | 0.95 | 28000 | 0.5307 | 0.7964 | | 0.4483 | 0.99 | 29000 | 0.5195 | 0.7938 | | 0.4036 | 1.02 | 30000 | 0.5238 | 0.8029 | | 0.3724 | 1.05 | 31000 | 0.5125 | 0.8082 | | 0.3777 | 1.09 | 32000 | 0.5099 | 0.8075 | | 0.3753 | 1.12 | 33000 | 0.5172 | 0.8053 | | 0.367 | 1.15 | 34000 | 0.5188 | 0.8053 | | 0.3819 | 1.19 | 35000 | 0.5218 | 0.8046 | | 0.363 | 1.22 | 36000 | 0.5202 | 0.7993 | | 0.3794 | 1.26 | 37000 | 0.5240 | 0.8048 | | 0.3749 | 1.29 | 38000 | 0.5026 | 0.8054 | | 0.367 | 1.32 | 39000 | 0.5198 | 0.8075 | | 0.3759 | 1.36 | 40000 | 0.5298 | 0.7993 | | 0.3701 | 1.39 | 41000 | 0.5072 | 0.8091 | | 0.3742 | 1.43 | 42000 | 0.5071 | 0.8098 | | 0.3706 | 1.46 | 43000 | 0.5317 | 0.8037 | | 0.3716 | 1.49 | 44000 | 0.5034 | 0.8052 | | 0.3717 | 1.53 | 45000 | 0.5258 | 0.8012 | | 0.3714 | 1.56 | 46000 | 0.5195 | 0.8050 | | 0.3781 | 1.6 | 47000 | 0.5004 | 0.8104 | | 0.3725 | 1.63 | 48000 | 0.5124 | 0.8113 | | 0.3624 | 1.66 | 49000 | 0.5040 | 0.8094 | | 0.3657 | 1.7 | 50000 | 0.4979 | 0.8111 | | 0.3669 | 1.73 | 51000 | 0.4968 | 0.8100 | | 0.3636 | 1.77 | 52000 | 0.5075 | 0.8079 | | 0.36 | 1.8 | 53000 | 0.4985 | 0.8110 | | 0.3624 | 1.83 | 54000 | 0.5125 | 0.8070 | | 0.366 | 1.87 | 55000 | 0.4918 | 0.8117 | | 0.3655 | 1.9 | 56000 | 0.5051 | 0.8109 | | 0.3609 | 1.94 | 57000 | 0.5083 | 0.8105 | | 0.3672 | 1.97 | 58000 | 0.5129 | 0.8085 | | 0.3545 | 2.0 | 59000 | 0.5467 | 0.8109 | | 0.2938 | 2.04 | 60000 | 0.5635 | 0.8049 | | 0.29 | 2.07 | 61000 | 0.5781 | 0.8041 | | 0.2992 | 2.11 | 62000 | 0.5470 | 0.8077 | | 0.2957 | 2.14 | 63000 | 0.5765 | 0.8073 | | 0.292 | 2.17 | 64000 | 0.5472 | 0.8106 | | 0.2893 | 2.21 | 65000 | 0.5590 | 0.8085 | | 0.2883 | 2.24 | 66000 | 0.5535 | 0.8064 | | 0.2923 | 2.28 | 67000 | 0.5508 | 0.8095 | | 0.2868 | 2.31 | 68000 | 0.5679 | 0.8098 | | 0.2892 | 2.34 | 69000 | 0.5660 | 0.8057 | | 0.292 | 2.38 | 70000 | 0.5494 | 0.8088 | | 0.286 | 2.41 | 71000 | 0.5653 | 0.8085 | | 0.2939 | 2.45 | 72000 | 0.5673 | 0.8070 | | 0.286 | 2.48 | 73000 | 0.5600 | 0.8092 | | 0.2844 | 2.51 | 74000 | 0.5508 | 0.8095 | | 0.2913 | 2.55 | 75000 | 0.5645 | 0.8088 | | 0.2859 | 2.58 | 76000 | 0.5677 | 0.8095 | | 0.2892 | 2.62 | 77000 | 0.5598 | 0.8113 | | 0.2898 | 2.65 | 78000 | 0.5618 | 0.8096 | | 0.2814 | 2.68 | 79000 | 0.5664 | 0.8103 | | 0.2917 | 2.72 | 80000 | 0.5484 | 0.8122 | | 0.2907 | 2.75 | 81000 | 0.5522 | 0.8116 | | 0.2896 | 2.79 | 82000 | 0.5540 | 0.8093 | | 0.2907 | 2.82 | 83000 | 0.5469 | 0.8104 | | 0.2882 | 2.85 | 84000 | 0.5471 | 0.8122 | | 0.2878 | 2.89 | 85000 | 0.5532 | 0.8108 | | 0.2858 | 2.92 | 86000 | 0.5511 | 0.8115 | | 0.288 | 2.96 | 87000 | 0.5491 | 0.8111 | | 0.2834 | 2.99 | 88000 | 0.5541 | 0.8111 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
formermagic/roberta-base-python-1m
bc5b171a877af5ffa621222d6b65eea696ab92aa
2021-05-20T16:19:17.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "py", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
formermagic
null
formermagic/roberta-base-python-1m
18
null
transformers
8,775
--- license: mit language: py thumbnail: https://avatars.githubusercontent.com/u/70610668?s=400&u=f0699303289113c125e8686338739d9a63d5826c&v=4 tags: - roberta - pytorch --- # roberta-base-python-1m
gagan3012/k2t-test3
59730f6ff36b5405b0409f8354a548ced295908a
2021-07-09T19:57:47.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:WebNLG", "dataset:Dart", "transformers", "keytotext", "k2t", "Keywords to Sentences", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
gagan3012
null
gagan3012/k2t-test3
18
null
transformers
8,776
--- language: "en" thumbnail: "Keywords to Sentences" tags: - keytotext - k2t - Keywords to Sentences license: "MIT" datasets: - WebNLG - Dart metrics: - NLG model-index: - name: k2t-test3 --- #keytotext [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/notebooks/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) [![API Call](https://img.shields.io/badge/-FastAPI-red?logo=fastapi&labelColor=white)](https://github.com/gagan3012/keytotext#api) [![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://hub.docker.com/r/gagan30/keytotext) [![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97-Models%20on%20Hub-yellow)](https://huggingface.co/models?filter=keytotext) [![Documentation Status](https://readthedocs.org/projects/keytotext/badge/?version=latest)](https://keytotext.readthedocs.io/en/latest/?badge=latest) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ![keytotext](https://socialify.git.ci/gagan3012/keytotext/image?description=1&forks=1&language=1&owner=1&stargazers=1&theme=Light) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: - Marketing - Search Engine Optimization - Topic generation etc. - Fine tuning of topic modeling models
gayanin/bart-finetuned-pubmed
4e130b77b7a026d1296b4bb33b428f777af96b86
2021-11-04T11:03:30.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gayanin
null
gayanin/bart-finetuned-pubmed
18
null
transformers
8,777
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-finetuned-pubmed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-finetuned-pubmed This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5363 - Rouge2 Precision: 0.3459 - Rouge2 Recall: 0.2455 - Rouge2 Fmeasure: 0.2731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 1.652 | 1.0 | 1125 | 1.5087 | 0.3647 | 0.2425 | 0.2772 | | 1.4695 | 2.0 | 2250 | 1.5039 | 0.3448 | 0.2457 | 0.2732 | | 1.3714 | 3.0 | 3375 | 1.4842 | 0.3509 | 0.2474 | 0.277 | | 1.2734 | 4.0 | 4500 | 1.4901 | 0.3452 | 0.2426 | 0.2716 | | 1.1853 | 5.0 | 5625 | 1.5152 | 0.3658 | 0.2371 | 0.2744 | | 1.0975 | 6.0 | 6750 | 1.5133 | 0.3529 | 0.2417 | 0.2729 | | 1.0448 | 7.0 | 7875 | 1.5203 | 0.3485 | 0.2464 | 0.275 | | 0.9999 | 8.0 | 9000 | 1.5316 | 0.3437 | 0.2435 | 0.2719 | | 0.9732 | 9.0 | 10125 | 1.5338 | 0.3464 | 0.2446 | 0.2732 | | 0.954 | 10.0 | 11250 | 1.5363 | 0.3459 | 0.2455 | 0.2731 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
ghadeermobasher/BC2GM-Gene-Modified_PubMedBERT
27909a0b5cd4393095ef379fd2961a6cc7d10d8b
2022-01-22T01:53:24.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC2GM-Gene-Modified_PubMedBERT
18
null
transformers
8,778
Entry not found
google/t5-large-ssm-nqo
3300329c72f0a6770409f50e5de16fb341026fb4
2021-06-23T01:42:15.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "dataset:wikipedia", "dataset:natural_questions", "arxiv:2002.08909", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-large-ssm-nqo
18
null
transformers
8,779
--- language: en datasets: - c4 - wikipedia - natural_questions license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**. The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4), subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia), and finally fine-tuned on [Natural Questions (NQ)](https://huggingface.co/datasets/natural_questions). **Note**: The model was fine-tuned on 90% of the train splits of [Natural Questions (NQ)](https://huggingface.co/datasets/natural_questions) for 20k steps and validated on the held-out 10% of the train split. Other community Checkpoints: [here](https://huggingface.co/models?search=ssm) Paper: [How Much Knowledge Can You Pack Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf) Authors: *Adam Roberts, Colin Raffel, Noam Shazeer* ## Results on Natural Questions - Test Set |Id | link | Exact Match | |---|---|---| |**T5-large**|**https://huggingface.co/google/t5-large-ssm-nqo**|**29.0**| |T5-xxl|https://huggingface.co/google/t5-xxl-ssm-nqo|35.2| |T5-3b|https://huggingface.co/google/t5-3b-ssm-nqo|31.7| |T5-11b|https://huggingface.co/google/t5-11b-ssm-nqo|34.8| ## Usage The model can be used as follows for **closed book question answering**: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-large-ssm-nqo") t5_tok = AutoTokenizer.from_pretrained("google/t5-large-ssm-nqo") input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids gen_output = t5_qa_model.generate(input_ids)[0] print(t5_tok.decode(gen_output, skip_special_tokens=True)) ``` ## Abstract It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png)
google/t5-xxl-ssm-tqao
e1690965ac9c779c487094e7b49dfd35de4f3ab7
2020-12-07T08:37:04.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "en", "dataset:c4", "dataset:wikipedia", "dataset:trivia_qa", "arxiv:2002.08909", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-xxl-ssm-tqao
18
null
transformers
8,780
--- language: en datasets: - c4 - wikipedia - trivia_qa license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**. The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4), subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia), and finally fine-tuned on [Trivia QA (TQA)](https://huggingface.co/datasets/trivia_qa). **Note**: The model was fine-tuned on 90% of the train splits of [Trivia QA (TQA)](https://huggingface.co/datasets/trivia_qa) for 20k steps and validated on the held-out 10% of the train split. Other community Checkpoints: [here](https://huggingface.co/models?search=ssm) Paper: [How Much Knowledge Can You Pack Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf) Authors: *Adam Roberts, Colin Raffel, Noam Shazeer* ## Results on Trivia QA - Test Set |Id | link | Exact Match | |---|---|---| |T5-11b|https://huggingface.co/google/t5-large-ssm-tqao|51.0| |**T5-xxl**|**https://huggingface.co/google/t5-xxl-ssm-tqao**|**51.9**| ## Usage The model can be used as follows for **closed book question answering**: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-xxl-ssm-tqao") t5_tok = AutoTokenizer.from_pretrained("google/t5-xxl-ssm-tqao") input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids gen_output = t5_qa_model.generate(input_ids)[0] print(t5_tok.decode(gen_output, skip_special_tokens=True)) ``` ## Abstract It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png)
guocheng98/HelsinkiNLP-FineTuned-Legal-es-zh
59b46b01abdee23f942426e220ea532a5ec030b4
2021-06-24T22:54:46.000Z
[ "pytorch", "marian", "text2text-generation", "es", "zh", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
guocheng98
null
guocheng98/HelsinkiNLP-FineTuned-Legal-es-zh
18
null
transformers
8,781
--- language: - es - zh tags: - translation license: apache-2.0 --- This model is a fine-tuned version of [Helsinki-NLP/opus-tatoeba-es-zh](https://huggingface.co/Helsinki-NLP/opus-tatoeba-es-zh) on a dataset of legal domain constructed by the author himself. # Intended uses & limitations This model is the result of the master graduation thesis for the Tradumatics: Translation Technologies program at the Autonomous University of Barcelona. Please refer to the GitHub repo created for this thesis for the full-text and relative open-sourced materials: https://github.com/guocheng98/MUTTT2020_TFM_ZGC The thesis intends to explain various theories and certain algorithm details about neural machine translation, thus this fine-tuned model only serves as a hands-on practice example for that objective, without any intention of productive usage. # Training and evaluation data The dataset is constructed from the Chinese translation of Spanish Civil Code, Spanish Constitution, and many other laws & regulations found in the database China Law Info (ๅŒ—ๅคงๆณ•ๅฎ Beida Fabao), along with their source text found on Boletรญn Oficial del Estado and EUR-Lex. There are 9972 sentence pairs constructed. 1000 are used for evaluation and the rest for training. # Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10 - mixed_precision_training: Native AMP - weight_decay: 0.01 - early_stopping_patience: 8 # Training results Best validation loss achieved at step 5600. | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9584 | 0.36 | 400 | 2.6800 | | 2.6402 | 0.71 | 800 | 2.5017 | | 2.5038 | 1.07 | 1200 | 2.3907 | | 2.3279 | 1.43 | 1600 | 2.2999 | | 2.2258 | 1.78 | 2000 | 2.2343 | | 2.1061 | 2.14 | 2400 | 2.1961 | | 1.9279 | 2.5 | 2800 | 2.1569 | | 1.9059 | 2.85 | 3200 | 2.1245 | | 1.7491 | 3.21 | 3600 | 2.1227 | | 1.6301 | 3.57 | 4000 | 2.1169 | | 1.6871 | 3.92 | 4400 | 2.0979 | | 1.5203 | 4.28 | 4800 | 2.1074 | | 1.4646 | 4.63 | 5200 | 2.1024 | | 1.4739 | 4.99 | 5600 | 2.0905 | | 1.338 | 5.35 | 6000 | 2.0946 | | 1.3152 | 5.7 | 6400 | 2.0974 | | 1.306 | 6.06 | 6800 | 2.0985 | | 1.1991 | 6.42 | 7200 | 2.0962 | | 1.2113 | 6.77 | 7600 | 2.1092 | | 1.1983 | 7.13 | 8000 | 2.1060 | | 1.1238 | 7.49 | 8400 | 2.1102 | | 1.1417 | 7.84 | 8800 | 2.1078 | # Framework versions - Transformers 4.7.0 - Pytorch 1.8.1+cu101 - Datasets 1.8.0 - Tokenizers 0.10.3
hfeng/bert_base_uncased_conll2003
0cd94e46aeeb6a589b59007d73720ec6311c1188
2021-08-23T14:14:40.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
hfeng
null
hfeng/bert_base_uncased_conll2003
18
null
transformers
8,782
# BERT base model (uncased) fine-tuned on CoNLL-2003 This model was trained following the PyTorch token-classification example from Hugging Face: https://github.com/huggingface/transformers/tree/master/examples/pytorch/token-classification. There were no tweaks to the model or dataset.
howey/electra-large-squad
b200bdea716385dfb10250cf044958ae0574662b
2021-06-21T06:12:30.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
howey
null
howey/electra-large-squad
18
null
transformers
8,783
Entry not found
huggingtweets/beingandslime
9cc7398a3dcb52316eaabf83cf3e428399e64e83
2021-05-21T20:17:38.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/beingandslime
18
null
transformers
8,784
--- language: en thumbnail: https://www.huggingtweets.com/beingandslime/1616648200015/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1348756593052176385/TjNU6-T__400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Evan (master saucier) ๐Ÿค– AI Bot </div> <div style="font-size: 15px">@beingandslime bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@beingandslime's tweets](https://twitter.com/beingandslime). | Data | Quantity | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 55 | | Short tweets | 473 | | Tweets kept | 2717 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2hj6ebde/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @beingandslime's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vtowykv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vtowykv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/beingandslime') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/gohere4porn-onlinepete
4836c01c942aa5138c179f42015d75cd693c1eba
2021-07-07T06:07:15.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/gohere4porn-onlinepete
18
null
transformers
8,785
--- language: en thumbnail: https://www.huggingtweets.com/gohere4porn-onlinepete/1625638031693/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/456958582731603969/QZKpv6eI_400x400.jpeg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1324123540556316673/YQjGLFLJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">im pete online & Grateful King</div> <div style="text-align: center; font-size: 14px;">@gohere4porn-onlinepete</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from im pete online & Grateful King. | Data | im pete online | Grateful King | | --- | --- | --- | | Tweets downloaded | 3190 | 2141 | | Retweets | 94 | 557 | | Short tweets | 1003 | 217 | | Tweets kept | 2093 | 1367 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1w0274vc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gohere4porn-onlinepete's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rvkp85n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rvkp85n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gohere4porn-onlinepete') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/nerdyboy77
f215e190e0bf6c9cab591f52976c5ad61e91093c
2021-05-22T16:03:13.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/nerdyboy77
18
null
transformers
8,786
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1275928927693930502/Pbhj-IWx_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Pranav ๐Ÿ›บ ๐Ÿค– AI Bot </div> <div style="font-size: 15px">@nerdyboy77 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@nerdyboy77's tweets](https://twitter.com/nerdyboy77). | Data | Quantity | | --- | --- | | Tweets downloaded | 1359 | | Retweets | 396 | | Short tweets | 120 | | Tweets kept | 843 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bp0hino/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nerdyboy77's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28folapu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28folapu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nerdyboy77') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/thenewfiction
f5b2671ee142d968591d434bd0a8018433f24b7d
2021-05-23T01:51:01.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/thenewfiction
18
null
transformers
8,787
--- language: en thumbnail: https://www.huggingtweets.com/thenewfiction/1617358718682/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/378800000818526633/458c31969d9614eced26eaf87e34ded3_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">the new fiction ๐Ÿค– AI Bot </div> <div style="font-size: 15px">@thenewfiction bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@thenewfiction's tweets](https://twitter.com/thenewfiction). | Data | Quantity | | --- | --- | | Tweets downloaded | 1625 | | Retweets | 11 | | Short tweets | 99 | | Tweets kept | 1515 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3j5k2uja/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thenewfiction's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2e7x2n0q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2e7x2n0q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thenewfiction') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ietz/bert-base-uncased-finetuned-jira-jira-issue-titles-and-bodies
56212b95c8d97343b63887d7bd038f2d717948e8
2022-02-04T14:56:48.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ietz
null
ietz/bert-base-uncased-finetuned-jira-jira-issue-titles-and-bodies
18
null
transformers
8,788
Entry not found
imvladikon/wav2vec2-xls-r-300m-hebrew
98d752fcc0c0383852f1c3947d5fdae94aff2280
2022-03-23T18:30:08.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "he", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "model-index" ]
automatic-speech-recognition
false
imvladikon
null
imvladikon/wav2vec2-xls-r-300m-hebrew
18
1
transformers
8,789
--- language: - he tags: - automatic-speech-recognition - generated_from_trainer - he - hf-asr-leaderboard - robust-speech-event model-index: - name: wav2vec2-xls-r-300m-hebrew results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Custom Dataset type: custom args: he metrics: - name: Test WER type: wer value: 23.18 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-hebrew This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the private datasets in 2 stages - firstly was fine-tuned on a small dataset with good samples Then the obtained model was fine-tuned on a large dataset with the small good dataset, with various samples from different sources, and with an unlabeled dataset that was weakly labeled using a previously trained model. Small dataset: | split |size(gb) | n_samples | duration(hrs)| | |---|---|---|---|---| |train|4.19| 20306 | 28 | | |dev |1.05| 5076 | 7 | | Large dataset: | split |size(gb) | n_samples | duration(hrs)| | |---|---|---|---|---| |train|12.3| 90777 | 69 | | |dev |2.39| 20246 | 14* | | (*weakly labeled data wasn't used in validation set) After firts training it achieves: on small dataset - Loss: 0.5438 - WER: 0.1773 on large dataset - WER: 0.3811 after second training: on small dataset - WER: 0.1697 on large dataset - Loss: 0.4502 - WER: 0.2318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters #### First training The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 3.15 | 1000 | 0.5203 | 0.4333 | | 1.4284 | 6.31 | 2000 | 0.4816 | 0.3951 | | 1.4284 | 9.46 | 3000 | 0.4315 | 0.3546 | | 1.283 | 12.62 | 4000 | 0.4278 | 0.3404 | | 1.283 | 15.77 | 5000 | 0.4090 | 0.3054 | | 1.1777 | 18.93 | 6000 | 0.3893 | 0.3006 | | 1.1777 | 22.08 | 7000 | 0.3968 | 0.2857 | | 1.0994 | 25.24 | 8000 | 0.3892 | 0.2751 | | 1.0994 | 28.39 | 9000 | 0.4061 | 0.2690 | | 1.0323 | 31.54 | 10000 | 0.4114 | 0.2507 | | 1.0323 | 34.7 | 11000 | 0.4021 | 0.2508 | | 0.9623 | 37.85 | 12000 | 0.4032 | 0.2378 | | 0.9623 | 41.01 | 13000 | 0.4148 | 0.2374 | | 0.9077 | 44.16 | 14000 | 0.4350 | 0.2323 | | 0.9077 | 47.32 | 15000 | 0.4515 | 0.2246 | | 0.8573 | 50.47 | 16000 | 0.4474 | 0.2180 | | 0.8573 | 53.63 | 17000 | 0.4649 | 0.2171 | | 0.8083 | 56.78 | 18000 | 0.4455 | 0.2102 | | 0.8083 | 59.94 | 19000 | 0.4587 | 0.2092 | | 0.769 | 63.09 | 20000 | 0.4794 | 0.2012 | | 0.769 | 66.25 | 21000 | 0.4845 | 0.2007 | | 0.7308 | 69.4 | 22000 | 0.4937 | 0.2008 | | 0.7308 | 72.55 | 23000 | 0.4920 | 0.1895 | | 0.6927 | 75.71 | 24000 | 0.5179 | 0.1911 | | 0.6927 | 78.86 | 25000 | 0.5202 | 0.1877 | | 0.6622 | 82.02 | 26000 | 0.5266 | 0.1840 | | 0.6622 | 85.17 | 27000 | 0.5351 | 0.1854 | | 0.6315 | 88.33 | 28000 | 0.5373 | 0.1811 | | 0.6315 | 91.48 | 29000 | 0.5331 | 0.1792 | | 0.6075 | 94.64 | 30000 | 0.5390 | 0.1779 | | 0.6075 | 97.79 | 31000 | 0.5459 | 0.1773 | #### Second training The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.7 | 1000 | 0.5371 | 0.3811 | | 1.3606 | 1.41 | 2000 | 0.5247 | 0.3902 | | 1.3606 | 2.12 | 3000 | 0.5126 | 0.3859 | | 1.3671 | 2.82 | 4000 | 0.5062 | 0.3828 | | 1.3671 | 3.53 | 5000 | 0.4979 | 0.3672 | | 1.3421 | 4.23 | 6000 | 0.4906 | 0.3816 | | 1.3421 | 4.94 | 7000 | 0.4784 | 0.3651 | | 1.328 | 5.64 | 8000 | 0.4810 | 0.3669 | | 1.328 | 6.35 | 9000 | 0.4747 | 0.3597 | | 1.3109 | 7.05 | 10000 | 0.4813 | 0.3808 | | 1.3109 | 7.76 | 11000 | 0.4631 | 0.3561 | | 1.2873 | 8.46 | 12000 | 0.4603 | 0.3431 | | 1.2873 | 9.17 | 13000 | 0.4579 | 0.3533 | | 1.2661 | 9.87 | 14000 | 0.4471 | 0.3365 | | 1.2661 | 10.58 | 15000 | 0.4584 | 0.3437 | | 1.249 | 11.28 | 16000 | 0.4461 | 0.3454 | | 1.249 | 11.99 | 17000 | 0.4482 | 0.3367 | | 1.2322 | 12.69 | 18000 | 0.4464 | 0.3335 | | 1.2322 | 13.4 | 19000 | 0.4427 | 0.3454 | | 1.22 | 14.1 | 20000 | 0.4440 | 0.3395 | | 1.22 | 14.81 | 21000 | 0.4459 | 0.3378 | | 1.2044 | 15.51 | 22000 | 0.4406 | 0.3199 | | 1.2044 | 16.22 | 23000 | 0.4398 | 0.3155 | | 1.1913 | 16.92 | 24000 | 0.4237 | 0.3150 | | 1.1913 | 17.63 | 25000 | 0.4287 | 0.3279 | | 1.1705 | 18.34 | 26000 | 0.4253 | 0.3103 | | 1.1705 | 19.04 | 27000 | 0.4234 | 0.3098 | | 1.1564 | 19.75 | 28000 | 0.4174 | 0.3076 | | 1.1564 | 20.45 | 29000 | 0.4260 | 0.3160 | | 1.1461 | 21.16 | 30000 | 0.4235 | 0.3036 | | 1.1461 | 21.86 | 31000 | 0.4309 | 0.3055 | | 1.1285 | 22.57 | 32000 | 0.4264 | 0.3006 | | 1.1285 | 23.27 | 33000 | 0.4201 | 0.2880 | | 1.1135 | 23.98 | 34000 | 0.4131 | 0.2975 | | 1.1135 | 24.68 | 35000 | 0.4202 | 0.2849 | | 1.0968 | 25.39 | 36000 | 0.4105 | 0.2888 | | 1.0968 | 26.09 | 37000 | 0.4210 | 0.2834 | | 1.087 | 26.8 | 38000 | 0.4123 | 0.2843 | | 1.087 | 27.5 | 39000 | 0.4216 | 0.2803 | | 1.0707 | 28.21 | 40000 | 0.4161 | 0.2787 | | 1.0707 | 28.91 | 41000 | 0.4186 | 0.2740 | | 1.0575 | 29.62 | 42000 | 0.4118 | 0.2845 | | 1.0575 | 30.32 | 43000 | 0.4243 | 0.2773 | | 1.0474 | 31.03 | 44000 | 0.4221 | 0.2707 | | 1.0474 | 31.73 | 45000 | 0.4138 | 0.2700 | | 1.0333 | 32.44 | 46000 | 0.4102 | 0.2638 | | 1.0333 | 33.15 | 47000 | 0.4162 | 0.2650 | | 1.0191 | 33.85 | 48000 | 0.4155 | 0.2636 | | 1.0191 | 34.56 | 49000 | 0.4129 | 0.2656 | | 1.0087 | 35.26 | 50000 | 0.4157 | 0.2632 | | 1.0087 | 35.97 | 51000 | 0.4090 | 0.2654 | | 0.9901 | 36.67 | 52000 | 0.4183 | 0.2587 | | 0.9901 | 37.38 | 53000 | 0.4251 | 0.2648 | | 0.9795 | 38.08 | 54000 | 0.4229 | 0.2555 | | 0.9795 | 38.79 | 55000 | 0.4176 | 0.2546 | | 0.9644 | 39.49 | 56000 | 0.4223 | 0.2513 | | 0.9644 | 40.2 | 57000 | 0.4244 | 0.2530 | | 0.9534 | 40.9 | 58000 | 0.4175 | 0.2538 | | 0.9534 | 41.61 | 59000 | 0.4213 | 0.2505 | | 0.9397 | 42.31 | 60000 | 0.4275 | 0.2565 | | 0.9397 | 43.02 | 61000 | 0.4315 | 0.2528 | | 0.9269 | 43.72 | 62000 | 0.4316 | 0.2501 | | 0.9269 | 44.43 | 63000 | 0.4247 | 0.2471 | | 0.9175 | 45.13 | 64000 | 0.4376 | 0.2469 | | 0.9175 | 45.84 | 65000 | 0.4335 | 0.2450 | | 0.9026 | 46.54 | 66000 | 0.4336 | 0.2452 | | 0.9026 | 47.25 | 67000 | 0.4400 | 0.2427 | | 0.8929 | 47.95 | 68000 | 0.4382 | 0.2429 | | 0.8929 | 48.66 | 69000 | 0.4361 | 0.2415 | | 0.8786 | 49.37 | 70000 | 0.4413 | 0.2398 | | 0.8786 | 50.07 | 71000 | 0.4392 | 0.2415 | | 0.8714 | 50.78 | 72000 | 0.4345 | 0.2406 | | 0.8714 | 51.48 | 73000 | 0.4475 | 0.2402 | | 0.8589 | 52.19 | 74000 | 0.4473 | 0.2374 | | 0.8589 | 52.89 | 75000 | 0.4457 | 0.2357 | | 0.8493 | 53.6 | 76000 | 0.4462 | 0.2366 | | 0.8493 | 54.3 | 77000 | 0.4494 | 0.2356 | | 0.8395 | 55.01 | 78000 | 0.4472 | 0.2352 | | 0.8395 | 55.71 | 79000 | 0.4490 | 0.2339 | | 0.8295 | 56.42 | 80000 | 0.4489 | 0.2318 | | 0.8295 | 57.12 | 81000 | 0.4469 | 0.2320 | | 0.8225 | 57.83 | 82000 | 0.4478 | 0.2321 | | 0.8225 | 58.53 | 83000 | 0.4525 | 0.2326 | | 0.816 | 59.24 | 84000 | 0.4532 | 0.2316 | | 0.816 | 59.94 | 85000 | 0.4502 | 0.2318 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
janpase97/codeformer-pretrained
4ad0aa950d6abc8e1b5b0176dc398a6ea84003f7
2022-03-27T07:57:53.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
janpase97
null
janpase97/codeformer-pretrained
18
null
transformers
8,790
Entry not found
jason9693/soongsil-bert-small
f45d1642a040d497a8640d30856ba10ad53e1003
2022-07-13T05:33:10.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "ko", "transformers", "autotrain_compatible" ]
fill-mask
false
jason9693
null
jason9693/soongsil-bert-small
18
null
transformers
8,791
--- language: ko widget: - ์ˆญ์‹ค๋Œ€ํ•™๊ต ๊ธ€๋กœ๋ฒŒ<mask>ํ•™๋ถ€ ---
justin871030/bert-base-uncased-goemotions-group-finetuned
5db3fc03ed13fb6142250a4630edf07e88f53268
2022-02-09T17:22:07.000Z
[ "pytorch", "bert", "en", "dataset:go_emotions", "transformers", "go-emotion", "text-classification", "license:mit" ]
text-classification
false
justin871030
null
justin871030/bert-base-uncased-goemotions-group-finetuned
18
null
transformers
8,792
--- language: en tags: - go-emotion - text-classification - pytorch datasets: - go_emotions metrics: - f1 widget: - text: "Thanks for giving advice to the people who need it! ๐Ÿ‘Œ๐Ÿ™" license: mit --- ## Model Description 1. Based on the uncased BERT pretrained model with a linear output layer. 2. Added several commonly-used emoji and tokens to the special token list of the tokenizer. 3. Did label smoothing while training. 4. Used weighted loss and focal loss to help the cases which trained badly. ## Results Best Result of `Macro F1` - 70% ## Tutorial Link - [GitHub](https://github.com/justin871030/GoEmotions)
l3cube-pune/marathi-albert
611be7da5adc388935fce74c71af9336526a5c20
2022-06-26T15:15:05.000Z
[ "pytorch", "albert", "fill-mask", "mr", "dataset:L3Cube-MahaCorpus", "arxiv:2202.01159", "transformers", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
l3cube-pune
null
l3cube-pune/marathi-albert
18
null
transformers
8,793
--- license: cc-by-4.0 language: mr datasets: - L3Cube-MahaCorpus --- ## MahaAlBERT MahaAlBERT is a Marathi AlBERT model trained on L3Cube-MahaCorpus and other publicly available Marathi monolingual datasets. [dataset link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2202.01159) ``` @InProceedings{joshi:2022:WILDRE6, author = {Joshi, Raviraj}, title = {L3Cube-MahaCorpus and MahaBERT: Marathi Monolingual Corpus, Marathi BERT Language Models, and Resources}, booktitle = {Proceedings of The WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {97--101} } ```
lucasresck/bert-base-cased-ag-news
3535a9ed0f6b4cbd8608e220818bb9fad87a9714
2021-11-09T02:11:29.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:ag_news", "transformers", "classification", "license:mit" ]
text-classification
false
lucasresck
null
lucasresck/bert-base-cased-ag-news
18
null
transformers
8,794
--- language: - en license: mit tags: - bert - classification datasets: - ag_news metrics: - accuracy - f1 - recall - precision widget: - text: "Is it soccer or football?" example_title: "Sports" - text: "A new version of Ubuntu was released." example_title: "Sci/Tech" --- # bert-base-cased-ag-news BERT model fine-tuned on AG News classification dataset using a linear layer on top of the [CLS] token output, with 0.945 test accuracy. ### How to use Here is how to use this model to classify a given text: ```python from transformers import AutoTokenizer, BertForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('lucasresck/bert-base-cased-ag-news') model = BertForSequenceClassification.from_pretrained('lucasresck/bert-base-cased-ag-news') text = "Is it soccer or football?" encoded_input = tokenizer(text, return_tensors='pt', truncation=True, max_length=512) output = model(**encoded_input) ``` ### Limitations and bias Bias were not assessed in this model, but, considering that pre-trained BERT is known to carry bias, it is also expected for this model. BERT's authors say: "This bias will also affect all fine-tuned versions of this model." ## Evaluation results ``` precision recall f1-score support 0 0.9539 0.9584 0.9562 1900 1 0.9884 0.9879 0.9882 1900 2 0.9251 0.9095 0.9172 1900 3 0.9127 0.9242 0.9184 1900 accuracy 0.9450 7600 macro avg 0.9450 0.9450 0.9450 7600 weighted avg 0.9450 0.9450 0.9450 7600 ```
michaelrglass/albert-base-rci-tabmcq-col
32b590c0503f6ca74f5609c53e11d97e749a62ff
2021-06-16T16:07:54.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
michaelrglass
null
michaelrglass/albert-base-rci-tabmcq-col
18
null
transformers
8,795
Entry not found
mrm8488/bert-mini2bert-mini-finetuned-cnn_daily_mail-summarization
d1c20611b10deaf767b3c1bc819198cca1b957aa
2020-12-11T21:52:51.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "en", "dataset:cnn_dailymail", "transformers", "summarization", "license:apache-2.0", "autotrain_compatible" ]
summarization
false
mrm8488
null
mrm8488/bert-mini2bert-mini-finetuned-cnn_daily_mail-summarization
18
null
transformers
8,796
--- language: en license: apache-2.0 datasets: - cnn_dailymail tags: - summarization --- # Bert-mini2Bert-mini Summarization with ๐Ÿค—EncoderDecoder Framework This model is a warm-started *BERT2BERT* ([mini](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4)) model fine-tuned on the *CNN/Dailymail* summarization dataset. The model achieves a **16.51** ROUGE-2 score on *CNN/Dailymail*'s test dataset. For more details on how the model was fine-tuned, please refer to [this](https://colab.research.google.com/drive/1Ekd5pUeCX7VOrMx94_czTkwNtLN32Uyu?usp=sharing) notebook. ## Results on test set ๐Ÿ“ | Metric | # Value | | ------ | --------- | | **ROUGE-2** | **16.51** | ## Model in Action ๐Ÿš€ ```python from transformers import BertTokenizerFast, EncoderDecoderModel import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = BertTokenizerFast.from_pretrained('mrm8488/bert-mini2bert-mini-finetuned-cnn_daily_mail-summarization') model = EncoderDecoderModel.from_pretrained('mrm8488/bert-mini2bert-mini-finetuned-cnn_daily_mail-summarization').to(device) def generate_summary(text): # cut off at BERT max length 512 inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt") input_ids = inputs.input_ids.to(device) attention_mask = inputs.attention_mask.to(device) output = model.generate(input_ids, attention_mask=attention_mask) return tokenizer.decode(output[0], skip_special_tokens=True) text = "your text to be summarized here..." generate_summary(text) ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/bert-tiny-finetuned-yahoo_answers_topics
f94a9c5a7490e9b6739aaa8b25bd03d71c702f24
2021-05-20T00:40:50.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
mrm8488
null
mrm8488/bert-tiny-finetuned-yahoo_answers_topics
18
1
transformers
8,797
Entry not found
mrm8488/electricidad-base-finetuned-squadv1-es
b2e6be8b65957af74d8797826b06cc3fee70def6
2020-08-21T22:38:53.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/electricidad-base-finetuned-squadv1-es
18
null
transformers
8,798
Entry not found
mschwab/va_bert_classification
2985956612d34fc50e84ab8764816557a03bb090
2021-11-22T08:38:51.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
mschwab
null
mschwab/va_bert_classification
18
null
transformers
8,799
Fine-tuned bert-base model for binary vossian antonomasia detection on sentence level.